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This work analyses the nonlinear coupled axial–torsional vibration of single-walled carbon nanotubes (SWCNTs) based on numerical
methods. Two-second order partial differential equations that govern the nonlinear coupled axial–torsional vibration for such nanotube are
derived. First, these equations are reduced to ordinary differential equations using the Galerkin method and then solved using homotopy
perturbation method (HPM) to obtain the nonlinear natural frequencies in coupled axial–torsional vibration mode. It is found that the
obtained frequencies are complicated due to coupling between two vibration modes. The dependence of boundary conditions, vibration
modes and nanotubes geometry on the nonlinear coupled axial–torsional vibration characteristics of SWCNTs are studied in detail. It was
shown that boundary conditions and maximum initial vibration velocity have significant effects on the nonlinear coupled axial–torsional
vibration response of SWCNTs. It was also seen that unlike the linear model if the maximum vibration velocity increases, the natural
frequencies of vibration increases too. To show the effectiveness and ability of this method, the results obtained with HPM are compared
with the fourth-order Runge-Kutta numerical results and good agreement is observed. To the knowledge of authors, the results given
herein are new and can be used as a foundation work for future work.
1. Introduction: It is known that the mechanical behaviour of
structures is divided into two general categories depending on
whether the material phases are distributed continuously or dis-
cretely. If distribution is continuous, theories are based on classical
continuum mechanics (CCM) and do not contain any scaling
effects. This feature normally is the most important limitation of
CCM [1, 2]. On account of nanoscale dimensions of carbon nano-
tubes (CNTs), it is hard to implement accurate experiments to
obtain the properties of a CNT [3]. On the other hand, atomistic
methods like molecular mechanics [4, 5] are costly and time-
consuming to implement, especially for the systems having big
dimensions.

To overcome the following limitations, various important modi-
fications to CCM, known as higher-order gradient continuum theor-
ies were suggested to introduce microstructural features into the
theory. One of the most important generalised continuum theories
is the doublet mechanics theory, which was introduced by Granik
and Ferrari [6] which assumes that the stress tensor at a given
point is dependent to strains at all points of the continuum [7].

CNTs invented by Iijima in 1991 [8], have many exclusive and
fascinating properties. With rapid development in nanotechnology,
CNTs have great potential for wide applications as components in
nano-electronic-mechanical systems which are receiving growing
attention lately. The single-walled CNTs (SWCNTs) usually are
subjected to complex and heavy dynamic loadings which have
been caused by different sources. By producing different states of
stress, these loads might result in excess vibrations and may lead
to failure in some cases [9]. On the other hand, due to the excellent
features and applications of CNTs, the precise prediction of the
dynamic behaviour of such systems is essential. Two important
forms of vibrations that have been identified for SWCNTs are
axial and torsional vibrations. For example, for the flexible CNT
with long distance between supports and high flexibility its torsion-
al vibrations are much more significant. Furthermore, if the CNTs
are presumed to be compressible, the axial vibration must be con-
sidered. Therefore, it is essential to consider the coupling effect
between axial and torsional vibrations of SWCNTs, especially for
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studying stability conditions of CNTs. It can be seen from the pre-
vious works on the vibration of SWCNTs that most of existing
SWCNTs systems have focused on the bending [9, 10], torsional
[11–13], radial [14, 15], longitudinal [16, 17] or rotational
[18, 19] vibrations behaviour of the shafts, solely and the coupling
effect between the vibrational modes were ignored. The coupled
vibration of SWCNTs is an interesting subject because of the com-
plexity of the equations and the analytical solutions are difficult
to obtain. One example is the coupling between axial–torsional
vibrational behaviour of the SWCNT originated from the large
deformation of the beam.

