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ABSTRACT: The fascination of seasonal climate forecasting, of which El Nifio forecasting is the prime example, comes
from its multi-faceted character. Not only does it pose interesting new challenges for the climate scientific community
but also it is naturally linked to a great variety of socio-economic applications. Seasonal climate forecasts are indeed
becoming a most important element in some policy/decision making systems, especially within the context of climate
change adaptation. Thus, seriously considering the management of risks posed by the variability of climate on the seasonal
to interannual time scale is key to achieving the longer terms goals of climate change adaptation strategy. This review
paper explores the main components needed to construct a seasonal forecasting system, from the physical basis of climate
seasonal predictions, to the tools used for producing them, to the importance of assessing their skill, to their use in risk
management decision-making. Future challenges are also examined. Copyright © 2010 Royal Meteorological Society
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1. Introduction and a bit of history

When considering prediction of the climate on the sea-
sonal timescale (i.e. typically up to a year ahead) an
important distinction has to be made between dynamical
predictions, those which use complex dynamical numer-
ical models of the main Earth system components, and
statistical predictions, those which use regional historical
relationships between physical variables such as temper-
ature and precipitation with statistical models of varying
degrees of sophistication. While dynamical seasonal pre-
diction is a relatively recent endeavour, statistical models
have been used since the late 1800s. It is only with the
advent of the former, however, that seasonal forecasting
has grown dramatically.

Key to this burgeoning has been the extensive use of
complex dynamical models which have allowed unprece-
dented detailed investigations of the climate system,
consequently with an improved understanding of the
dynamical evolution of the main components of the
Earth system, including their interaction. In turn, such
an understanding has translated into the ability to pro-
duce usable and useful operational seasonal prediction
on the global scale (although subtly distinct, predic-
tion and forecast are used interchangeably). Unlike with
weather forecasting, which has been around for many
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decades beginning with the hand written charts of the
1950s, dynamical seasonal predictions have been oper-
ational for just over a decade, but it is thanks to the
similarities with weather forecasting (e.g. relevance of
tropical atmospheric dynamics, importance of models’
initialization) as well as the sharing of much of the tech-
nology that progress in operational seasonal prediction
since its inception in the mid 1990s has been rapid. At
present, in fact, there are more than 10 major centres
that produce dynamical seasonal predictions in an oper-
ational/routine basis, including the so-called Global Pro-
ducing Centres (GPCs) of Long Range Forecasts as iden-
tified by the World Meteorological Organization (WMO)
(http://www.wmo.int/pages/prog/wcp/wcasp/clips/pro
ducers_forecasts.html).

As mentioned above, long before dynamical models
were available, prediction of the climate a season ahead
was attempted. Prompted by the drought-related Indian
famines of the late nineteenth century, especially the one
due to the Indian monsoon failure of 1877 and 1878,
research carried out at the India Meteorological Depart-
ment (IMD) unveiled the relationship between the atmo-
spheric pressure over the countries surrounding the Indian
Ocean (Davis, 2001). More specifically, Henry Blanford,
the first director of the IMD, found that a pattern of abnor-
mally high pressures had extended to western Siberia,
northern China and southern Australia during 1877 — we
now know that the 1876—1877 El Nifio was one of the
strongest in the last 200 years (Allan ef al., 1996). Sub-
sequent research by John Eliot and, especially, by Sir
Gilbert Walker, second and third director respectively,
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led to the identification of the Southern Oscillation (SO),
the great ‘see-saw’ in atmospheric pressure differences
between the South Pacific and the Indonesian region
(Walker, 1924).

Although a satisfactory dynamical explanation for the
existence of the SO would only be postulated well after
Walker’s death (Bjerknes, 1966, 1969), the SO started to
be extensively used in statistical seasonal forecast mod-
els. Not only that, Walker’s work still provides the obser-
vational foundation for most modern seasonal prediction
approaches. The early statistical models, however, could
only rely on short records (typically 10 years) and while
they initially proved successful (in the 1910s), empirical
relationships started to fail during subsequent decades.
This failure, added to the increasing focus in the 1930s on
weather forecasting mainly for aviation purposes, meant
that longer range climate prediction started to be sup-
planted in favour of the shorter range weather forecast.
With the advent of early computers even more resources
were devoted to weather forecasting, which was seen as
a necessary hurdle towards longer range predictions, thus
widening the gap between weather and seasonal predic-
tions (Nicholls, 2005).

Research on seasonal prediction picked up again in the
1970s when a few scientists began to recognize the rela-
tionship between the SO and El Nifio, an inter-annual
warming of sea surface temperatures along the equa-
torial Pacific South American coast. It became appar-
ent that these two aspects are part of the same phe-
nomenon, which manifests itself through the strong cou-
pling between the atmosphere and the ocean in the trop-
ical Pacific (to elucidate the coupled nature of this phe-
nomenon the acronym ENSO, El Nifio Southern Oscilla-
tion, was coined). With that progress came evidence of
the general potential for sea surface temperature anoma-
lies, primarily but not uniquely tropical, to influence
remote climates on seasonal time scales. Thus, although
the 1972—-1973 event created a stirring of interest, it was
the 1982—-1983 event, with its strong worldwide telecon-
nections, that propelled El Nifio into global prominence
(Harrison et al., 2008b, sect. 2.2). By the time the large-
amplitude 1982-1983 event occurred, far greater num-
bers of scientists were recognizing that a breakthrough
was being made in regard to understanding and predict-
ing the climate system, and from then on a new ‘industry’
was born: an industry that covers the physical understand-
ing, the consequences for predictability and prediction,
and the onward use, including the politics, of the predic-
tions, all of which are inherent in the slow changes in the
planetary surfaces underlying the atmosphere (Harrison
et al., 2008a).

As the largest climate signal after the seasonal cycle
(excluding externally forced signals such as those due to
volcanic eruptions) affecting worldwide climate, ENSO
is certainly the dominant driver for seasonal predic-
tion. It is, therefore, critical to understand the physical
mechanisms responsible for it and to be able to predict
them. However, seasonal prediction is not entirely equiv-
alent to predicting ENSO. Other climate signals, such
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as the North Atlantic Oscillation (NAO, e.g. Lamb and
Peppler, 1987; Hurrell et al., 2003), the Pacific-North
American (PNA) pattern (Frankignoul and Sennechael,
2007), the Indian Ocean Dipole (IOD, Luo et al., 2008)
also provide regional predictive potential on the seasonal
time scale. For instance, the NAO, a seesaw in pres-
sure between the Icelandic Low and Azores High first
introduced by Walker (1924), is now the focal point for
much research on climate at mid-high Northern Hemi-
sphere latitudes, especially in western Europe variations
from seasonal to decadal time scales (Hurrell, 1995; Katz,
2002). While important sources of regional predictability,
modes such as PNA, IOD and NAO are not indepen-
dent of equatorial Pacific dynamics however (Yu and
Zwiers, 2007; Schott et al., 2008; Jansen et al., 2009).
ENSO, therefore, remains the principal global interan-
nual signal seasonal forecasting models seek to cap-
ture.

The core of a global seasonal forecasting system
is a dynamical model. The more sophisticated models
typically contain atmospheric, oceanic, land surface and
sea ice modules at a relatively high level of complexity.
Once forecasts have been produced by models, the
process is far from finished. Numerical models are in
fact capable of supplying an extremely large amount of
information and, therefore, for seasonal forecasts to be
useful in a specific socio-economic sector, it needs to
be clear what aspects of the predictions are the most
relevant for the problem at hand. Also, since models
are often affected by sizeable errors most variables need
to be calibrated before they can be used. In addition,
model variables are often available only on spatial scales
too large to be of direct practical use and, hence,
downscaling techniques need to be applied. Furthermore,
evaluation of forecasts is essential to acquire confidence,
and several assessment (or verification) techniques have
been developed for this purpose.

