Nonlinear vibration of fluid conveying cantilever nanotube resting on visco-pasternak
foundation using non-local strain gradient theory
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Frequency analysis and forced vibration response of fluid conveying viscoelastic nanotubes that resting on nonlinear visco-pasternak
foundation under magnetic field using size-dependent non-local strain gradient theory are considered in this study. It is supposed that the
nanotube is modelled as cantilever type beam and subjected to a harmonic load. The material property of the nanotube is modelled by
Kelvin—Voigt viscoelastic constitutive relation and slip boundary conditions of nanotube conveying fluid are taken into account. Extended
Galerkin method is used to obtain the nonlinear differential equation of the motion and the multiple time-scales method is utilised to
investigate the primary vibration resonance of the nanotube. Firstly, the frequency analysis is performed on the linear system and the
effects of foundation coefficients on the natural frequency are investigated at several flow velocities. Moreover, the resonance properties of
the system are solved in closed form and analysed from the frequency-response curves, and then the effects of the non-local parameter,
length scale parameter and magnetic field are fully investigated. In this case, non-local parameter, length scale parameter and foundation

coefficients are highly influential on the frequency response of the considered system.

1. Introduction: Application of nanotubes is broadly detected in
mechanical and biological structures in last decade, considering
specific geometrical, mechanical and natural features [1, 2].
One of the major efficient and decisive usage of such structures
is known as nano-transporter for fluid flows which are found
in medical science likewise mechanical systems. Conveying fluid
nano-system exist in numerous devices [3] and have various
requests as sensors, resonators, drug delivery, filtration devices,
nano-systems for tumour targeting and nanodevices for diagnosis
of serious diseases. Thus, vibration and dynamic analysis of fluid
conveying nanotubes is a crucial subject and has involved excessive
attention of scientists.

As instances of applying classic continuum theories, Yoon and
Ru [4] investigated the effect of moving fluid on free vibrations
and stability of carbon nanotubes (CNTs) based on classical
beam model. They showed that fluid velocity affects resonant
frequencies of CNTs, they also evaluated role of the elastic sub-
strate on results. Chang and Lee [S] employed Timoshenko
beam modelling for analysis of CNT having fluid which
freely vibrates. Ghavanloo et al. [6] analysed both vibration
and stability of fluid conveying nanotube rested on linear visco-
elastic foundation. Discounting the small-size effects in a nano-
scale problem might cause inaccurate results. To resolve it,
several size-dependent non-classical continuum theories such as
non-local elasticity theory (NET) [7], modified couple stress
theory (MCST) [8] and modified strain gradient theory (MSGT)
[9] have been anticipated.

Vibration of a viscous fluid-conveying single-walled CNT
(SWCNT) surrounded by an elastic medium was considered by
Lee and Chang [10]. It has been reported that the effect of non-local
parameter on the frequency becomes significant as the flow velocity
of the viscous fluid decreases. Also, Lee and Chang [11] studied the
small-scale effects on the vibration characteristics of fluid-
conveying CNTs. The NET was applied to nonlinear vibration
analysis of fluid-conveying CNTs by Soltani et al [12].
Structural instability of CNTs, including static and dynamic
states, resting on the viscoelastic foundation which is affected by
distributed tangential load based on the NET was studied by
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Kazemi-Lari et al. [13]. Vibration and stability of fluid-conveying
SWCNTs embedded in biological soft tissue were considered
based on the NET by Hosseini et al. [14]. Arani et al. [15]
studied vibration and instability analysis of double-walled
(DW)-CNT with following fluid subjected to a magnetic field
using NET. Bahaadini and Hosseini [16] presented free vibration
and instability investigation of cantilever viscoelastic CNTs con-
veying fluid by consideration of slip condition using NST. Chang
[17] investigated the dynamic behaviour and vibration of fluid-
conveying DW-CNTs embedded in a biological soft and viscous
tissue and subjected to a moving load by considering effects of
the geometric nonlinearity and the van der Waals force [18].
Closed-form expressions were obtained for the large-amplitude vi-
bration by Askari et al. [19] using Galerkin method. Besides effects
of moving nanoparticle on dynamic response of nanotubes were
analysed by Arani and Roudbari [20] and Roudbari et al. [21-23].