However, most of the researches on the axial and torsional vibra-
tion of CNTs have been limited to the linear theory, and the nonlinear
regime is not considered yet. The homotopy perturbation method
(HPM) is an efficient semi-analytical approach introduced by He
[20, 21] for solving different linear and especially nonlinear engineer-
ing problems such as eigenvalue problems. In HPM, it is considered
the solution as sum of a series with infinite terms. Usually, less than
three sentences lead to good convergence and accuracy for the sol-
ution. The series used in HPM is different from Taylor series as it
contains functions rather than terms in Taylor series. The method
can be applied to a wide class of integral and differential equations;
deterministic and stochastic problems; linear and nonlinear equations.
The main advantages of this method to the other methods are sim-
plicity, high convergence rate, more accurate results and time-saving
especially in the non-homogeneous and nonlinear equations. The
HPM was also applied to study nonlinear equations in science and
engineering problems [22, 23].

To the best knowledge of authors, considering geometric non-
linearity effects along with the coupling of the axial–torsional vibra-
tions on the dynamic behaviour of the SWCNTs is not studied yet
and this Letter tries to consider such analysis. In other words, the
main purpose of this study is to investigate and model a mechanism
for the coupled nonlinear axial–torsional vibration of SWCNTs.
Another goal of this Letter is to show the effectiveness of HPM
and its ability in order at handling the nonlinear coupled torsion-
al–axial vibration to obtain the nonlinear frequency equation.
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2. Basic equations of motion: The governing differential equations
of motion for the coupled axial–torsional vibration of SWCNTs are
derived in this section. Now, consider an SWCNT of mean radius R,
length L, Young’s modulus E, mass density r and Poisson’s ratio n
as shown in Fig. 1.
In Fig. 1, r, u, z are the orthogonal axes correspond to the normal,

tangent and axial axes in cylindrical coordinates, respectively. The
centre displacements of a given element along the axial, tangent
and normal axes are shown by uz, uu and ur, respectively.
In the cylindrical coordinates, the equations of motion are

[1, 24, 25]
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Equations (1)–(6) are the equations of motion in the cylindrical
coordinates for a thin shell and should be solved to investigate
the dynamic behaviour of the system. fi and li, i [ 1, 2, 3{ } are
body force and body moment, respectively. Nij and Mij, i [
1, 2, 3{ }, j [ 1, 2, 3{ } are resultant forces and resultant moments,
respectively and are defined by the following equations:

Nij =
∫h/2
−(h/2)

s M( )
ij dr, Mij =

∫h/2
−(h/2)

zs M( )
ij dr, i, j [ 1, 2, 3{ }

(7)

In this study, the following assumptions, known as Love’s first
approximation, for cylindrical shells are made [13, 14]:

(i) Any point that lies on a normal to middle plane remains same
before and after the deformation. Thus, it is implied that the
transverse shear stresses (s M( )

rz and s(M)
ru ) are presumed to be

negligible.

(ii) Displacements in comparison with the thickness of the shell
can be neglected.

(iii) It is assumed that the normal stresses (s M( )
rr ) along the thick-

ness direction is negligible.
Fig. 1 SWCNT in cylindrical coordinate
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It is further assumed that the nanotube is axisymmetric, homoge-
neous and vibrates in axial and torsional modes when the body
forces are also neglected. From the later assumptions, it may be con-
cluded

∂

∂u
= ∂

∂r
= 0, ur = 0 (8)

Under the above assumptions, (1)–(6) are reduced to the following
equations:
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which are the equations of motion for coupled torsional–axial vibra-
tion of SWCNTs. The nonlinear strain-displacement relation is
written by [26]
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Substituting (12) into (11) and making some manipulations, the
following non-zero strain-displacement relations are obtained
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Substituting (13) into (9) and (10) with making some manipulations
along with stress-strain relations, yields
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Equations (14) and (15) are the equations of motion in nonlinear
coupled vibration of SWCNTs. It can be seen that the two equations
are coupled together. The corresponding linear governing equations
can be simply obtained by setting the nonlinear terms to zero. In this
case, the two equations will be decoupled.

3. Applying Galerkin and HPM to solve nonlinear governing
equations: The nonlinear governing equations for the coupled
axial–torsional vibration of SWCNTs are solved in this section.
The nanotube is under the common boundary conditions listed in
Table 1.