Having identified the relevant aspects of the prediction,
one needs to present it in an effective way. Getting
the message across to recipients is what really matters:
there is little benefit, apart from leaving scientists a
feeling of accomplishment, to achieving the ‘perfect’
forecast if it is not used. However, even when the
useful variables have been identified and the message
effectively communicated the road ahead is still rough.
How does a well-communicated seasonal forecast get
considered in the mix of information by the decision
taker? For instance, how can the fact be conveyed that
there is a high probability that a temperature anomaly
of 2°C may occur for the next season over a certain
region and such anomaly may affect the way energy has
to be distributed/stored? Indeed, the probabilistic nature
of seasonal forecasts can lead to misinterpretations.
Communication of forecasts and their uptake by decision
takers are, therefore, essential components of seasonal
forecasting systems.

Bearing in mind the vastness of the subject and all its
ramifications, this paper is an attempt to give an account
of all major aspects and issues revolving around seasonal
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forecasting in a relatively short space. In Section 2 the
physical basis of seasonal forecasting is explored. The
main ingredients of a seasonal forecasting system are
presented in Section 3. Physical and statistical approaches
as well as subjective interpretations are key ingredients to
a successful post-processing of a forecast as we will see
in Section 4. Communication issues and their relevance
to societal sectors will be expanded in Section 5. Finally,
Section 6 will provide an outlook of possible future
developments of seasonal forecasting. Should the reader
wish to learn more about the subject, they can access
in excess of 600 references (several are cited here too)
between the following two publications: Goddard et al.
(2001) and Troccoli et al. (2008).

2. The scientific basis of seasonal forecasts

The chaotic nature of the climate system is such that
we will always be limited in our ability to predict the
weather beyond a theoretical threshold. This threshold is
currently thought to be about 2 weeks but it is critically
dependent on numerical model features, including reso-
lution, used to test the predictability assumptions. Given
this predictability limit, how can we attempt predictions
at much longer ranges? The answer to this question is
twofold.

Firstly, there are parts of the geophysical system, such
as the oceans and the land, which evolve more slowly
than the atmosphere and it is this slower motion that
allows us to extend the time horizon of predictions to
well beyond the theoretical limit for weather predictions.
The ocean, for instance, has a large heat capacity and
slow adjustment times relative to the atmosphere. In
addition, ocean variability can give rise to enhanced
atmospheric predictability in the case of processes that
depend on both media interacting. The coupling between
the atmosphere and ocean is known to be relatively strong
in the equatorial region, viz. ENSO.

Secondly, the extension of the prediction lead time
from a few days (as in weather forecasts) to months (as
in seasonal forecasts) is not automatic. Looking at the
evolution of a hurricane as predicted for a certain day
several months in the future, although doable, has limited
scientific validity. This is because, as it may be expected,
a prediction of a hurricane at that lead time is of a lower
quality than a prediction for a hurricane a few days ahead,
say. In other words, what is considered a meaningful
feature, according to some metric, varies considerably
depending on lead time. So, when we refer to seasonal
forecasting we should not expect the same type of
information as given by weather forecasts. Something
has to give in. This something is temporal and spatial
resolution. More simply, the trick is in the averaging. By
taking a larger area and a longer averaging period, the
signal from the forecasts starts to emerge. In the case of
hurricanes this implies that instead of providing the track
and intensity of an individual track, seasonal forecasts
may provide the level of hurricane activity in relation to
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past distribution (e.g. Vitart, 2006). In summary, in order
to be able to extract potentially useful information, the
longer the lead time the larger the averaging time and
the larger the spatial area needs to be. The schematic in
Figure 1 shows how this can be done in practice for the
time averaging case.

Having established these two fundamental aspects of
seasonal forecasts, the key physical mechanisms that are
conducive to predictability on the seasonal timescale
can be explored. For a more detailed account of the
relevant physical aspects see Chang and Battisti (1998),
Goddard er al. (2001), Anderson (2008), Hoskins and
Schopf (2008) or the wealth of information available at
http://www.pmel.noaa.gov/tao/elnino/ and links therein.

The SO (Section 1) has a period of between 2 and
7 years. The climate system exhibits oscillations of var-
ied periods, the most notable of which is the seasonal
cycle but oscillations need a forcing mechanism to sustain
them. It was not until the 1960s that a major break-
through in the understanding of the SO occurred when
Bjerknes (1966, 1969) made two important discoveries:
(1) he noted the existence of a thermally-driven east-
west circulation across the Pacific (which he named after
Walker) of which the SO is part of, and (2) he found
that changes in the surface winds (i.e. the lower branch
of the Walker circulation) were fundamentally coupled to
changes in ocean surface temperature. Figure 2 demon-
strates neatly the relationship between the atmospheric
pressure and the ocean surface temperature: when the
SO is positive — i.e. the pressure anomaly in the east-
ern equatorial Pacific (the EPAC box) is larger than that
over Indonesia (the INDO box) — the temperature in the
central Pacific (the NINO3.4 box) is lower than nor-
mal and vice versa. (A more modern index, the EQSOI

Forecast

11T T 1 T I T
01 Sep 15 Oct 30 Nov 31 Dec 31 Mar

Figure 1. Example of time averaging for a generic forecast (hence
dimensionless) started on a September 1. The time averaging has been
applied here to an ensemble of forecasts (i.e. different representations
of the same event) but the approach is valid even with one model
realization only. The grey lines represent individual ensemble members
and the black line is their mean. No time averaging is carried out for
the first 2 weeks (the direct model output is plotted). This first period
is followed by increasing time-window averages: two weekly averages,
two bi-weekly averages, two monthly averages and a 3 month average.
From Troccoli (2009).
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Figure 2. Plot of the pressure index EQSOI (a) and the SST index NINO3.4 (b) as a function of time from 1950 to 2008. The dominant time

scales in these two indices are very similar. (c) The locations of the two regions used to construct EQSOI (EPAC and INDO) and that for

NINO3.4. The dashed horizontal grey line at 1 K in panel (b) indicates a possible threshold for El Nifio classification (see discussion in Section
5). Data taken from the Climate Prediction Center (CPC) part of NOAA http://www.cpc.ncep.noaa.gov/data/indices/.

(Equatorial Southern Oscillation Index), often replaces
the original SOI. The former is a better indicator of large-
scale swings in mass between the western and eastern
sides of the equatorial Pacific.) To recognize the impor-
tance of the coupling between atmospheric and oceanic
components the name ENSO (EI Nifio Southern Oscilla-
tion) was adopted. Crucially, this coupling gives rise to
a positive feedback: a relaxation in the equatorial easter-
lies (or trade winds) — due to a decrease in pressure in
the central-east equatorial Pacific and an increase in the
western part — leads to an increase in sea surface temper-
ature (SST) in the central-east Pacific with a consequent
further weakening of the trade winds. This positive feed-
back, also known as Bjerknes hypothesis, must however
be accompanied by a mechanism that reverts the sign of
ENSO.

The fact that the SO and SSTs are tightly coupled
could be a hint that the ocean subsurface, through its
thermodynamics and dynamics, may be a key player in
the sustainability of the SO. Theoretical advances and
improvements in the observing system of the surface
of the ocean — culminated with the deployment of the
Tropical Atmosphere Ocean (TAO) array, a network of
moored buoys across the tropical Pacific Ocean that mea-
sure ocean variables to a depth of 500 m — led to signifi-
cant developments in the understanding of ENSO (Hayes
et al., 1991; McPhaden et al., 1998). The schematic of
how ENSO evolves is shown in Figure 3. The weakening
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of the trade winds and the consequent increase in temper-
ature in the central equatorial Pacific (the positive phase
of ENSO, El Nifio) results in the eastern shift of the
zone where moisture-laden air converges that gives rise
to strong convection (Figure 3(a)). Such a shift is accom-
panied by the deepening of the equatorial thermocline,
a part of the subsurface ocean where the temperature
rapidly varies from the warm upper ocean to the colder
abyssal ocean.

The depth of the thermocline in the tropics is a
very good indicator of how the ocean dynamics evolve.
Indeed, by studying its variation it has been possible
to determine that the ocean is an essential partner
in the coupling with the atmosphere. The two main
actors influencing the ocean dynamics of ENSO are
the equatorial oceanic Kelvin and Rossby waves. These
waves are trapped to within a few degrees of the equator.
Kelvin waves travel eastward and can cross the Pacific in
about 3 months, Rossby waves westward and can cross
the Pacific in about 9 months. The features of these
waves and their transit times are what dictate the ENSO
evolution. El Nifio eventually dissipates and conditions
return to ‘normal’, whereby easterlies drive the warm
ocean surface temperature, and together with it the zone
of deep convection, to the west. In the negative cold phase
of ENSO, La Niiia, easterlies intensify even further and
SSTs in the central/east Pacific become lower than normal
(Figure 3(b)).

