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In this work, size-dependent stability and self-instability of non-uniform nanobeams are studied with consideration of the surface elasticity

theory. The nanobeams are modelled as step-wise beams and the governing equation of the nanobeam is solved for different boundary

conditions. At first, a backward formulation is developed to calculate the effective Young’s modulus to compare it with experimental

results. Wide ranges of numerical results are presented for buckling load and self-instability of Al and Si nanobeams with positive and

negative surface properties. The obtained results indicate that the selection of the number of steps in the presence of surface effects has a

considerable impact on the mechanical behaviour of non-uniform nanobeams. In addition, the aspect ratio of one section of a step-wise

nanobeam with negative surface residual stresses can make the whole structure self-instable. The results for effective Young’s modulus are

compared with previous experiments and satisfactory agreement is illustrated.

1. Introduction: Recent advances in manufacturing technologies

have made it possible to develop small-scale systems at micron/

submicron scales [1–3]. In recent decades, nanoscale beams are

known as a basic component of micro/nanosystems due to their

novel features, such as easy manufacturing and high-frequency

operation [2–4]. Therefore, the mechanical analysis of nanobeams

has attracted the attention of many researchers in the field of nano-

technology. Yan and Jiang [5] extended the Euler–Bernoulli beam

model for bending and buckling analysis of a nanobeam with differ-

ent boundary conditions. They presented an analytical solution for

the bending response of the nanobeam subjected to both electrical

and mechanical loads. Korayem et al. [6] presented modelling

for an atomic force nanobeam adjacent to a surface considering

tip–sample interaction forces based on classical elasticity theory.

On the other hand, the capability of classical continuum theory to

model micro/nanosystems is strongly doubted through conducting

experimental tests and molecular simulations. Feng and Jiang

[7] employed molecular dynamic simulation to investigate the size-

dependent mechanical behaviour of nanobeams and showed the

size effects are excluded in classical analytical models. Therefore,

higher order elasticity theories have emerged in micro/nano

researches. Bakhtiari-Nejad and Nazemizadeh [8] studied size-

dependent vibrations of piezoelectric nanobeams based on the

non-local elasticity theory. Jalali et al. [9] developed a modified

couple stress theory to study the size-dependent mechanical behav-

iour of functionally graded nanobeams. They employed the

Rayleigh–Ritz method to obtain the size-dependent behaviour of

the beam.

Furthermore, among the higher-order mechanics’ theories, the

theory of surface elasticity has attracted great interest of researchers.

Jiang and Yan [10] employed the surface elasticity theory for static

bending of shear deformable nanobeams. They derived the govern-

ing equation of the nanobeam and analytically solved the problem.

Assadi and Farshi [11] studied the size-dependent dynamics of

nanotubes with surface effects. Also, Farshi et al. [12] presented

the size effects of vibration of the nanobeams taken into account

the surface elasticity theory. They illustrated that the mechanical

behaviour of the nanobeams with consideration of surface effects

deviates from the results obtained by classical theories con-

siderably. Liu et al. [13] investigated the deflection behaviour of

a size-dependent nanobeam under static bending. They considered

the surface stresses as an external load and derived equilibrium

equations of the nanobeam. Also, in [14], size-dependent static

bending of nanobeams is presented based on the surface elasticity

theory. They developed the Euler nanobeam model to derive the

differential equation and used a theoretical solution for the static

behaviour of the nanobeam.

In addition, these higher order theories are considered together to

obtain their combined size-scale effects. For example, Keivani et al.

[15] studied the static and dynamic stability of conductive nano-

tweezers under Casimir force based on couples stress theory

together with consideration of the surface stresses. They discussed

the concepts related to size effects of pull-in voltage, pull-in gap and -

detachment length of the system. Yekrangisendi et al. [16] studied

the dynamic stability of a nanowire subject to the acceleration field

based on strain gradient elasticity together with Gurtin–Murdoch

surface stress model. They presented useful results for changes in

the pull-in voltage of the nanobeam with respect to angular velocity

and the size-scale factors. In addition, Hashemian et al. [17] compre-

hensively discussed the static bending and buckling of simply sup-

ported nanobeams for different types of higher order beam models

based on non-local strain gradient elasticity considering the surface

stresses. They discussed the stiffening-softening effect of the domin-

ant size-scale factors in the problem. Sourani et al. [18] studied the

size effects related to non-local strain gradient and surface stresses

in dynamic stability of nanobeams and discussed the shift in the

dynamic instability region to lower and higher frequencies due to

the considered basic parameters in the model. Although the above

papers studied surface effects on the mechanical behaviour of the

nanobeam, there is a need to study the size-dependent characteristics

of non-uniform nanobeam.