In micro-scale structure, Tang et al. [24] studied three-
dimensional nonlinear vibration behaviour of curved micro-tubes
conveying fluid via MCST. Yin et al. [25] developed a size-
dependent model based on MSGT to investigate the vibration of
microscale pipes conveying fluid. Nonlinear vibration analysis of
functionally graded (FG) micropipes conveying fluid via SGT has
been carried out by Setoodeh and Afrahim [26]. Hosseini and
Bahaadini [27] analysed the vibration and flutter instability of
micropipe conveying fluid based on the MSGT and showed that
the predicted frequencies and flutter velocities are size-dependent.
The NET and SGT describe two entirely different physical features
of materials and structures at small scale; the NET does not contain
non-locality of higher-order stress while the SGT only considers
local higher-order strain gradients without non-local effects.
Though, researches show that the individual NET or SGT has
some limits on identifying the size-dependent stiffness of nano-
beams [28, 29]. Lim et al. [30] combined the NET with SGT
and resulted in a higher-order non-local strain gradient theory
(NSGT), to evaluate the true effect of the two length scale para-
meters on the responses of small-scale structures, the result is con-
sistent with results of molecular dynamics [31]. Several studies
considered the mechanical behaviour of small-scaled structures
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based on the NSGT, for instance nonlinear free vibration of FG
nanobeam has been studied by Simcsek [32].

This work analytically investigates the vibration of CNT con-
veying nanoflow and resting on nonlinear foundation under
magnetic field and external harmonic load via NSGT. Governing
equations of system is developed using Hamilton principle. Then
extended Galerkin (EG) method and multiple scale method is
utilised to find the nonlinear frequency response.

2. Modelling of flow-induced vibration in nanotube using
NSGT: According to the NSGT presented in [30], the constitutive
relation for the normal stress o, and strain &,, in nanobeams is

written as
& &
2 2
(1 — (epa) —axz) Oy = (1 —1 —axz)Esxx 1

where eya and [/ are the non-local and strain gradient length
scale parameters, respectively. They show the significance of the
non-local elastic stress and strain gradient field, respectively.
Considering the internal damping for viscoelastic nanotube, based
on the Kelvin-Voigt viscoelastic model the part Ee,, can be sub-
stituted with E(e,, + gde,,/0f) where g is the material damping
coefficient. Consecutively, (1) is rewritten as [20-23, 30, 33]

e s de
29 — Y% FCxx
(1 (epa) 8x2) [ E(l [ 8x2> (sxx +g o ) 2)

Fig. 1 represents the system of fluid conveying nanotube resting on
visco-pasternak substrate, exposed to excitation in magnetic field.
The governing equation of motion for this system can be stated as

& 3\ a*wix, )
Elf1-P=)1+¢g=)—"
( 8x2>< te 3t> 2

2

) 3)
+ (1 — (eoa)2

@)[’”cw +F = (Fi+R) — Fy ] =0

where w(x, r) represents lateral vibration of nanobeam, m,. is the
mass per length of the nanotube, F; F;, R and Fe,. are the external
force induced by the flow, Lorentz force due to magnetic field,
external force due to substrate and harmonic excitation, respectively

4)

1) ., wx, 1)
ox tav ox?

F, = m/(ﬁ/(x, HN+2v

In which m, is the density of fluid, v is the mean flow velocity of
fluid and & =1 for a turbulent regime with uniform flow profile.
Besides assuming continuously connected foundation, the external
force due to surrounding visco-Pasternak foundation can be
written as

Fwix, 1)
ox2

R = K;w(x, 1) + Ky, w(x, 1)’ + Cpw(x, 1) — K 5)

Visco-Winkler-
Pasternak
substrate

Fig. 1 Schematic model of system
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where K, Ky;, Cp and are the linear and nonlinear stiffness,
damping coefficients and shear stiffness of foundation, respectively.
Also Lorentz force per length can be defined as [33]

82w(x, 1) _g 82w(x, 1)

2
Fl = To HxA a2 a2

(©)

where 7, denotes the magnetic permeability, H, is the component
of the longitudinal magnetic field vector exerted on the nanotube
in the x-direction. Replacing (4)—(6) in main (3), we have

By 2 232W
2 (me+mg)w2my VCF (Vm)+meCF (V) W
1= (eya) = > .
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For consideration of slip effect, the relative v=VCF x V5 has
been used in above where VCF is the average velocity correction
factor which can be assumed as VCF =V /V,, = (1 +a, Kn) x
[1+4(2— x)/x)&Kn/(1 + Kn))] [34], where V, is fluid velocity
with non-slip assumption, Kn is the Knudsen number and
x = 0.7. In order to simplify the parametric analysis, the following
dimensionless parameters are defined:

EI EI m
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3. Solution procedure: By employing EG approximate solution
method, (7) is converted into a set of ordinary differential equations.
The key property of the EG is selecting a finite dimension subspace
of the Hilbert space (trial function space) for approximating the so-
lution and imposing orthogonality relation of the obtained error to a
finite dimension space (test function space) which is similar to the
trial space. The following expansion which is expanded in a series
of modes is assumed for the dimensionless lateral deflection of
nanotube

N
WX, T)=> ¢X)m(T) ©
r=1

In which ¢,(X) are the unknown generalised coordinates and 7),(T)
are the eigenmodes of nanotube in EG method. Considering a can-
tilever nanotube, one can use the resulting orthogonal functions