Meteorol. Appl. 17: 251-268 (2010)
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Figure 3. Schematic of (a) El Nifio and (b) La Nifia. Figures courtesy
of CPC, NOAA.

Although the main physical mechanisms are reason-
ably well understood and have also been synthesized by
idealized theoretical models such as the ‘delayed oscil-
lator’, the ‘recharge oscillator’ and others (Suarez and
Schopf, 1988; Jin, 1997; Wang, 2001; Burgers et al.,
2005), several questions still remain open. For instance,
what exactly determines the onset of El Nifio? Precursors
of El Nifios are a positive subsurface heat anomaly in the
West Pacific and large westerly wind events which trigger
Kelvin waves that transport some of this heat eastward:
however, not all such waves actually surface in the East
Pacific. Also, what determines the recurrence time of El
Nifio and how does ENSO interact with the annual cycle?

Expanding on the last question, it is apparent that
ENSO is locked to the annual cycle. Take El Nifios for
instance. They tend to initiate during boreal spring in
conjunction with the growing phase of the annual cycle
in the central/eastern equatorial Pacific (see Figure 4).
They then normally reach their peak about a year
later at around Christmas time — hence the name El
Nifio, ‘the Christ child’, given to this phenomenon by
the Peruvian fishermen who noticed the arrival of an
anomalously warm current at around this time of the
year. The decaying phase of El Nifios usually occurs
in the spring of the second year but since the range is
wider than that of the growing phase, its termination
time is more uncertain. Analogous considerations apply
to La Nifias. The strongest El Nifio events have larger
absolute central/eastern equatorial SST anomalies than
the strongest La Nifia events (cf. the two panels of
Figure 4). However, it is also clear that not all El Nifio
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and La Niifia events are of equal duration, nor do they all
evolve in the same way.

Despite the recurrence of an El Nifio every 2—7 years,
ENSO is not an oscillatory phenomenon as such: an El
Nifio is not necessarily followed by a La Nifia. The reason
for the non-periodicity is not yet understood but several
theories have been put forward, all revolving around the
hypothesis that ENSO can be approximated by oscillatory
systems. These theories can be divided into two main
categories: (1) ENSO is a self-sustained oscillator, and,
(2) ENSO is a damped oscillator. In (1), the oscillator
possesses a natural frequency which is perturbed by
chaotic processes (weather) to be irregular, whereas in
(2), the oscillator requires some external forcing to keep
the system going. The role of non-linearity and noise
is markedly different in each case. Despite the attempts
to provide unified theories for ENSO, the cause of the
irregularity is still an open research topic.

One of the critical factors in these theories is the
understanding of how ENSO events are initiated. Once an
ENSO event has started, models, and therefore theories,
do a reasonably good job at forecasting the subsequent
evolution of the event, with lead times up to several
months. An atmospheric phenomenon called the Madden-
Julian Oscillation (MJO), an intra-seasonal oscillation
of about 40-60 days, likely plays a major role in the
initiation process and is currently the leading candidate
under investigation (e.g. McPhaden et al., 2006b). There
is little doubt that weather can influence the evolution of
ENSO events: the strengthening of the link between the
weather and the seasonal climate communities is likely to
be a fruitful path for research and future progress at both
time scales. Cassou (2008) provided a clear example of
such interaction, demonstrating a clear link between the
MJO and the regimes in the North Atlantic European
region.

As mentioned in Section 1, ENSO is not alone in
forcing interannual seasonal variability. Both the trop-
ical Indian and the Atlantic ocean basins host pro-
cesses providing predictable climate signals for the sur-
rounding continental masses (Wu et al., 2007; Schott
et al., 2008), while the evidence for pertinent roles for
extra-tropical oceans is also growing. None appears to
exert the global-scale influences of the Pacific-centred
ENSO, but nevertheless their effects are undoubtedly
critical in some regions, and further understanding will
lead almost certainly to improved predictions for these
areas. Not all seasonal variability is attributable to atmo-
sphere—ocean interactions, and evidence is mounting
that other sources of predictability exist. These sources
include amounts of soil moisture across the continen-
tal masses (e.g. Koster et al., 2004), the distributions of
continental snow and polar ice, atmospheric aerosol dis-
tributions (e.g. Engelstaedter and Washington, 2007), and
even stratosphere—troposphere interactions (e.g. Baldwin
et al., 2003).

It is also intriguing that some El Nifio events were
preceded by some of the most explosive volcanic events
such as Pinatubo in 1991, El Chichon in 1982 (the El
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magnitude of the ENSO and to illustrate ENSO’s phase locking to the annual cycle. Note also how the spread in the growing phase is tighter

than in the decaying phase. The dashed horizontal grey line at + and —1 K respectively indicate a possible threshold for ENSO classification
(cf. Figure 2(b) and see discussion in Section 5).

Niflo 1982-1983 was the second largest event recorded),
Agung in 1963, Santa Maria in 1902, and possibly Tamb-
ora in 1815. These eruptions are essentially unpredictable
on the seasonal time scale but it is possible that there
may be a one-way (volcanic eruptions affecting ENSO
evolution) or even a two-way (oceanic mass adjustments
related to ENSO triggering volcanic eruptions) coupling
between volcanic eruptions and ENSO. Adams et al.
(2003) suggested that there is an enhanced chance of
El Nifio happening in the winter following a volcanic
eruption. Emily-Geay et al. (2008), however, conclude
that most of the time volcanic eruptions are found to be
too small to significantly affect ENSO statistics unless
eruptions are at least as large as that of Mt. Pinatubo in
1991 which caused a reduction in outgoing long wave
radiation of about 3.7 Wm™2. Regardless of the direct
volcanic impact on ENSO, given that radiative forcing
following a volcanic eruption can remain strong for sev-
eral years (as in the case of Pinatubo, Shindell et al.,
2003), it appears to be important to include volcanic
aerosol distribution into operational seasonal forecast-
ing models soon after the event (this is not done at
present).

Lastly, in light of the findings reported by the Inter-
governmental Panel on Climate Change (IPCC, Meehl
et al., 2007), it is natural to investigate the inter-
action between ENSO and climate change. Although
ENSO variability has been enhanced by as much as
50% over the past 50 years (Yang and Zhang, 2008),
a global mean surface temperature increase of about
1.2 K over the period 2000-2080, as in one of cli-
mate change scenarios, does not appear to yield sig-
nificant changes in the ENSO period, amplitude and
spatial patterns (e.g. Zelle et al., 2005). However,
expected improvements of climate change scenario runs
in the near future will require corroboration of these
results.

Copyright © 2010 Royal Meteorological Society

3. Ingredients of a seasonal forecasting system

The journey that starts from the production of a seasonal
forecast and ends with its employment can take several
alternative routes but, broadly speaking, the key ingredi-
ents of a seasonal forecasting system are:

1. A set of observations of (part of) the climate system;

2. A model that elaborates the observations to yield one

(or more) forecast field(s)/value(s);

A set of tools to assess the quality of the forecast;

4. A set of tools to post-process the forecast in order to
make it usable for specific applications;

5. A strategy to communicate the forecast;

6. A strategy to incorporate the forecast into a decision-
making framework, and,

7. A set of tools to assess the impact of the forecast on
the decision taken.

e

The term ‘system’ may assume different connotations.
At its minimum it refers to a set of tools (e.g. a dynamical
model) that provide a forecast (e.g. a global temperature
field). In a broader sense it refers to the entire process
comprising the forecast preparation, its delivery and
uptake. Here the second meaning is considered more
appropriate for the simple reason that an unused forecast
is of limited consequence.

While the undertaking of all seven steps would ensure
a proper uptake of a forecast, one can anticipate that not
many organizations have the resources to tackle all of
them. Although there are no set rules and the landscape
is continually evolving, typically there are organizations
that deal with steps 1-2 only, others with steps 3—4
and still others with steps 5—7. The discussion here will
therefore follow a similar sub-divisions (steps 1-2 in this
section, 3—4 in Section 4 and 5-7 in Section 5) but it
should be borne in mind that a successful forecast is
normally achieved when all seven steps are inter-linked.