According to the introduced approaches and concepts, here it is

tried to observe, the majority of the effect of surface stresses as

real physical parameters in non-uniform nanobeams and evaluate

its effectiveness in the prediction of the size-scale effects that

were observed in previous experiments. In this Letter, a backward

formulation is developed to calculate the surface parameters in

good agreement with experimental results. Along this line, the non-

uniform nanobeams are modelled as step-wise beams and the gov-

erning equation of the nanobeam is solved for different boundary

conditions. A wide range of numerical results are presented for

buckling load, and self-instability of the nanobeam. The obtained

numerical results demonstrate the effectiveness of the proposed

method.
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2. Problem formulation: In this section, the governing equation of

the size-dependent buckling of non-uniform nanobeam is pre-

sented. Consider a nanobeam with non-uniform cross-section

over its length, as shown in Fig. 1.

In this figure, E, ρ and υ are represented for Young’s Modulus,

mass density and Poisson’s ratio of the nanobeams’ bulk material,

respectively. Additional surface properties, including surface elasti-

city Es and surface residual stress ts are considered over the external

boundaries of the nanobeams. Each section of the beam in Fig. 1 is

defined by its cross-sectional diameter D and length L.

Here a step-wise model is suggested for smoothly tapered nano-

beams with a non-uniform diameter through its length. It must be

noted that this will be true when the number of steps is chosen prop-

erly due to the intensity of cross-section variation over the real

nanobeam’s length. Besides, if the calculated mode shape of the

buckling is nearly similar to that of the main structure, the model

will predict the true buckling loads. Therefore, for any non-uniform

nanobeam, the selection procedure of the number of steps must be

done. Here the problem will be solved for one-step and two-step

problems to illustrate the general trend for nanowires with a moder-

ate variation of the cross-section and the results are compared for

many cases. Now, the governing differential equation for each

step can be obtained based on surface-stress models. According

to the Euler–Bernoulli beam theory, the strain field of the nanobeam

is given as follows:

1xx = −z
∂
2w

∂x2
, 1xz = 0 (1)

In this relation, w is the transverse deflection of the nanobeam.

Moreover, x and z are the coordinates across the nanobeams’

length and thickness, respectively. It is to be noted that the origin

of z is the nanobeams’ neutral axes. As a major point, the strain

field is considered to be continuous over the nanobeam’s cross-

section without any jumps over the material surfaces according to

fundamentals of continuum mechanics. Simply, from these relations,

the stress field of the deflected nanobeams can be given as follows:

sxx = so
xx − Ez

∂
2w

∂x2
(2)

In this equation, σo is the residual normal stress-induced in nano-

beams by surface residual stresses. On the other hand, according to

generalised Gurtin–Murdoch relation, the following stress–strain re-

lation (σ− ɛ) is written for elastic solid surfaces in three-dimensional

situations [15]:

ss
ab = tsdab +

Es

1+ y
− 2ts

( )

1saa+
Es

2 1+ y( ) 1−2y( )
usg,g + tsusa,b

ss
az = tsuz,a

(3)

In these relations, subscripts α, β and γ change from 1 to 2 for any

coordinate parallel to the surface materials. Simplifying the relations

for one-dimensional structures and according to the given strain field

in (1), the following relations will be obtained for the Euler–

Bernoulli beam model:

ss
xx = ts − Esz

∂
2w

∂x2

∣

∣

∣

∣

∣

S

ss
xz = ts

∂w

∂x

(4)

Accordingly, the bending moment of the cross-section will be

obtained from the following integral equation:

M =

∫ ∫

A

sxxz dA+

∫

z

ss
xxz dS

=

∫ ∫

A

zsoxx dA+

∫

z

tsz dS

( )

− EIeff
∂
2w

∂x2

(5)

while the effective bending rigidity EIeff is obtained from the follow-

ing relation:

EIeff =

∫ ∫

A

Ez2 dA+

∫

z

Esz2 dS (6)

On the one hand and according to the self-equilibrating condition, the

integral relations in the right-hand side of (5) cancel each other and

the bending moment is obtained as follows:

M = −EIeff
∂
2w

∂x2
(7)

On the other hand, considering the additional term of (4), the updated

equilibrium equation for a beam which is subject to axial loading F is

given as follows:

∂
2Mx

∂2x
+

∂

∂x

∫

S

sxzn · dS

( )

+ F
∂
2w

∂2x
= rA

∂
2w

∂t2
(8)

After doing some mathematical process, another reformulation of this

equation in a shorter form is given as follows in which N=F−2tsb:

EIeff
∂
4w

∂x4
+ N

∂
2w

∂x2
+ rA

∂
2w

∂t2
= 0 (9)

In (8), N is the effective longitudinal force applied to the nanowire

derived from the model. It is the summation of the external load

and those made by internal residual stresses related to surface stres-

ses. Besides the Gurtin–Murdoch model and using (3), N can be

obtained from Laplace–Young’s model for surface stress that consid-

ers the effect of surface residual stress as a σzz stress component over

the deflected nanobeam surface [12]. Confirming discussion is pre-

sented in [19, 20] for proper using the Gurtin–Murdoch surface-stress

model in the nanostructure.

3. Problem solution: Consider a nanobeam with total length L,

which is divided into n sections with different lengths of Li and cir-

cular cross-section of diameter Di in which i = 1, 2,…, n. First, it is

intended to find the governing differential equation for that. Also, N

is obtained equal to F− 2tsDi for the ith section. For buckling of

Euler–Bernoulli nanobeams with surface effects, the following dif-

ferential equation must be solved:

∂
2

∂x2
∂
2

∂x2
− b2

i

( )

wi
= 0, b2

i = −
N

EI ieff
, 0 , x , Li (10)

where the new parameter β is defined as follows:

b2
i =

64 F − 2tsDi
( )

pE Di( )
4

1+
8Es

EDi

[ ]−1

(11)
Fig. 1 Non-uniform tapered nanobeam modelled as a step-wise beam
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Consequently, the general solution for (9) will be given as follows:

wi
= Ci

1 + Ci
2x+ Ci

3 sinh bix
( )

+ Ci
4 cosh bix

( )

(12)

Furthermore, according to the definition of a local coordinate for

each section, the following boundary conditions must be satisfied

between two adjacent nanobeams:

wi
∣

∣

x=Li
= wi+1

∣

∣

x=0
,

dwi

dx

∣

∣

∣

∣

x=Li

=
dwi+1

dx

∣

∣

∣

∣

∣

x=0

EI ieff
d2wi

dx2

∣

∣

∣

∣

∣

x=Li

= EI i+1
eff

d2wi+1

dx2

∣

∣

∣

∣

∣

x=0

EI ieff
d3wi

dx3

∣

∣

∣

∣

∣

x=Li

= EI i+1
eff

d3wi+1

dx3

∣

∣

∣

∣

∣

x=0

+2ts Di
− Di+1

( )

(13)

For each section, substituting from (13) into (12) gives the follow-

ing matrix equation for the characteristic parameters βi and βi+1 as

follows:

1 Li hi li −1 0 0 −1

0 1 bili bihi 0 1 bi+1 1

0 0 b2
i hi b2

i li 0 0 0 fib
2
i+1

0 0 b3
i li b3

i hi 0 0 fib
3
i+1 0

⎡

⎢

⎢

⎢

⎢

⎣

⎤

⎥

⎥

⎥

⎥

⎦

C[ ] = 0

hi = sinh biLi
( )

, fi =
EI i+1

eff

EI ieff
, li = cosh biLi

( )

C = Ci
1 . . . Ci

4 Ci+1
1 . . . Ci+1

4

[ ]T

(14)

A combination of (14) for all sections gives a general matrix rela-

tion of order n+ 1 with the right-hand side of zero. On the other

hand, the coefficient matrix in this equation contains the parameters

β1, β2,…, βn. For the given geometric parameters and material prop-

erties, the determinant roots of the coefficient matrix as an eigen-

value problem gives the critical buckling load of non-uniform

nanobeams with consideration of surface effects.