Now, the nonlinear equation of motion is solved to give the
nonlinear frequency equation. Assuming uu(z, t) = w(z)U (t) and
uz(z, t) = c(z)W (t) where w(z) and c(z) are the eigenmodes of the
nanotube and satisfy the kinematic boundary conditions. W t( )
and U t( ) are the time-dependent parameters of the nanotube. The
shape functions corresponding to the different boundary conditions
are also given in Table 1.
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Table 1 Common boundary conditions for the axial and torsional direction

Boundary conditions Shape function Governed condition
at the boundaries

two clamped (C-C) sin
np

L
z

( )
u = 0 at z = 0, L

free-Free (F-F) cos
np

L
z

( ) ∂u

∂z
= 0 at z = 0, L

clamped-Free (C-F) 1− cos
2np

L
z

( ) u = 0 at z = L,

∂u

∂z
= 0 at z = 0
Applying the Galerkin method, the governing equations of
motion ((14) and (15)) are reduced to the following ordinary differ-
ential equations:
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( )

UW

[ ]
= ra4

d2U

dt2
(16)

E a5W + a6U
2 + a7W

2[ ] = ra8
d2W

dt2
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Equations (16) and (17) are under the initial conditions
correspond to

U 0( ) = 0,
dU

dt
0( ) = Umax (18)

W 0( ) = 0,
dW

dt
0( ) = Wmax (19)

where Umax and Wmax denote the maximum initial velocities
of vibration in circumferential and axial directions, respectively.
In (16) and (17), a1, a1, ..., a8 are given by the following relations:
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(21)

After the following transformation t = vt, n = Vt, a = U/r, b =
W/r and r = ����

I/A
√

, (16) and (17) are changed to the following
nonlinear equations:

v2 d
2a

dt2
+ Aa+ Bab = 0 (22)

V2 d
2b

dn2
+ Cb+ Da2 + Eb2 = 0 (23)

where v and V are unknown nonlinear torsional and axial frequen-
cies, respectively, in the coupled nonlinear torsional–axial vibration
of SWCNTs that have to be determined. The coefficients
A, B, C, D and E are also defined by the following relations:
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are the linear frequencies
in free vibration in the torsional and axial modes, respectively. To
this end, new HPMs are created to seek the solutions of (22) and
(23). The following homotopies with v0 and V0 as the initial
approximations for the frequencies are considered
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Here p is a parameter, a = a t, p
( )

, b = b n, p
( )

, v = v p
( )

and
V = V p

( )
. Obviously, when p = 0, (29) and (30) give the follow-

ing linear harmonic equations:
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db(0)
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where X and Y are defined by X = Umax/rv and Y = Wmax/rV,
respectively.

It is notable that for p = 1, (29) and (30) result the nonlinear (22)
and (23), respectively. it can also be seen that as parameter p
changes from 0 to 1, the solutions a = a t, p

( )
and v = v p

( )
along with b = b n, p

( )
, V = V p

( )
of the homotopies (29) and

(30) change from initial approximations a0 t( ), v0 and b0 n( ), V0
to the required response a t( ), v and b n( ), V of (22) and (23),
respectively. Suppose the solutions of (22) and (23) to be in the
following forms:

a t( ) = a0 t( ) + pa1 t( ) + . . . (33)

v = v0 + pv1 + . . . (34)

b n( ) = b0 n( ) + pb1 n( ) + . . . (35)

V = V0 + pV1 + . . . (36)

Substituting the above relations into (29) and (30), respectively, and
equalling the coefficients with equal powers of p in the terms, the
following linear differential equations are obtained:
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..
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Fig. 2 Non-dimensional vibration amplitudes
a for torsional and
b for axial vibration; a and b versus non-dimensional time for X = 1
p0:
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The initial approximation solutions of (37) and (38) are simply
obtained by

a0 t( ) = X sin t( ) (39)

b0 n( ) = Y sin n( ) (40)