Meteorol. Appl. 17: 251-268 (2010)
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Two main approaches can be adopted to produce sea-
sonal forecast fields. Statistical modelling, the simpler of
the two, is based on the modelling of historical relation-
ships between the climate anomalies to be predicted and
the underlying forcing mechanisms — typically observed
SST. The other, dynamical modelling, offers a much
more complete framework and is based on the solu-
tion of numerical representations of fluid dynamics and
thermodynamics equations. There is, however, a wide
variety of statistical and dynamical models. Indeed, statis-
tical models could in principle be more computationally
demanding than some of the simplest dynamical models.
Here the focus is on the more complex dynamical mod-
els, deemed to provide better long-term strategy as they
allow for a much greater flexibility in the description of
climate patterns both globally and regionally. It is for this
reason that many large research and/or operational cen-
tres have invested substantial resources in this strategy
and employ such models to produce seasonal predic-
tions routinely, amongst which are the European Centre
for Medium-Range Weather Forecasts (ECMWF), Météo-
France, UK Met Office, National Centers for Environ-
mental Prediction (NCEP), Australian Bureau of Mete-
orology, National Aeronautics and Space Administra-
tion (NASA), International Research Institute for Climate
and Society (IRI), Korea Meteorological Administration
(KMA), Japan Meteorological Agency (JMA). Several of
these institutes are also part of the APEC Climate Center
(APCC). APCC collects seasonal forecasts from 15 insti-
tutes in the APEC region (see http://www.apcc21.net). In
fairness, since investment to develop dynamical models
can be expensive, many Institutes still adopt statistical
models for their operational seasonal forecasts. Often,
these same institutes can also access the output of dynam-
ical models and are, therefore, able to produce forecasts
from the combination of both approaches (e.g. Bellow
et al., 2008).

Given their relative simplicity, statistical models are
more widely used than dynamical models for seasonal
forecasts. Such statistical models are constructed primar-
ily to generate forecasts of seasonal precipitation totals,
but air temperature forecasts are also made (Mason and
Baddour, 2008). Most statistical models are based on
linear regression between the predictor(s) (typically a
temperature index linked to ENSO, e.g. NINO3.4) and
a single predictand index (e.g. rainfall over a specific
region, such as the Nordeste region of Brazil). Modifi-
cations to the linear model can be made or alternative
statistical procedures used when there is good reason
to expect a relationship to be non-linear. While most
seasonal forecast statistical models are constructed for
tropical countries, where ENSO has its largest impact,
statistical predictions have been carried out for the extra-
tropics too (e.g. Qian and Saunders, 2003). For a com-
prehensive overview of available statistical models see
Mason and Baddour (2008). It is also interesting to com-
pare the skill of statistical models and dynamical models.
One such comparison is provided by Van Oldenborgh
et al. (2005) who showed that, by using the anomaly
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correlation of the ensemble mean as their metric, on an
annual average the skill of two ECMWF models is higher
than the few statistical models considered. On a seasonal
level, the ECMWF models are better at forecasting the
onset of El Nifio or La Nifa in boreal spring to summer
while the statistical models are comparable at predicting
the evolution of an event in boreal fall and winter.

Since it is the slower timescale of variability in the
ocean and on the land that affects the predictability,
any attempt to predict seasonal climate variability in
general or ENSO in particular, should involve prop-
erly integrated atmospheric, oceanic, land, and possibly
cryospheric, models (see Figure 5). This notwithstand-
ing, there are several levels of complexity even within
the dynamical model category. Three main groups can
be identified: (1) intermediate coupled models (ICMs)
consisting of a simple atmosphere model (possibly sta-
tistical) coupled to a simple ocean model (e.g. compris-
ing two layers representing the warmer part above the
thermocline and the colder one below); (2) hybrid cou-
pled models (HCMs) consisting of a similar atmospheric
model to ICMs but with a full ocean general circula-
tion model that solves the equations of the circulation of
the ocean, together with temperature, salinity evolution,
in great detail, and, (3) coupled general circulation mod-
els (CGCMs), in which the Earth system is subdivided
into cells of sizes varying by model (typically 100 km
by 100 km in the horizontal), combine general circula-
tion models for the ocean and the atmosphere and often
also those for the land surface and sea ice. Sometimes,
atmospheric general circulation models (AGCMs) only
are used in seasonal forecasting but SSTs have to be pre-
dicted first (e.g. using a statistical model) and then used as
boundary conditions to the AGCM. Such an approach is
normally referred to as a ‘two-tiered’ approach (Bengts-
son et al., 1993).

It was using an ICM that the first successful dynam-
ical forecast of ENSO was made: the model predicted
the onset of the 1986—1987 El Niflo one year in advance
(Zebiak and Cane, 1987). Such a result greatly boosted
the interest in El Nifio forecasting using dynamical mod-
els. Since then more complex models such as CGCMs
have been targeted at El Nifio simulation and prediction.
Many models are capable of simulating several realistic
features of ENSO though it is difficult to assess how good
they are as even in nature no two El Nifios are the same
(cf. Figure 4).

Atmospheric model H

H Land surface model ’{’ ?@ [N
H Ocean model Md_—Dﬂ Sea Ice model H

Figure 5. Schematic showing the main model components used by

a Coupled General Circulation Model (CGCM) for seasonal climate

modelling and forecasts. Double arrows represent a two-way interaction

between model components, whereas the single arrow from the land
surface to the ocean represents the river runoff.
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Any attempt to predict the climate must be supported
by evidence that there is a useful level of predictability
in the system. Predictability is a relative term that is nor-
mally measured by means of numerical models and given
the chaotic behaviour of the climate system and model
limitations, predictability information is itself imperfect,
but what is the cause of the limit in predictability of
ENSO? Strategies of ENSO predictions using dynami-
cal models hinge around this question as the paths of
model development are rather different depending on
the answer. Although related, two main limiting factors
can be distinguished: (1) the effects of high-frequency
atmospheric ‘noise’, and, (2) the growth of initial errors
in model simulations. According to Chen et al. (2004)
initial error growth is the more critical aspect, how-
ever. This means that model-based prediction of El Nifio
depends more on initial conditions than on unpredictable
atmospheric noise. Encouragingly this would imply that
improved initializations should lead to better ENSO. By
initializing reasonably well the ocean state as well as
the land conditions, it is possible to predict how critical
boundary conditions such as the sea-surface temperature
and, to a lesser extent, the soil wetness and the snow
cover, will evolve in the following months (e.g. Alves
et al., 2004). It is the simulation of the evolution of these
slowly evolving components of the climate system that
allows us to predict atmospheric circulation patterns some
months ahead. Of particular relevance is, of course, the
prediction of ENSO and of the climate conditions in the
tropical areas, which might influence regions remote from
the tropics through teleconnections.

Thus, the current state of the climate is crucial to
seasonal prediction. The most common approach to
initialize a CGCM is to initialize the individual main
components, namely the ocean, the atmosphere and the
land, separately. The separate initializations are done
mostly for practical reasons as it is easier and less
computationally demanding to deal with one component
at a time. The main drawback of this approach is that the
separate initial conditions may not be in balance when
forecasts are started and, therefore, coupling shocks may
impact on the results of the forecast negatively, from
early on in the integration. However, coupling shocks
may be considerably alleviated if common boundaries
(e.g. the SST seen by both the atmospheric and ocean
models separately) are treated in a consistent way. By
and large, the most important of these initial conditions
is deemed to be the state of the ocean, and for predictions
up to about a year, the upper few 100 m is the most
critical (Anderson, 2008).

The initialization of the models is achieved through
an approach called data assimilation, a combination
of observations and model data performed with the
aim of achieving the ‘best’ initial state for the model.
Ideally all available observations should be used for
this purpose. However, practical considerations such as
the inter-dependency of different observations, the need
for models to be ‘in balance’ with observations (a
technical requirement to ensure the model moves forward
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smoothly, rather than jumps, from its initial state) and
many others put constraints in the way data assimilation
is actually implemented. The details of data assimilation
will not be discussed here, but it is worth noting that data
assimilation is not a specific technique for the climate
system only. Rather, it is used in a wide variety of
disciplines, e.g. in satellite orbit determination, in any
application that requires an optimal way to combine a
model with observations. For a more detailed discussion
see for example, Tribbia and Troccoli (2008).