Also, in the case of self-buckling, F must be set zero and there-

fore (11) is rewritten as follows:

b2
i =

−128ts

pE Di( )
3

1+
8Es

EDi

[ ]−1

(15)

Substituting β from (15) into the coefficient matrix of (14) gives the

eigenvalue problem of self-instability analysis. If all the geometric

parameters except than one of them are given, then the value of this

remaining parameter determines the self-instability condition of the

structure.

3.1. Determination of effective modulus: In a backward procedure,

it is assumed that the nanobeams are made of an elastic material

with Young’s modulus of Eeff. On the other hand, the buckling

loads of the nanobeam are obtained from the developed framework

in this work in the previous sections. Then regardless of the effect

of surface properties or any other additional properties, all the

obtained numerical results for a given geometry are assumed to

be related to the value of Eeff. Therefore, for each section of the

equivalent nanobeam, the following classical differential equation

must be written:

1 Li sinh di
( )

cosh di
( )

−1 0 0 −1

0 Eeff Ii F cosh di
( )

F sinh di
( )

0 Eeff Ii Fji Eeff Ii

0 0 sinh di
( )

cosh di
( )

0 0 0 1

0 0 cosh di
( )

sinh di
( )

0 0 ji 0

⎡

⎢

⎢

⎢

⎢

⎢

⎣

⎤

⎥

⎥

⎥

⎥

⎥

⎦

di =
FLi
Eeff Ii

, ji =
Ii
Ii+1

(16)

Writing this equation for other sections of the nanobeam, the total

coefficient matrix will be obtained for the whole nanobeam. Next,

the determinant of this matrix must be set equal to zero. On the

other hand, in the backward formulation of this section, it is

assumed that F is obtained from the previous section and the

only unknown of the above matrix is Eeff that must be determined

here. In this manner, we have found the effective elastic modulus of

the nanobeam with an inverse formulation.

4. Simulation results: In this section, a wide range of simulation

results are given for aluminium and silicon [100] with the following

material parameters given in Table 1.

To verify the proposed method, the obtained results for buckling

analysis of a uniform nanobeam are compared with experimental

results presented in [22]. The results are given in Fig. 2.

From this figure, it is observed that satisfactory agreement is

achieved between the results of this work and those of the experi-

ment in [22]. It is seen that the results buckling analyses are

exactly the same for uniform nanobeams, as explained as a strategy

of verifying the results. Therefore, the general trend of reported size

dependencies is reliable and can be used in engineering designs.

In order to show the surface effects on the buckling problems, a

new parameter NBL is introduced, which is the ratio of the buckling

load with consideration of surface effects to that one without surface

effects. Fig. 3 shows the variation of NBL for different geometrical

aspect ratios of one-step nanobeams made of aluminium and

silicon. The diameter of the first section is given as D1= 10 nm.

It is seen that the surface effects on the buckling load are higher at

longer nanobeams. The positive surface residual stress increases the

Table 1 Physical characteristics of the nanobeam [21]

Material E, GPa υ Es, N/m ts, N/m

Al 68.50 0.35 6.090 0.910

Si [100] 130.0 0.24 −11.50 −0.505

Fig. 2 Comparison of effective Young’s modulus for different studies
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buckling load, but the negative one decreases it. Moreover, the sen-

sitivity of the problem to D2/D1 is higher for longer nanobeams. For

example, for the length of L= 100 nm, NBL changes from 2.25 to

1.60, i.e. 0.65 units, but for L= 40 nm, it changes from 1.27 to

1.17, i.e. 0.10 units. Therefore, consideration of the non-uniformity

into the analysis becomes more important for longer nanobeams,

while in shorter cases, the problem can simply be treated as

uniform nanobeam with a mean diameter.

Also, Fig. 4 depicts the results for a two-step nanobeam for dif-

ferent diameter parameters.

In this figure, for silicon nanobeams with negative surface re-

sidual stress, reduction of the diameter of one section makes NBL

equal to zero in which the nanobeam becomes self-instable. On

the other hand, for a constant length, the sensitivity of the

problem to D2 is the same for different values of D3 with an ap-

proximate variation of 1.7 units in NBL. This demonstrates that

the consideration of variations in the cross-section plays a signifi-

cant role in the size-dependent behaviour of the buckling load.