@,(X) = Cosh(A,X) — Cos(A,X)

SinAA, — SinA,
CoshA, + CosA,

(10)
>(Sinh(A,X) — Sin(A,X))

The value of A, can be obtained by solving the equation:
cosh A, x cosA, = —1. Substituting (9) and (10) into non-
dimensional governing equations (7) multiplying the resultant
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equations by the corresponding eigenfunctions, and integrating with
respect to X from 0 to 1, leads to the following discretised form for
the equation:

[T} + [T} + [Kn(T) + [Fn(T)? = {f (D))
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For the frequency analysis, the nonlinear and excitation part of the
main relation is ignored. Considering time harmonic motion, where
1(t) = ne'” and substituting this form in above relation, one can
obtain an equation Def(—[m]w* + i[c]w + [k]) = 0 that generally
have two complex conjugate roots, real part of roots are natural
frequency.
The method of multiple time scales is employed to study the non-
linear forced vibration (7). A small parameter o is presented and an

approximate solution can be represented by an extension in terms of
different time scales in the subsequent formula

() = no(Ty, Ty, ... +0om(Ty, Ty, ..)+0©%)  (12)

where T, = ¢, T} = &t. Besides for fundamental mode, (7) can be
rewritten in the following form:

H+ wim = —20mi — adon’ + focos Ot (13)

Also it follows that the derivatives with respect to ¢ become expan-
sions in terms of the partial derivatives with respect to the 7},, where
0/0T, =D, (n=0,1,2, ...), according to

d

5= Do+0oD, + "Dy +...);

£ (14)
7= (D +20DyD, + 0°D} +...)

One can write {) = w, + 00 that O is detuning parameter and gives
the nearness of Q to . Substituting (14) into (13) and comparing
the coefficients of o' to zero

Dj 1 + wymg = 0,
D} m, + win, = —2DyD,my — 2uDyn, — amy + f cos Ot
(15)
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We shall seek the general solution of (15) in the formula
np = AT 4 4T 4 C.C (16)

where A4 is a function of 7 and A is the complex conjugate of 4.
Substituting (16) into (14), and setting all the resonant terms to
zero to avoid secular terms in the result offers the solvability state

_2l~wOD1Aeiw0T0 _ zinﬁAeinTo _ 3&/42261'&)0% + 1/2;€inTueiOT1 -0

a7

Equation (16) is solved in introducing the polar form
A=0.5a(T 1)e"ﬂ(Tl), where the « is amplitudes of oscillation.
Replacing this polar form into (17), identifying real and imaginary
parts, one obtains a dynamical system. This system can be con-
verted to an independent one when defining OT, — B =Y.
Separating the real and the imaginary parts gives the frequency—
response relation O — « for the steady-state response as

— 2 v
ﬁ2+(0—3—aa2>= S 5 (18)

8w, 40’ w

4. Results, validation and discussions
4.1. Free vibration, validation: In order to ensure about the accuracy
of calculations, we compare the obtained frequencies of vibration
by the proposed model for a viscous cantilever nanotube conveying
fluid flow with those of other researchers. For this purpose, the
obtained frequencies in the linear model are verified with those of
[16] when K=0, C=0 and /=0. Variation of real and imaginary
parts of fundamental eigenvalue by fluid velocity has been validated
by Bahaadini and Hosseini [16] in Fig. 2. All curves are according
to [16] exactly. Variation of real and imaginary parts of funda-
mental eigenvalue by velocity has been plotted in Fig. 3 for differ-
ent values of K and C.

By increasing K, the total stiffness of system increased so the
imaginary part (vibration frequency) and u., increased which u,

—— present
o ref |16]
6

Im, ®»

=
[
&=
=
«w

[— present ]
o ref|16]

220 L L L
0 2 4 6 8

Fig. 2 Validation of real and imaginary parts of eigenvalue by [16]

183
© The Institution of Engineering and Technology 2019



—o— K=0,C=1|
—— K=1,C=0
e K=, C=0

Im, O

Fig. 3 Variation of eigenvalue by velocity for different value of K, C

denotes the critical dimensionless flow velocity at which IM(Q)=0
and the system becomes unstable through a bifurcation. Also, the
real part (damping ratio) curve did not change at lower fluid
speed but divergence at higher speeds. Besides by increasing C,
total damping of system increased, the imaginary part and u.,
decreased. Also, the real part increased and divergence at lower
speeds. Variation of imaginary part of first and second eigenvalues
of nanotube has been plotted in Fig. 4 (=0, 7=0.001,
Kn=0.1,u=0.1, H=0).