The fact that observations of the climate system have
thus far been mentioned but not properly discussed in
detail should not give the wrong impression: they are pos-
sibly the most essential component of a forecasting sys-
tem. Observations are vital in many ways: they are used
to learn about the past, to construct statistical models, to
prepare initial conditions for CGCMs, to assess the qual-
ity of forecasts in retrospect. Observations can be seg-
regated into two types: (1) in situ measurements, which
require sensors to be collocated with the quantity to be
measured, and, (2) remotely sensed measurements, which
rely on inferring physical variables from afar through
the inversion of a radiated signal. Radiosonde temper-
ature measurements and satellite temperature retrievals
are prototypical examples of in situ and remotely sensed
data respectively. In the following observations from the
three more relevant media for seasonal forecasting, atmo-
sphere, ocean and land surface, are discussed.

Prior to the advent of the routine use of satellites
in the 1980s, the majority of atmospheric data were
collected through in sifu measurements. Since then an
exponential growth in the volume of remotely sensed
data from satellites has been achieved. To give an idea
of this growth, about 100 thousand observations of the
atmosphere were used for weather forecasting in the early
1990s. Now, this number is about 10 million, i.e. 100
times larger. The spatial data coverage has also become
more uniform. Whereas before satellites the southern
hemisphere was relatively poorly observed, now the
quality of forecasts for the north and south hemispheres
is basically the same mainly as a reflection of the more
uniform global data coverage.

Although the ocean is less well observed than the atmo-
sphere there have been important developments in the
1990s. By far the most relevant for ENSO forecasting
was the deployment of the TAO-TRITON array (Tropi-
cal Atmosphere Ocean/Triangle Trans Ocean Buoy Net-
work), which consists of approximately 70 moorings in
the Tropical Pacific Ocean. Each buoy takes detailed mea-
surements of surface winds, humidity, surface and sub-
surface temperature and salinity, and continuously relays
the information via satellites. In 2000, a new observa-
tion system, Argo, was also introduced. This system has
largely modified the way in which the ocean subsurface is
observed. Before Argo, observations were mostly taken
at the same location (as for the TAO-TRITON array) or
along tracks concentrated along shipping routes or within
limited regions during research campaigns. With Argo,
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which consists of free-drifting profiling floats that mea-
sure the temperature and salinity of the upper 2000 m
of the ocean, most of the ocean can in principle be cov-
ered. About 3000 Argo floats have been deployed so far
and their measurements are available in near real time.
Figure 6 shows the evolution of the global number of
in situ oceanic observations since the 1950s. Particularly
striking is the rapid increase in the number of observa-
tions in recent years, i.e. after the advent of the Argo
floats. In addition to these in situ measurements, start-
ing in the late 1980s a wealth of satellite oceanographic
observations such as sea surface height (SSH), SST, the
sea surface salinity (SSS) and ocean colour have become
available. Yet remote measurements can only be used to
observe the (near) surface of the oceans and given their
vastness — they occupy about 71% of the Earth’s surface
with an average depth of about 3800 m — they therefore
remain largely unobserved.

Land surface variables (mainly soil moisture, snow
cover and skin temperature) are also not easy to mea-
sure because of the heterogeneity and/or remote location
of a region. Soil moisture, the main variable for sea-
sonal forecasting, is a key hydrological state variable
that integrates much of the land surface hydrological
and biophysical processes. However, in situ soil moisture
measurements are generally expensive and no large-area
soil moisture networks exist to measure it at high tempo-
ral frequency in multiple soil depths (Ni-Meister, 2008).
Satellite remote sensing that provides global quarter-
degree resolution near surface soil moisture content has
been derived using C-band passive microwave observa-
tions (Owe et al., 2001). As in the case of the ocean,
remote sensing can only measure the top few centimetres
of soil.

Not only is the temporal and spatial resolution of obser-
vations important, the length of the record is equally crit-
ical. In fact, seasonal forecasts need to be executed over
a relatively long period (normally more than 15 years)
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Figure 6. Global number of in situ oceanic observations on typical
model levels as a function of time (dotted line: salinity, dashed line:
temperature, solid line: sum of the two). Temperature observations have
historically been more abundant than salinity ones. The noticeable
downturn in observations in the 1990s was due to the reduction in
XBT (eXpendable BathyThermographs) profiles. Since 2000, however,
with the advent of the Argo floats (see text), salinity — as well as
temperature — observations have considerably increased (From Tribbia
and Troccoli, 2008).
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in order for them to be bias corrected, calibrated and
assessed. A practical way to extend observational records
is to combine available observations with a model. Re-
analyses, which might be described as historical global
maps created using the most up-to-date technology (e.g.
model, data assimilation method) in a consistent way,
namely using the same technology throughout the period
analysed (e.g. from 1950 to present), are often used for
this purpose.

Moreover, recognizing that small changes in the ini-
tial conditions or even small changes to the formulation
of that model, changes that might otherwise be consid-
ered insignificant, can affect any prediction to a major
extent, ensemble forecasts have been developed whereby
a number of forecasts (currently typically 10-50) are
produced at the same time based on variants of these
changes. Naturally running a prediction system, say, 50
times rather than just once places an immediate demand
on computing power in competition with the demands
from resolution and incorporation of more processes. The
main argument for using ensembles in predictions is that
by taking the average across all predictions within an
ensemble the ‘unpredictable’ smaller scale components
would be filtered out leaving a stronger ‘predictable’
signal, and, hence, greater prediction accuracy. Another
related advantage is that ensembles allow for a more
immediate estimation of uncertainty — the spread of the
ensemble can be taken as being proportional to the uncer-
tainty of the prediction. However uncertainty estimation
heavily relies on the manner in which the ensemble is
generated — to be a robust estimate, perturbations need to
be in some way commensurate with the perceived error
of the parameter being perturbed.

This is where dynamical models stop: they have done
their part. The end is not in sight though and a lot has to
happen in the sphere of post-processing (or a posteriori
procedures) before one can go out to publicize their
forecasts.

4. Making sense of seasonal predictions

Once observations and models are combined, CGCMs
are run for many months ahead (up to about 1 year) to
produce a ‘forecast’. It is somewhat optimistic, however,
to call the millions of numbers churned out by CGCMs
a forecast. Considerable massaging has to be usually
applied to these numbers in order to obtain a reasonable
forecast. Such manipulation, an essential component of
a seasonal forecasting system (items 3 and 4 in the 7-
ingredient recipe, Section 3), includes bias correction and
calibration.

As the name suggests, ‘bias correction’ indicates that
there are some errors in the model output that need
to be adjusted. Indeed, substantial differences between
the observed and dynamical model climates (the biases)
invariably are evident, and normally have to be corrected
in order to provide usable forecasts. An example of the
speed with which such biases can manifest in coupled
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forecasts is shown in Figure 7, depicting the systematic
2 m temperature biases at month zero (top) and month 1
(bottom) lead times in an ensemble of ENSO predictions
using the ECMWF coupled model. As can be ascertained
from Figure 7, not all regions of the globe are affected
by biases. Nor is it consequential that regions with larger
biases will have a poorer forecast performance: indeed the
predicted variability may be reasonable in spite of biases.
Although it is clear that the simulated mean climate
must be reasonable in order to realistically capture the
many important signatures of intra-seasonal variability
(GlecKler et al., 2007), the interaction between bias and
variability is not a simple one. A recent study by DelSole
and Shukla (2009) concludes that models that poorly
simulate the observed climatology tend to have poor skill
in seasonal forecasts, while models that more closely
replicate the observed climatology tend to have better
skill. Of course it would be desirable to have bias-free
models, but whether biases arise mostly from errors in
the atmospheric, ocean or land surface component (e.g.
Toniazzo et al., 2008) is immaterial in the context of
trying to achieve a usable forecast.