Substituting (39) and (40) into the first approximations of (37) and
(38), respectively, it is obtained that

v2
0

d2a1
dt2

+ a1

( )
+ −v2

0X sin t( ) + AX sin t( ) + BXY sin2 t( )[ ] = 0

(41)

V2
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( )
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0Y sin n( ) + CY sin n( ) + DX 2sin2 n( )[
+EY 2sin2 n( )] = 0

(42)

Expanding the trigonometric function using Fourier sine series for
sin2 t( ) in the first period yields

sin2 t( ) � 8

3p
sin t( ) − 8

15p
sin 3t( ) (43)

Substituting (43) into (41) and (42) and setting the coefficient of
sin t( ) to zero to eliminate the secular terms, it is found that

v =
������������
A+ 8

3p
BY

√
(44)

V =
�������������������������
C + 8

3p
EY + D

X 2

Y

( )√
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It should be noted that if it is set as B = 0 in (44) and
also D = E = 0 in (45), the obtaining results are in complete agree-
ment with those obtained using the linear method presented in
[11, 18].
From (44) and (45), it can be concluded that unlike the linear

systems, the frequencies are dependent on vibration velocities
related to the initial conditions. As the vibration velocities increase,
the nonlinear frequencies increase too and thus the discrepancy
between the linear and nonlinear frequencies become significant.
It should be noted that if the dependence of the frequency to vibra-
tion velocity is neglected, the linear frequencies are obtained. The
results demonstrate that the nonlinear torsional frequency is differ-
ent from the linear part only by addition of the torsional initial
vibrations velocity but the nonlinear axial frequency is dependent
on the torsional and axial initial vibration velocities of the system.
Considering (44) and (45), the solutions of (41) and (42) can be

obtained as

a1 t( ) = 3

5

BXY

3pA+ 8BX
sin t( ) − 1

3
sin 3t( )

[ ]
(46)

b1 n( ) = 3

5

EY 2 + DX 2

3pYC + 8 EY 2 + DX 2
( ) sin n( ) − 1

3
sin 3n( )

[ ]
(47)
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Thus, the first approximate solution of (22) and (23) is written by
the following equations:

a t( ) = a0 t( ) + a1 t( )

= X sin t( ) + 3

5

BXY

3pA+ 8BX
sin t( ) − 1

3
sin 3t( )

[ ]
(48)

b n( ) =b0 n( ) + b1 n( )

= Y sin n( ) + 3

5

EY 2 + DX 2

3pYC + 8 EY 2 + DX 2
( ) sin n( ) − 1

3
sin 3n( )

[ ]
(49)

4. Results and discussion: To validate the presented method, the
results obtained herein using Galerkin and HPM methods are com-
pared with the available numerical results.

To this end, in Fig. 2 non-dimensional amplitude of vibration for
axial and torsional modes are drawn against the non-dimensional
time using the fourth-order Runge-Kutta method and the presented
method. The sample SWCNT that has been used in this figure
and upcoming figures is Zigzag (16, 0) with clamped-free (C-F)
boundary condition. From this figure, it can be seen that the
results of the present method are in good agreement with the forth-
ordered Runge-Kutta numerical results. Now, the dependence
of boundary conditions, vibration modes and nanotubes geometry
on the nonlinear coupled axial–torsional vibration characteristics
of SWCNTs are studied in detail for Zigzag (16, 0). It should
be added that one may relate the natural frequency ( f ) to the
angular frequency (v) as f = w/2p. This equation is used in
Figs. 3–6 to give the frequencies in THz. Throughout this Letter,
the mechanical properties of SWCNT are assumed to be:
Poisson’s ratio n = 0.2, mass density r = 2300 (kg/m3) and
Young’s modulus E = 1.1 TPa [1].