Another important concept in step-wise modelling of non-

uniform nanobeams is given in Fig. 5. In this figure, the selected

nanobeam is first modelled as one-step nanobeam and then as

two-step one and the results for NBL are compared with that of

uniform nanobeam with a mean diameter.

From this figure, it is observed that proper modelling of the struc-

ture for size-dependent behaviour is very important in the analyses.

In this figure, as the parameter of the vertical axis deviates from

unity, the impact of non-uniform modelling gets more observable.

For example, comparing the red and black lines, respectively,

for one-step and two-step aluminium nanobeams, for D2= 7 nm,

the NBL (non-uniform)/NBL (uniform) for one-step is 1.18

and for two-step is obtained equal to 1.52. Therefore, how to

model the structure with the assumed parameters can enter errors

into the results up to 30%. On the other hand, obviously, since

the length of the nanobeam is long enough to follow the

Euler–Bernoulli beam model, two-step modelling is here preferred.

This error even gets higher for silicon nanobeams up to 70%. As

a general conclusion, it is seen that incorrect modelling of the

structure may give some results that prevent the self-instability of

the structure in spite of the physical counterparts of the problem.

In another simulation, the self-instability limitation of the non-

uniform nanobeam is investigated. Fig. 6 illustrates the critical

value of the nanobeam diameter for self-instability occurrence.

In this figure, the upper side of each curve shows the geometric

parameters for which the non-uniform nanobeam is stable. It is seen

that if one section of a step-wise nanobeam gets longer and thinner,

the whole nanobeam goes toward the self-instability region.

Also, Fig. 7 shows the instability region for the two-step

nanobeams.

As shown in Fig. 3, similar conclusions are obtained to the pre-

vious case of one-step nanobeams. Moreover, the sensitivity of the

problem to the diameter of this section is too higher in one-step

Fig. 3 Size-dependent buckling factor of one-step nanobeams

Fig. 4 Size-dependent buckling factor of two-step nanobeams for different
diameters

Fig. 5 Size-dependent buckling factor for different steps modelling

Fig. 6 Self-instability of the one-step nanobeam for different values of the
diameter

Micro & Nano Letters, 2020, Vol. 15, Iss. 12, pp. 858–862

doi: 10.1049/mnl.2020.0262

861

& The Institution of Engineering and Technology 2020



nanobeams. This obviously is related to the relative length of the

chosen section to the whole nanobeam. As another important

conclusion, it is seen that attaching a thicker nanobeam to a thin

self-instable one, can reinforce it considerably and prevent its self-

buckling problem. This is based on the basic definition of buckling,

which is defined for the whole structure.

The results in Fig. 6 for one-step nanobeam can give the self-

instability limitation for uniform nanobeams with D1=D2. For

example, when L= 140 nm, the critical diameter for self-instability

occurrence is evaluated equally to D1=D2= 7.05 nm. Similarly, for

L= 150 nm, the diameter is obtained equal to D1=D2 = 7.35 nm.

On the other hand, from a mathematical viewpoint, there is no

problem to set a constant value for diameters of different sections

and evaluate the results for uniform nanobeams.

5. Conclusions: In summary, size-dependent stability and self-

instability of non-uniform nanobeams are studied with consider-

ation of surface effects. The general trend of the size dependencies

is explored and a wide range of numerical results is given for nano-

beams with positive and negative surface parameters. The following

major conclusions are made from the analysis:

† As one section of a step-wise nanobeam gets shorter and thicker

in a meaningful range, the effect of surface properties on the buck-

ling load of the whole nanobeam reduces considerably.

† Proper modelling and choosing the number of steps play import-

ant roles in the appropriate determination of the mechanical behav-

iour of non-uniform nanobeams. In this case, the sensitivity of the

problem gets higher for nanobeams with negative surface residual

stresses with errors in the range of 70%.

† In the case of self-instability, as one section gets thinner and

elongated, the whole nanobeam goes to the self-instable region

and conversely attaching a thicker section to the nanobeams

reinforce them again self-instability problems.

† For shorter and thicker nanobeams, NBL of non-uniform nano-

beams can be approximately taken equal to that of uniform nano-

beams with a mean diameter with satisfactory errors.

† The presented results for the effective Young’s modulus are veri-

fied with satisfactory agreements with those of experiments of [22].
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