It is safe to assume that model biases will stay around
for many years to come and, therefore, what is needed it
is a strategy for firstly detecting such errors and secondly
for correcting them a posteriori. Maps such as those in
Figure 7 are useful to detect the simplest form of error:
the mean bias (i.e. the central tendency of the model
climatology differs from that for the observations). More
generally, biases can manifest as mean, variance, or shape
biases or, nastily, even all at once. Figure 8 shows the
frequencies of average precipitation rates over a 3 month
period for a specified region and exemplifies how biases
can manifest. In Figure 8(a) the simulated rates are
consistently too high compared to those observed (mean
bias) as well as having a larger variance than the observed
(variance bias); Figure 8(b) illustrates that variance biases
can occur even when the mean bias is minimal; and
in Figure 8(c) all three types of bias are present: the
model’s mean and variance are too high, while the
skewness is too low (Mason, 2008). Distributions such
as those presented in Figure 8 are computed for fixed
regions: but what if these biases are only the result of a
spatial displacement? In other words, the model may be
successful at forecasting the pattern of rainfall variability
but this pattern may be displaced by say 15° to the west.
Specialized statistical tools such as principal components
need to be used in order to detect any such displacement
(an example is given in figure 8.3 of Mason, 2008).

Bias identification is not always practical: model biases
are dependent on the variable, region, season and phase
of ENSO. For instance, coupled models tend to perform
more poorly when the forecast start during boreal spring,
hence the so-called ‘spring predictability barrier’, and
more so in the decaying phase of an El Nifio than in
its growing phase (e.g. Jin et al., 2008). This may be
linked to a greater SST variability, as seen earlier in the
NINO3.4 of Figure 4. However, such behaviour is not
evident in all ENSO-prediction models, and so may not
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be an inherent feature of the ENSO phenomenon (Chen
et al., 1995).

Having detected the face of the bias, the remedy
follows relatively easily. The simplest and most common
approach assumes that only the mean is biased. A mean
removal is then applied, i.e. g(z) =z —z, where 7 is
the sample mean. This procedure is applied to both
model data and observations and the resulting fields are
referred to as anomalies. Analogously, a correction to
both the mean and variance would be applied as follows:
g(2) = (z — 7)/s, where s its standard deviation. By doing
so, data are said to be standardized. Standardization is a
widely used procedure that successfully removes mean
and variance biases, but can be problematic when used
on data with a zero bound and/or when there are biases
in the shape of the model’s distribution (see Mason,
2008 for more details). To correct for spatial biases, one
of the two statistical techniques, maximum covariance
analysis or canonical correlation analysis (both extensions
of multiple linear regression), are often used (Mason,
2008).

Bias correction, as well as forecast skill assessment,
has to be based on past performance. Many runs of the
coupled model need to be performed in order to build a
sufficient sample, which provides the statistical moments
(mean, variance) upon which the a posteriori correction
is based. A set of re-forecasts (or equivalently back
integrations or even hindcasts), run over a past period,
constitute the sample. The length of the period is dictated
by a mix of practical and statistical considerations. From
a statistical viewpoint the sample should contain as many
inter-annual modes of variability (e.g. ENSO) cycles as
possible. Moreover, due to the pronounced seasonality in
model errors as well as in model performance, statistics
have to be generated separately for each month of
the year and normally several ensemble members are
run for each start date (CGCMs are currently typically
run on the first of each month). Bearing in mind that
coupled models are computationally expensive to run
(main constraint) and that the climate is non-stationary
(a weaker constraint) a typical choice for the re-forecast
period is 15-25 years. A quick calculation demonstrates
that re-forecasts, the backbone of model calibration and
assessment, constitute a considerable component of the
computational cost of a dynamical forecast (number
of re-forecasts runs: (15-25) years x 12 months x 10
members = 1800-3000 runs). Careful consideration
therefore needs to be given to this aspect when devising
a forecasting system.

Another way to side-step model errors is to employ
more than one model, under the so-called multi-model
approach (Krishnamurti et al., 1999; Palmer et al., 2004).
Use of multi-models is an empirical and pragmatic way
to account for errors in individual models: the multi-
model hinges on the fact that models have been developed
somewhat independently and thus they would satisfy the
necessary requirement of independence. However, no the-
oretical framework yet exists to explain this seemingly
successful approach, but ultimately it has to be judged
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by its performance. Some attempts to try to empirically
explain its performance have been made though. Weigel
et al. (2008) provided one of the most satisfactory expla-
nations to date. Given that a multi-model contains infor-
mation from all individual models, including the less
skillful ones but possibly with different weights, they
addressed the question of why, and under what condi-
tions, a multi-model can outperform the best participating
single model. By using a synthetic forecast generator,
which allows the generation of perfectly calibrated indi-
vidual models of any size and skill and adjusting the
degree of the resulting ensemble under-dispersion (or
overconfidence) they concluded that multi-model perfor-
mance depends on the skill and overconfidence of the
participating single models. Since multi-model combi-
nation reduces overconfidence, i.e. ensemble spread is
widened while average ensemble-mean error is reduced,
it can indeed locally outperform the ‘best-model’, but
only if the individual models are overconfident.

Whether for single or multi models, forecast assess-
ment, also known as verification or validation, is funda-
mental to gaining confidence on the quality of a forecast
model: clearly it is desirable to learn as much as possible
about past performance before diving into the unexplored
territories of the future. A wide range of measures (or
scores) to assess performance is available, going from
the more standard ‘deterministic’ correlation and root-
mean-square (RMS) difference to the ‘probabilistic’ Brier
score and reliability measure. Forecast assessment is by
no means specific to seasonal forecasts and hence many
references are available: Jolliffe and Stephenson (2003),
Mason and Stephenson (2008) and the Special Issue of
Meteorological Applications (2008) on Forecast Verifica-
tion provide excellent starting points.

By carrying out seasonal forecast assessments one
finds that skill varies markedly depending on the region
considered, on the state of the climate when the prediction
starts (e.g. the ENSO phase), on the lead time and on
ensemble size (see Kharin et al., 2001; Jin et al., 2008 for
an analysis of skill dependencies). A recent analysis by
Livezey and Timofeyeva (2008) has shown that, except
for winter forecasts during strong ENSO episodes, skill
does not vary with lead time over the U.S.A.: instead,
they concluded, skill comes exclusively from long-term
trends, dominantly associated with climate change for this
region.

A map of skill for near surface temperature of a sea-
sonal forecasting system as given by the anomaly corre-
lation for forecasts started in February is displayed in
Figure 9. This plot confirms that for the tropics fore-
cast skill is highest but higher latitudes also have some
potentially useful skill, for instance where correlations
are larger than 0.4 (although a correlation of 0.4 is not
very large, ‘windows of opportunity’ may exist. See
also later discussion). Somewhat different considerations
apply to another important physical variable, precipita-
tion. Although the analogous map for precipitation also
displays a maximum in the equatorial Pacific, though with
lower values, elsewhere, correlation values are close to
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zero (not shown). Moreover, because of the relatively
large climate anomalies accompanying an El Nifio, sev-
eral global teleconnections are manifest, for instance,
over Southern Africa or North America. Thus, although
predictions are generally more skillful in tropical areas
than at higher latitudes during an El Nifio, predictable
features can be found at higher latitudes too (Figure 10).

Maps such as that in Figure 9 provide useful indica-
tions about the quality of predictions. As one can imagine,
a much more extensive assessment than just correlation
maps is normally carried out by seasonal forecasting cen-
tres and other research/operational institutions in order to
examine in great detail how a forecasting system per-
forms. This is because (1) there are many ways skill
can be measured, correlation being just one of them (see
e.g. Mason and Stephenson, 2008); (2) skill depends on
time and location and (3) several other physical vari-
ables need to be assessed aside from the most common
two, surface temperature and precipitation (e.g. pres-
sure, wind). As a result of such evaluations a wealth
of statistics, using both deterministic and probabilistic
metrics, is usually produced which can then be used
to calibrate subsequent specific forecasts either objec-
tively or subjectively (see for instance the comprehensive
analysis carried out by the EU project ENSEMBLES
(http://www.ecmwf.int/research/EU _projects/ENSEM
BLES/results/)).

