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This work aims to investigate the vibration of the zigzag and chiral single-wall carbon nanotubes (SWCNTs) based on Flügge shell theory
considering the clamped-simply supported, clamped-free, clamped-clamped and simply supported-simply supported end conditions. After
developing the governing equation of the objective system, the wave propagation approach is implemented for the purpose of obtaining
the frequency equation in the eigen form for vibration of the considered system. In addition, the applicability of this model for the
analysis of vibration of carbon nanotube is examined with the effect of length and ratio of height-to-radius. To generate the fundamental
natural frequencies of SWCNTs, computer software MATLAB engaged. The numerical results are validated with existing open text. Since
the percentage of error is negligible, the model has been concluded as valid.
1. Introduction: Carbon nanotubes (CNTs) have a variety of appli-
cations because of their distinctive molecular structure and show
unique electronic and mechanical properties because of their
curvature. Nanotubes and micro-beams can be cited as one of the
very applicable micro- and nano-structures in various systems,
namely, sensing devices, communications and the quantum
mechanics. The application of the tiny structures, specifically,
CNTs in the sensors and actuators enforce the engineers to study
vibrational properties of those structures experimentally and theor-
etically. In addition, they are utilised in different fields such as bio-
engineering, tissue engineering, computer engineering, optics,
energy and environmental systems. Therefore, their vibrational
analysis is examined for successful application. Iijima [1] explored
CNTs in 1991.
Some researchers [2–7] used the aspect ratio (5–100 nm) with

higher frequencies (THz∼1017). In material strength analysis, the
application of CNTs has a vast field [1, 5, 8, 9]. Gigault et al.
[10] carried out the experiment on the SWCNT size characteristics
with aspect ratio from <500 up to 2000 nm using Raman and
scanning electron microscopy techniques. Leung and Kuang [11]
conducted a numerical study of the axial compression and external
hydrostatic pressure of multi-walled CNTs (MWCNTs) based on
Flügge’s theory of the elastic stability of thin cylindrical shells.
Bocko and Lengvarský [4] studied the natural frequency versus
length (L= 10–100 nm) with varying two distinct diameters
(D= 1356 and 2034 nm) using non-local theory. Wang et al. [12]
applied Flügge shell equations of elastic shells to investigate the
vibration of MCWNTs. The natural frequencies and mode shape
are calculated for MWCNTs with radii 0.65 and 5 nm, respectively.
Natsuki et al. [13] proposed the vibration analysis of single- and
double-walled CNTs using Flügge shell model. The frequencies
are analysed and investigated to find the effect of vibrational
modes and nanotube parameter.
Hussain and Naeem [5] studied the vibrations of armchair

SWCNTs using wave propagation approach (WPA). They
investigated the natural frequency versus length (L= 10–100 nm)
with varying three distinct radii (R= 678, 1356 and 2034 nm).
Moreover, Wang and Zhang [14] studied the vibration frequency
spectra to extract the bending and torsion stiffness for SWCNTs
by employing the Flügge’s shell model. It was concluded that
with the well-defined thickness, a shell model of SWCNTs can
be established. Alibeigloo and Shaban [15] investigated the
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frequencies of SWCNTs using the three-dimensional elastic
theory and concluded that the frequencies increases by increasing
the thickness-to-radius ratio (h/R= 0.02–0.1) keeping the length
(L= 5 nm). Selim [16] studied the torsional vibration of SWCNTs
in multilayer shells and the Flügge shell model was proposed for
vibration of CNTs with additional phase velocity subject to initial
compressive stress. Ghavanloo and Fazelzadeh [17, 18] exhibited
the remarkable mechanical phenomena on vibration of SWCNTs.
In this study, an isotropic elastic shell model is developed by
using the Flügge’s shell theory. Recently, many researchers used
Flügge shell model to investigate the vibration of CNTs [19–21].
Moreover, many researchers used different models through com-
puter computations in open text [8, 12, 15, 19] to calculate the
overall vibrational behaviour of CNTs. Due to the exactness of
this approach, some researchers have been used for the vibration
of CNT [12, 13, 16, 17, 18]. To the best of knowledge, element
formulations for SWCNTs using WPA with different theories
have not been explicitly reported in the open literature. In addition,
the main advantage of the novel method based on WPA is that it is a
very simple method and the advantages are to explore a new
horizon for examining the overall vibration analysis of SWCNTs
and proposed method converges faster than earlier computations
such as beam models and molecular dynamics simulations.
According to this simulation, the percentage and statistical error
have been reduced within the acceptable range and another better
option to escape from mathematical rigors than earlier computations
as beam model (BM) and Timoshenko beam model (TBM) [8, 13].
The results gained here are compared with earlier models. We are
investigating the influence of length and ratio of height-to-radius
for zigzag and chiral SWCNTs on the vibration fundamental
natural frequencies (FNFs), which is our particular motive.