4.2. Forced vibration: In this section, the nonlinear size-dependent
forced vibration behaviour of a nano-pipe conveying fluid is inves-
tigated in vicinity of fundamental frequency and in subcritical
domain, i.e. # < u,,. The origin of nonlinear equations is the foun-
dation medium, which causes cubic nonlinearities in the differential
equation. The influence of main parameters on the frequency re-
sponse of system is taken into account and a parametric sensitivity
analysis has been performed. As seen in Figs. 5-10, the nonlinear
behaviour of the vibration is hardening.

Fig. 5 represents the effects of nonlinear coefficient of foundation
on the frequency response of the system. The numerical results
show that for each curve there are two limit point bifurcations in

Ll

maode 1, ref [16]

mode 2, ref [16]
—o— mode 1, K=20, C=10
—o— mode 1, K=20, C=10

5k

Fig. 4 Effect of viscoelastic foundation on first and second frequencies
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—o— K, =0

2.5 K,=0.05
—— K =0.1

Fig. 5 Effect of nonlinear coefficient on the frequency response

the nonlinear resonant behaviour of system; the first one is
related to a jump from the high amplitude motion to the lower
amplitude one (for ex. A-B) and the second one for a reverse
state (for ex. E-D). It is obvious that increasing Kyp causes
higher range of frequency, the response becomes harder and non-
linearity increases, though for small values of Ky the system
tends to be linear, but this parameter does not change the max.
value of vibration amplitude known as opea.

According to Fig. 6, opeqi increases with increasing the non-local
parameter. Furthermore, an increase in the value of u would create a
higher nonlinearity in the system.

It could be seen from Fig.7 that the ape.x would decrease by
increasing the magnetic field. In general, the effect of the magnetic
field is to make the nanotube treats stiffer. It was found that increas-
ing the H would result into an increase of the stiffness, so including
this parameter in the system can provide more capacity for the nano-
tubes to convey fluid with a very high velocity. Also, it can be high-
lighted that for higher magnetic fields, the frequency range in
response would be wider.

—oa— ponlincar, p=0 .

£

“— nonlinear, p=0.1. | -

[ —— nonlinear, p=0.2 ﬁ
- = -lincar, p=0 7 v 57 o
2L il

- = -linear, p=0.2 1

= 1.5k f.r,

L

L

ir
I L

linear, p=0.1 1,

J
-6 <04 <02 0 0.2 0.4 06 08

Fig. 7 Effect of magnetic field on the frequency response of nanotube
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Fig. 10 Effect of small-scale parameter on the frequency response

Fig.8 shows increase of the velocity has opposite influence on the
amplitude of vibration and has dampening effect on system but this
parameter has no impact on the nonlinearity.

According to Fig. 9, the viscosity parameter leading to losses
more energy and the oy, decreased greatly and occurs at lower fre-
quency. Besides, higher values of linear stiffness result into a lower
softening nonlinearity as well as lower amplitude of oscillation.

As can be seen in Fig. 10, by decreasing the small-scale para-
meter (/) as the flexural rigidity is decreased, ofpeqr and hardening
nonlinearity behaviour increased, so the hardening behaviour of
system has a descending trend with respect to the size dependency.

5. Conclusions: Using NSGT, the free and forced vibration of a
fluid conveying cantilever nanotube in magnetic field resting on
nonlinear foundation subjected to periodic excitation are discussed.
Hence, a parametric study has been carried out to explore the influ-
ence of different parameters such as strain gradients and stress non-
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locality on the vibration frequency and also the primary resonance
of the system.

It is found that the nonlinear resonant behaviour of the nanotube
with and without size dependency is a hardening type due to non-
linear foundation (Kyp). Furthermore, the hardening behaviour
of system has a descending trend with respect to the small-scale
parameter. The obtained results indicate that the linear stiffness
K increased the system frequency while the viscosity C had an
inverse effect. The value of u,, is raised with increasing K or de-
creasing C. It can be deduced that for a prescribed non-local param-
eter, the o, increases when the velocity parameter is raised, and
also the rate of increase has an ascending trend with respect to the
small-scale parameter. Also, in the nonlinear vibration analysis,
it has been revealed that: (i) existence of magnetic field would
result into a decrease in nonlinearity and o,eak, (ii) by increasing
the small-scale parameter, ape. and hardening behaviour of the
vibration, decreased, (iii) increase of fluid velocity has dampening
effect, (iv) the viscosity parameter of nanotube and substrate
leading to losses of more energy so the opeax and the sharpness
of curves decreased significantly. It was confirmed that the fluid
velocity, magnetic field and substrate parameters can be considered
as control parameters for the vibration of the fluid flow conveying
CNT. Present results could be useful for the fabrication of nano-
mechanical devices using fluid-conveying CNT as a future work.
Also, vibration behaviour of the system and max. response within
the frequency band can be predicted to avoid from failure.
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