Such assessments are doubtless essential. However,
care should be taken in order not to over-interpret
statistics. By definition, statistics provide a summary
of behaviour of a system and as a consequence they
may gloss over important details. Imagine a particular
skill measure that behaved like the curve in Figure 11
with periods of both negative and positive values, but
with a zero mean (as represented for instance by a
white area in Figure 9). It is apparent that, based on
this skill measure, there are instances in which this
forecasting system performed particularly well. This may
be the case, for example, for forecasts produced while
an El Nifo is under way: models are often sensitive
to stronger anomalies such as those provided by an
El Nifio and hence their response may emerge from
the noise during such events and may then provide a
useful forecast (Goddard and Dilley, 2005; Livezey and
Timofeyeva, 2008). Periods of higher positive skill in
such circumstances are normally referred to as windows
of opportunity as potentially beneficial forecasts may be
attainable during such periods.

Being able to exploit windows of opportunity would
therefore equate to achieving a higher skill than that
yielded by assessing the system purely from a statistical
basis. Critical to the exploitation of these windows is
the understanding of how the physical system works.
The forecast provided by the model then becomes just
one, though an important, piece in the jigsaw of the
final forecast. This was the case for instance with the
seasonal forecast issued by the UK Met Office in the
winter 2005-2006 discussed in the next section.
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Figure 7. The evolution of the 2 m temperature systematic error (or bias) in °C at month zero (top) and month 1 (bottom) lead times in an
ensemble of seasonal forecasts using the ECMWF coupled model (System 3). Note how the bias generally increases with increasing lead time
(From Tribbia and Troccoli, 2008).

Since global model predictions represent large spa-
tial averages, and generally are presented as seasonal
averages, downscaling may be required to make the fore-
cast relevant for specific locations, and to provide more
detailed information about the statistics of weather within
the season. Thus, downscaling involves the translation
of a forecast to a spatial and/or temporal resolution that
is finer than that at which the forecasts are produced.
Two downscaling methods are available: statistical and
dynamical. In the former category there are methods such
as canonical correlation analysis for the spatial down-
scaling and weather generators (a weather generator is
a statistical tool built to produce long-term forecasts of
weather at a site based on statistical characteristics of the
observed weather at that site) for the temporal down-
scaling. Dynamical methods involve running a higher
resolution regional model using the global model output
as boundary conditions. The merits of these methods are
not discussed since, as for forecast assessment, seasonal
forecasts normally apply generic approaches to downscal-
ing. For further details see Mason (2008) and for more
specific examples Chu et al. (2008), Zhu et al. (2008)
and Schoof et al. (2009).
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5. Taking decisions on the basis of seasonal
predictions

A wide variety of societal sectors are exposed to the vari-
ability of climate. For some diseases close direct and
indirect links with climate conditions exist (e.g. malaria
epidemics; see Thomson et al., 2006; Abawi et al., 2008)
and in such cases, climate prediction might give public
health systems early warning of the likelihood of epi-
demics. Likewise, using seasonal predictions as input for
load-balance models has the potential to optimize the
matching of supply and demand in the energy industry.
Similar examples could be mentioned for many other
sectors like water resource management, retail indus-
try, finance, insurance, fishery, transport, tourism and
policy making (section 2.4 of Harrison et al., 2008b).
Given the wide-ranging applicability of seasonal predic-
tions, it becomes apparent, therefore, the strong interest
in improving our ability to predict the climate of the
next seasons. It is worth noting that the initial driv-
ing force behind this research was of socio-economic
nature (with food security in India, see Section 1). Now
that the scientific component of seasonal forecasting
has almost reached its adulthood, it is picking up the
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Figure 8. Example of model systematic errors for observed (black) and simulated (grey) daily precipitation intensities: (a) mean and variance
biases; (b) variance bias; and (c) mean, variance, and shape biases (From Mason, 2008).

-1 -0.8 -0.6 -0.4 -0.2

0.6

0.2 0.4

Figure 9. Skill of a seasonal forecasting skill as measured by anomaly correlation for near surface temperature. Results will vary depending on
the season being predicted. In general skill is higher in the tropics than at higher latitudes and for this particular season (March-April-May) the
temperature signal over northern Europe is real (From Anderson, 2008).

threads with the economic and social aspects which were
left a bit behind as attention was mostly devoted to
improving our scientific understanding of seasonal pre-
dictions.

Major societal climate-related impacts are normally
linked to strong ENSO episodes. Indeed the two main
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recorded El Nifio events, 1982—-1983 and 19971998 had
dramatic worldwide consequences, and because no two El
Niflo events are the same in terms of their evolution and
consequent impacts, it is critical to have some indications
of whether an El Nifio or a La Nifia are likely to occur
several months hence.
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Figure 10. Plot of the frequently observed climate anomalies in temperature and precipitation associated with El Nifio. This plot is for Dec—Feb,
often the peak phase of El Nifio. Other seasons will have other climate anomalies (teleconnections). A given El Nifio will not necessarily show
all of these climate anomalies.

While weaker El Nifio events such as that of 2004—
2005 may be of less consequence than larger ones, how
can one discriminate between ENSO and non-ENSO
events? This is a very important issue as decisions at
different levels (political, economical) can be taken solely
based on the fact that an El Nifio is predicted to happen.
Such decisions would then be broadly based on forecasts
but, critically, also on the historical impact of El Nifio
events, even if the actual effect could be rather different
from earlier events. Typically, in fact, humans tend to
relate current or future situations to past and recent
experience. While such mental analogues are valuable
because the mind can more easily access a wealth of
recent information on the behaviour of the whole system
with which the decision-maker is concerned, they could
actually distort the decision-making process. Therefore
in order to avoid any such distortion, it is paramount to
access also objective information such as a relatively long
record (e.g. 20+ years) of the event affecting the decision
(e.g. the minimum temperature for a specific region).

Caution has to be taken also with objective measures,
however. Although attempts have been made to define
an easy-to-interpret metric to indicate whether there
is an ENSO or not, any such metric would be an
oversimplification. Thus, defining an El Nifio by selecting
a threshold of say 1° for the NINO3.4 index as done in
Figures 2(b) and 4, though appealing it is likely to be

_____ f

Time

Figure 11. Schematic of temporal evolution of a generic skill measure

with zero mean. Values above a chosen threshold (dashed line) may

provide potentially useful predictions (the so-called ‘Windows of
Opportunity’). From Troccoli (2009).
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interpreted and acted upon in different ways by different
people. Glantz (2003, p. 202) describes for instance the
very different ways three governments (Peru, Kenya and
Costa Rica) responded to the early forecasts in June 1997
of the impending 1997-1998 EI Niilo.

Naturally, different interpretations may also arise
because of the probabilistic nature of seasonal forecasts.
For whichever variable, region and lead time, seasonal
forecasts always need to carry a label that says how likely
the prediction is going to be. As a consequence any one
forecast can not be right or wrong: trust needs to be built
over time. However, by clearly stating the uncertainty
of an individual forecast and properly factoring in this
intrinsic uncertainty valuable risk-management decisions
can be taken. Practical frameworks for taking uncertainty
into account in order to assess the level of risk associ-
ated with decision making processes is given for example
by decision tree diagrams and influence diagrams (e.g.
Goodwin and Wright, 2003). Such diagrams are devised
to take into account a variety of factors that shape the
final decision, seasonal prediction being just one of them
(see Figure 12 for an example of a tree diagram). With
any such tool, however, given the variety of potential
decision makers, some level of customization is neces-
sary. Examples of how seasonal forecasts and climate
information more generally are used in practical contexts
are given in Stern and Easterling (1999), Hammer ef al.
(2000), Cash and Buizer (2005), Abawi et al. (2008) and
Bellow et al. (2008).

One of the keys in demonstrating the value of seasonal
predictions lies in the manner forecast information,
and especially its uncertainty, is communicated to the
decision making community. Miscommunications may
in fact occur in a number of ways, including through
the psychological processes that are sometimes referred
to as ‘cognitive illusions’. The ‘framing effect’ offers a
straightforward example — the two statements ‘there is
a 30% chance of a drought this coming season’ and
‘there is a 70% probability that rainfall will be adequate
for cropping this coming season’ effectively provide
the same information, but the manners in which the
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Figure 12. A highly simplified decision tree diagram to incorporate Climate information (of which seasonal forecast is a subset) into the decision
making process for a food security application (From Harrison et al., 2008b).

statements are stated, or framed, invite possibly diverse
decisions, a defensive approach against drought in the
first case and a positive response to take advantage
of possible beneficial climate conditions in the second
(Nicholls, 1999; Harrison and Williams, 2008).