The researchers recommended the beam theories [8, 13] to
investigate the behaviour of nanostructure. These models are also
having drawbacks and the other theories/simulation like beam
theories and molecular dynamic simulation cannot be investigated
by the cross-sectional deformation and geometrical parameters
(thickness and height-to-radius). Shells theory of Flügge is dis-
cussed in this Letter for modelling with cross-sectional deformation
of SWCNTs. Appropriate theory are performed to find out the
complex behaviour of nanostructures. The most important geo-
metrical parameters are basically obtained from numerical studies
of shell theory and this parameter provides a platform for the
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correctness of the results. Furthermore, it is suggested that the pro-
posed theory might be a reliable indicator of the tube thickness
and length in the SWCNT. These results would be beneficial for
determining the optimum structure of SWCNTs. The thicknesses
can then be used to provide quantitative values for the amount of
SWCNT material added to the current collectors.
2. Theoretical formation: Due to geometrical shapes, SWCNTs
and cylindrical shells are observed similar in structure. So for
studying the vibration of SWCNTs, the equation of motion of
cylindrical shells is used. Moreover, Fig. 1a shows the orientation
of the graphene sheet as, nanotubes become zigzag, if m = 0 and
the nanotubes are chiral if n=m, respectively. Here, vibration fre-
quencies zigzag indices (12, 0), (14, 0), (19, 0) and (8, 3),
(10, 2), (14, 5) for chiral SWCNTs, respectively, have been
performed using Flügge shell model based on WPA. The results
have been given only for different eigen-frequencies for radius
678, 1356 and 2034 nm for zigzag and chiral with length, and
also ratio of thickness-to-radius for these tubes. Figs. 1a and b
shows geometrical variation of indices of zigzag and chiral
SWCNTs.

A SWCNT with geometrical parameters length, mean radius
and thickness denoted as L, R and h, respectively, is shown in
Fig. 2. Young’s modulus, Poisson’s ratio and mass density are
denoted by their material quantities as E, v and r, respectively.
Suppose that the displacement functions u1, u2, u3 are in the
direction of axial, tangential and transverse, respectively. For
executing the vibration of CNTs, a set of partial differential
equations (PDEs) [14] containing displacement functions is

written as:
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Fig. 1 Schema of hexagonal Lattice
a Graphene sheet with indices
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Fig. 2 Geometry of SWCNTs
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where K1 = Dbending/Kextension, K2 = Dtorsion/Dbending and the in-plane,
torsional, bending and shear stiffness are designated by Kextension,
Dtorsion, Dbending and Kshear, respectively, G denotes the shear
modulus. These parameters are preserved as independent para-
meters termed mathematically as

Kextension = Eh

1− v2
, Kshear = Gh, Dbending = Eh3

12(1− v2)

Dtorsion = Gh3

12
andG = E

2(1+ v)

Above quantities have a unique relationship as follows:

Dbending

Kextension
= Dtorsion

Kshear
= h2

12

3. Wave propagation approach: WPA is used to study the vibra-
tional behaviour of SWCNTs. Before this work, current approach
was successfully used for vibration, and buckling analysis of
cylindrical shell [5, 9, 13, 22, 23] was used to discretise the govern-
ing equation of motion. The coordinate system f, c, t is designated
for axial, circumferential and time variable. The following relations
for displacement functions are assumed as

a(f, c, t) = eivt cos ncAip(f)

b(f, c, t) = eivt sin ncBiq(f)

g(f, c, t) = eivt cos ncCiS(f)

(2)

where three vibrational amplitude coefficients denotes, respectively,
the direction of axial, circumferential and radial. Here v, m, n
are denoted by angular frequency, axial half and the circumferential
wave numbers, respectively. Ai, Bi and Ci are taken as the displace-
ment amplitudes in x, u and z directions and the angular frequency
and circumferential wave number are represented by v and n,
respectively. f = v/2p is the FNF formula. The space and
temporal variables are separated by using product method for
PDEs. Also, the complex exponential function is specified for the
axial modal function denoted by p(f), q(f) and s(f) as

p(f) = q(f) = s(f) = e−iJdf (3)

The deformation functions a, b, g have been written as in the form
of complex exponential function involving km, which is axial wave
number related with an end condition [14]. Now the expressions
for a, b, g given in (2), along with their partial derivatives are
substituted into (1). Also making substitutions from modal expres-
sions for p(f), q(f), s(f) and their respective derivatives in the
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Fig. 5 FNFs versus length for zigzag SWCNTs (19, 0) with R=2034nm and
h= 0.1 nm

Fig. 3 FNFs versus length for zigzag SWCNTs (12, 0) with R=678 nm and
h= 0.1 nm

Fig. 4 FNFs versus length for zigzag tube (14, 0) with R= 1356 nm and
h= 0.1 nm
system of algebraic linear equations is obtained
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The matrix equation to represent the frequencies, after the arrange-
ment of terms can be written as
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where the matrix elements dij = 1 ≤ i, j ≤ 3 are specified as
follows:
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For vibrating CNT, the axial wave number km is related to an end
condition specified at the CNT end. This is the actual characteristics
for adapting the WPA here.