Figs. 3 and 4 show the nonlinear natural frequencies variation
versus maximum torsional and axial vibration velocities, respect-
ively. As can be seen from these figures, unlike the linear one,
the nonlinear frequencies are dependent to the maximum vibration
velocity so that the larger the velocity, the discrepancy between the
linear and nonlinear frequencies becomes bigger. In Fig. 3, as the
non-dimensional maximum torsional vibration velocity increases,
the nonlinear axial natural frequency increases too while nonlinear
torsional frequency becomes constant. It means that in coupled non-
linear vibration of CNTs, the nonlinear torsional natural frequency
is independent to maximum torsional vibration velocity.
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Fig. 4 Nonlinear natural frequencies versus non-dimensional maximum
axial vibration velocity with X = 1

Fig. 3 Nonlinear natural frequencies versus non-dimensional maximum vi-
bration velocity in torsional mode with X = 1

Fig. 6 Nonlinear natural frequencies with tube diameter with X = 1 and
Y = 1 for different vibration modes

Fig. 5 Nonlinear natural frequencies versus tube length with X = 1 and
Y = 1 with different boundaries
In Fig. 4, it can be seen that if the non-dimensional maximum
axial vibration velocity increases, the nonlinear torsional natural
frequency increases too. While there is a minimum point in the non-
linear axial natural frequency curve. This minimum can be obtained
by differentiating nonlinear axial natural frequency with respect to
non-dimensional maximum axial vibration velocity.

The nonlinear natural frequencies versus tube length are plotted
in Fig. 5 under free-free (F-F) and C-F boundary conditions. It
can be seen that as the length of the tube increases, the nonlinear
natural frequencies of SWCNTs decrease. This decreasing is
1370
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more evident for lower tube lengths. As it is expected, the
clamped boundary condition has the highest natural frequency in
comparison with the other boundaries. It can also be seen that as
the tube length increases, the nonlinear frequencies approach
the linear ones, especially for higher lengths. It can also be seen
that in the same conditions, nonlinear axial natural frequency
is much higher than the torsional one. This discrepancy is more
apparent in lower lengths. In Fig. 6, nonlinear frequencies have
been plotted against tube diameter for various vibration modes.
From this figure, it is seen that as the diameter of the tube increases,
the nonlinear frequencies increase, too. This increase is more sig-
nificant in higher vibration modes and also for higher tube diameter.
It is also seen that as the vibration mode increases, the nonlinear
frequency increases too.
5. Conclusions: The nonlinear coupled torsional–axial vibration of
SWCNTs based on Galerkin and HPM has been investigated in this
study. The equations of motion for nonlinear coupled torsional–
axial vibration of the SWCNT are derived and solved to give the
frequency equations in coupled torsional–axial mode with arbitrary
end conditions. The significant dependence of these frequencies to
tube diameter, tube length and the maximum vibration velocity are
investigated in various boundary conditions and vibration modes.
To validate the accuracy and ability of the present method, the cal-
culated results were compared with numerical results and good
agreement has been obtained. The following notes are especially
concluded in this study.

(i) Owing to the coupling between the torsional and axial vibra-
tions, axial and torsional nonlinear frequencies are defined in
this study. If the nonlinear terms of velocity in frequencies
are neglected, the linear natural frequencies are obtained in
which the axial and torsional vibrations are decoupled.

(ii) Owing to nonlinear nature of the equations, the calculated
frequencies are dependent to the maximum axial and torsional
vibration velocities.

(iii) The coupling between the axial and torsional vibrations is due
to the existence of large deformation terms in the nonlinear
governing equations of the system. The nonlinearity effects
lead to increase in the frequencies comparing with the linear
model.

(iv) The natural frequencies increase if the end conditions change
from C-F through to fully clamped, denoted by C-C. This
effect is more apparent for lower tube lengths.
Micro & Nano Letters, 2019, Vol. 14, Iss. 14, pp. 1366–1371
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(v) For the same maximum vibration velocity and also tube
length/diameter, the axial frequency is higher than the torsion-
al one. This difference is more evident in higher vibration
modes and lower lengths.

(vi) As the length of the tube increases, the frequencies decrease.
This decreasing is more apparent in clamped boundary con-
dition and higher vibration mode. From this, it is implied
that with an increase in the tube length, the interaction of
the axial and torsional vibrations decreases. However, with
increasing the tube diameter, an inverse effect is seen.
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