Despite these challenges, prudent use of ENSO fore-
casts has proven to be highly advantageous. Califor-
nia, for instance, saved US $1 billion in 1997-1998
as a result of actions taken by individuals, businesses
and government in response to advance warning of El
Nifio’s impending impacts (Changnon, 1999; McPhaden
et al., 2006a). More broadly, Goddard and Dilley (2005)
demonstrated that, in spite of the greater exposure during
ENSO extremes, climate-related socio-economic losses
are not greater overall during such events than during
neutral periods, indicating that seasonal forecasts, and cli-
mate information in general, may have contributed to an
overall beneficial socio-economic impact.

As mentioned in the previous section, knowing how
to interpret seasonal forecast and other related climate
information from a physical viewpoint may enhance its
value via so-called windows of opportunity. One such
case happened recently in the United Kingdom. In August
2005 and in updates during the subsequent autumn,
the UK Met Office issued a forecast for the United
Kingdom and the rest of Europe for the boreal winter
2005-2006, indicating a colder and drier than average
winter for much of Europe (with a 66% probability of
occurring). Judging by the overall skill of the UK Met
Office (and others) dynamical model outputs this forecast
looked hazardous: the skill of temperature predictions
of the dynamical model over the region is in fact
negative on average. However, the dynamical forecast
constituted only part of the forecast preparation process.
The final forecast was prepared by considering also
information from a statistical model, from observed
subsurface ocean conditions and their evolution, as well
as from interpretation by operational forecasters (Graham
et al., 2006). In spite of the impossibility to state after
the event whether an individual probabilistic forecast is
correct, most of northern Europe (albeit except northern
United Kingdom) did experience colder and drier than
average conditions (Folland et al., 2006). Although there
was no impact on economic activities at the time of the
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Met Office winter forecast press release in September,
some markets, like the energy sector, did however react
significantly when the first anomalously cold weather
hit London in November, so it is possible that the
winter forecast primed the markets and made them
more sensitive (Troccoli and Huddleston, 2006). Overall
wholesale gas prices for the United Kingdom remained
well above the long term average for the whole winter
2005-2006. Clearly other significant factors were also
at play including the fact that the United Kingdom was
turning from a net exporter of gas to a net importer around
that time as well as high gas demand in other areas of
Europe. All in all, important lessons were learned by the
scientific community in the United Kingdom following
the 2005-2006 winter forecast, exposed as it was to
public reaction to a long-range (seasonal) forecast. One
such lesson was that it is crucial to engage with a
wide range of stakeholders to ensure they understand the
forecast and that they do not base their decisions on, say,
newspaper headlines, as happened in some cases.

6. Looking ahead

As argued in this paper, key to producing seasonal
predictions is the ability to identify anomalous climate
signals such as ENSO extremes. This ability stems from
understanding the way in which components of the Earth
system provide such predictive skill and from being
able to extract the signal from the noise present in the
climate system (i.e. its internal variability due to physical
mechanisms such as convection). Despite considerable
advances in the understanding of the physical system and
in model development, some fundamental questions still
remain unanswered: what exactly sets off an El Nifio?
Why does there appear to be a limited predictability in
boreal Spring? What modulates ENSO on the decadal
time scale? How does ENSO behave in a warmer climate?
These issues directly reflect on our ability to model
the climate system and as a consequence progress in
improving prediction skill has been modest in recent
years.

It is also likely that models, reflections of our under-
standing of the system, do not describe some relevant
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processes. For one, all coupled climate models exhibit
significant bias errors in the simulation of ENSO. In
addition, coupled model forecasts are also prone to ‘ini-
tialization shock’, a rapid unphysical adjustment toward
the model climatology that can interfere with the abil-
ity to correctly evolve real climate signals (McPhaden
et al., 2006a). Although most of these errors can be cor-
rected a posteriori and therefore valuable forecasts can
be attained anyway, it is clear that a substantial amount
of research is needed. For example, soil moisture anoma-
lies can induce significant signals in precipitation and air
temperature, which may persist for weeks to months but
their full potential has yet to be exploited. Other vari-
ables such as snow cover, subsurface heat reservoirs,
vegetation health (leafiness) may also prove to have an
important role in understanding the evolution of interan-
nual variability such as ENSO. Even more remote effects
such as the interaction of sea ice with the rest of the
climate system or stratospheric processes may provide
useful insights.

There is also evidence from natural climate archives
such as corals and lake sediments that ENSO varied
considerably in strength in the geological past. For
example, changes in the Earth’s radiation balance due to
major volcanic eruptions, variations in solar output, and
the precession of the Earth about its axis have all affected
the ENSO cycle over the past 130000 years (Mann et al.,
2005). Paleo-climate may therefore provide important
clues about the evolution of ENSO under different
external forcings, such as those experienced with the
increased greenhouse gas levels of recent decades.

Crucial to the proper uptake of seasonal forecasts is
the whole host of procedures, which elaborate the out-
put of a model in order to make it relevant to socio-
economic applications. Whilst a lot has been done in
terms of forecast calibration, assessment, downscaling
and delivery, the fact that there is a wide variety of
socio-economic applications which can potentially bene-
fit from seasonal forecasts means that tailored, improved
and innovative ways to take the forecasts from the ‘fac-
tory’ to the ‘desk’ of the decision maker has to be
sought. It cannot be stressed enough that the delivery
process, both in its technical and communicational forms,
are fundamental aspects in the seasonal forecasting sys-
tem. Fortunately, the technical component, namely the
access to the forecast normally via the Internet, is in an
advanced phase. Numerous prediction centres, such as
ECMWEF, IRI, APEC Climate Center, now provide open
or subscribed access to their latest prediction informa-
tion, created using numerous numerical and/or statistical
modelling approaches, through this channel. However,
technical delivery must be accompanied by an appropri-
ate communicational delivery. Just posting information
on the Internet does not ensure that it is properly under-
stood and used. Direct engagement with users of seasonal
climate information is paramount, especially given the
high level of technical procedures required to produce
the seasonal forecast final product. Although steps have
been taken to establish links with users since the late
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1990s with for instance the Regional Climate Outlook
Forums (RCOFs), the level of skill of seasonal forecasts
is such that continuous and enhanced interaction between
forecasters and decision makers is fundamental as a two-
way process, namely to expand the utilization of seasonal
forecasts in one direction and to receive feedbacks for an
improved forecast product on the opposite direction (Har-
rison and Williams, 2008). Communication is necessary
also to strengthen institutional commitment and to intro-
duce the conditions suitable for the creation of favourable
policies, including government policies, where they do
not exist (Harrison et al., 2008c¢).

It is important to realize that while numerous types of
decisions in socio-economic sectors are aligned with the
seasonal timescale (e.g. seeding and harvesting in agri-
culture) there are also several others that span a wider
time scale ranging from a few hours to a few decades
(e.g. energy demand and infrastructure planning). Sea-
sonal forecast models have, therefore, the opportunity to
provide a basis for validating climate change models, as
well as offering a bridge to weather forecasting models
in what is often referred to as seamless forecasting sys-
tem. Such a seamless system across time scales framed
in a scientific context needs, however, to act alongside
an analogous seamless decision making system for it to
accrue its full benefit. Adaptation and modelling together,
in both seamless decision making and forecasting con-
texts seems indeed a logical path forward (Harrison et al.,
2008c). In order to achieve such a mammoth objective
a more harmonized coordination between the weather,
seasonal climate and climate change communities as
well as with several socio-economic stakeholders needs
to be pursued. Steps towards achieving this goal have
been made already for instance with the World Climate
Research Programme (WCRP) Coordinated Observations
and Prediction of the Earth system (COPES) but much
more needs to be achieved in terms of exchange of appro-
priate weather and climate data and forecast products
between members of the international scientific commu-
nity as well as in terms of more proactive engagement
with the socio-economic sectors.
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