4. Result and discussion: The obtained results for the different
boundary conditions (BCs) are likewise: simply supported-simply
supported (SS-SS), clamped-clamped (C-C), clamped-free (C-F)
and clamped-simply supported (C-S) for zigzag and chiral
SWCNTs are parametrically studied in this part. The results for
length and ratio of thickness-to-radius are presented versus funda-
mental frequencies f (THz × 104) and f (THz × 106), respectively.
For example, the reported effective thickness of SWCNTs ranges
from 0.0612 to 0.69 nm [5, 8, 9] whose magnitude difference is
more than an order. In most of the previous studies, the value of
Kextension is obtained and lies in the range of 330–363 J/m2 [5, 9]
and Poisson’s ratio v arises from 0.14 to 0.34. The frequency can
be controlled by varying several parameters. The graphical behav-
iour of frequencies versus aspect ratio/length-to-diameter ratio of
[4, 7] is same and shows a good validity. Figs. 3–5 show the vari-
ation of frequencies versus length of zigzag (12, 0), (14, 0) and
(19, 0) with various BCs. Particularly, the natural frequencies cor-
responding to length (L= 10 nm) for zigzag indices (12, 0), (14, 0),
(19, 0) are 14.102, 16.358, 21.999, for the C-C end condition,
13.820, 16.076, 21.717, for the C-SS end condition, 13.538,
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15.794, 21.435, for the SS-SS end condition, and 12.974, 15.230,
20.871, for the C-F support condition, respectively. Similarly, the
frequencies corresponding to length (L= 100 nm) for zigzag
indices (12, 0), (14, 0), (19, 0) are 1.4102, 1.6358, 2.1999, for
the C-C end condition, 1.3820, 1.6076, 2.1717, for the C-SS,
1.3538, 1.5794, 2.1435, for the SS-SS end condition, and 1.2974,
1.5230, 2.0871, for the C-F end condition, respectively. It shows
that the natural frequencies decreased as L is enhanced by these
BCs. It is observed that there is minute difference with different
BCs and frequencies of C-F are lower than other BCs. It is can
be seen from Figs. 3–5 that the FNFs values of zigzag (12, 0) are
lower than those of FNFs of (14, 0) and (19, 0). Figs. 6–8 show
the variation of frequencies versus length of chiral (8, 3), (10, 2)
3
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Fig. 6 FNFs versus length for chiral tube (14, 0) with R=678 nm and
h= 0.1 nm

Fig. 8 FNFs versus length for chiral tube (14, 5) with R=2034nm and
h= 0.1 nm

Fig. 11 FNFs versus h/R for zigzag tube (19, 0) with L= 2.4 nm

Fig. 7 FNFs versus length for chiral tube (10, 2) with R=1356 nm and
h= 0.1 nm Fig. 10 FNFs versus h/R for zigzag tube (14, 0) L= 2.4 nm

Fig. 9 FNFs versus h/R for zigzag tube (12, 0) with L= 2.4 nm
and (14, 5) with various BCs. Particularly, the natural frequencies
corresponding to length (L= 10 nm) for chiral indices (8, 3),
(10, 2), (14, 5) are 1.169, 1.784, 3.401, for the C-C end condition,
1.1101, 1.700, 3.285, for the C-SS end condition, 1.035, 1.618,
3.171, for the SS-SS end condition, and 0.910, 1.460, 2.948, for
the C-F end condition, respectively.

Similarly, the natural frequencies corresponding to length
(L= 100 nm) for chiral indices (8, 3), (10, 2), (14, 5) are 0.0143,
0.0196, 0.0350, for the C-C end condition, 0.0137, 0.0189,
0.0339, for the C-SS end condition, 0.0132, 0.0181,0.0328, for
the SS-SS end condition, and 0.123, 0.0167, 0.0306, for the C-F
4
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end condition, respectively. For all BCs, the frequencies fall
down, then, become parallel and, after that, seem linear and there
is minute difference between them. It can be seen from these
figures that the FNF values of chiral (14, 5) are higher than those
of (8, 3) and (10, 2). The frequencies are more visible as compared
to zigzag case. It is also concluded that the frequency increases with
increasing tube radius.

This increase is more prominent especially for higher radius and
significant effect of radius can be observed over natural frequencies.
Figs. 9–11 show the variation of frequencies versus ratio of
height-to-radius of zigzag (12, 0), (14, 0) and (19, 0), with
various BCs. Particularly, the natural frequencies corresponding
to height-to-radius ratio (h/R= 0.30) for end condition
Micro & Nano Letters, 2020, Vol. 15, Iss. 1, pp. 1–6
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Fig. 12 FNFs versus h/R for chiral tube (8, 3) with L= 2.4 nm

Fig. 13 FNFs versus h/R for chiral tube (10, 2) with L= 2.4 nm

Fig. 14 FNFs versus h/R for chiral tube (14, 5) with L= 2.4 nm
C-C (12, 0), (14, 0), (19, 0) are 1.0177, 1.1806, 1.5876, for end con-
dition C-S (12, 0), (14, 0), (19, 0) are 0.9974, 1.1602, 1.5673, for
SS-SS (12, 0), (14, 0), (19, 0) are 0.9770, 1.1398, 1.5469, and
for end condition C-F (12, 0), (14, 0), (19, 0) are 0.9363, 1.0991,
1.5062, respectively. Similarly, the natural frequencies correspond-
ing to thickness-to-radius ratio (h/R = 0.48) for end condition
C-C (12, 0), (14, 0), (19, 0) are 1.2873, 1.4933, 2.008, for end con-
dition C-S (12, 0), (14, 0), (19, 0) are 1.2616, 1.4675, 1.9824, for
SS-SS (12, 0), (14, 0), (19, 0) are 1.2358, 1.4418, 1.9567, and
for C-F (12, 0), (14, 0), (19, 0) are 1.1843, 1.3903, 1.905, respect-
ively. For these BCs, on increasing the thickness-to-radius ratio h/R,
the frequencies also increase. At h/R ( = 0.30 to 0.48), all the fre-
quencies are parallel. In these figures, it can be seen that the gap
between the C-C, C-S, SS-SS is smaller than that of CF BC. It
can be seen that the FNFs of zigzag (14, 0) are between the frequen-
cies of (12, 0) and (19, 0). Figs. 12–14 show the variation of fre-
quencies versus ratio of height-to-radius of chiral (8, 3), (10, 2)
and (14, 5) with various BCs. Particularly, the FNFs at h/R = 0.30
for end condition C-C= (8, 3) f ∼1.0544, (10, 2) f ∼1.6089,
(14, 5) f ∼3.0683, for C-S = (8, 3) f ∼0.9933, (10, 2) f ∼1.5332,
(14, 5) f ∼2.9634, for SS-SS = (8, 3) f ∼0.9340, (10, 2)
f ∼1.4593, (14, 5) f ∼2.8609, and for end condition C-F = (8, 3)
f ∼0.8208, (10, 2) f ∼1.3171, (14, 5) f ∼2.6596, respectively.
Similarly, the natural frequencies corresponding to ratio of

thickness-to-radius (h/R = 0.48) for end condition C-C = (8, 3)
f ∼2.1339, (10, 2) f ∼3.2562, (14, 5) f ∼6.2097, for end condition
C-S = (8, 3) f ∼2.0102, (10, 2) f ∼3.1030, (14, 5) f ∼5.9974, for
SS-SS = (8, 3) f ∼1.8902, (10, 2) f ∼2.9535, (14, 5) f ∼5.7889,
and for C-F = (8, 3) f ∼1.6613, (10, 2) f ∼2.6655, (14, 5)
f ∼5.3827, respectively. As h/R is enhanced for these BCs, the fre-
quencies go up. At h/R ( = 0.30–0.48), all the frequencies are paral-
lel. It can be seen that the C-S, SS-SS are sandwiched between
Micro & Nano Letters, 2020, Vol. 15, Iss. 1, pp. 1–6
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C-C and C-F BCs. The FNFs of (14, 5) are higher than those of
(8, 3) and (10, 2).

5. Conclusions: The discussion in this Letter shows the vibration of
zigzag and chiral SWCNTs based on WPA with different end con-
ditions. Frequency spectra of zigzag (12, 0), (14, 0), (19, 0) and
chiral (8, 3), (10, 2), (14, 5) SWCNTs for length and ratio of
thickness-to-radius have been investigated. The length with differ-
ent BCs has been carried out for three different values of radius and
noted the frequency values for each case of zigzag and chiral
SWCNTS. At higher value of length, the frequencies are dimin-
ished. On the other hand, the phenomena of frequency versus
height-to-radius ratio are a counterpart of length. When the ratio
of height-to-radius increases, the FNFs also increase for all sort
of SWCNTs. The frequency values of zigzag are higher than
that of chiral. Throughout the computation, it is observed that the
frequency behaviour for the BC follows as: C-C frequency curves
are higher than that of C-SS, SS-SS and C-F curves, respectively.
From the above discussion, it is concluded that end conditions
have a notable effect on the vibration of SWCNTs. The investiga-
tion presented may be helpful in the application of MWCNTs
such as high-frequency oscillators and mechanical sensors.
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