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ABSTRACT: The Canonical Correlation Analysis (CCA) method has been used in this study for improving General
Circulation Model (GCM) predicted rainfall over India during the southwest monsoon season. Hindcast runs for 27 years
(1982-2008) from six GCM outputs are used. This statistical technique relates the pattern of multivariate predictor field
(model rainfall) to the pattern of predictand fields (observed rainfall). It is found that the CCA method improves the skill
of three of the GCMs at the all-India level. A noticeable improvement is also observed in the composite prediction with
CCA as compared to the simple mean of raw GCM products. The skill of the composite prediction after applying CCA is
higher compared to the simple mean of raw model products in several homogeneous zones such as the hilly areas, west
central area and over some parts of northwest India. The possible reason for the improvement in the skill of some of the
GCMs may be the similarity between the loading patterns of model predictions and the observed rainfall. Copyright ©

2012 Royal Meteorological Society
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1. Introduction

The southwest monsoon is the principal rainy season in India
which contributes to about 80% of the annual rainfall. Some
statistical characteristics of the southwest monsoon rainfall have
been evaluated in previous studies, e.g. Parthasarathy et al.
(1995) and Pai and Rajeevan (2007). The inter-annual standard
deviation of the all Indian monsoon rainfall is about 84.7 mm
with a mean of 852.4 mm: thus, a small variation affects the
Indian agriculture to a large extent and impacts on the social and
economic condition of the country. Therefore, it is important
to develop a better forecast methodology which will provide
an estimation of the monsoon rainfall in advance (monthly to
seasonal scale) for planning purposes.

Several statistical models have been developed in the past for
the long range prediction of the Indian monsoon rainfall ever
since Walker (1924) and Gowariker et al. (1989). These mod-
els have been developed taking into account teleconnections of
several atmospheric variables with the Indian summer monsoon
rainfall. The India Meteorological Department (IMD) provides
the forecast for seasonal rainfall in advance in two phases.
The first phase forecast is issued in the middle of April using
an eight parameter regression model. It is updated around the
end of June using a 10 parameter regression model (Rajeevan
and McPhaden, 2004). Presently, the ensemble multiple linear
regression (EMR) and projection pursuit regression (PPR) are
used for the long range prediction of summer monsoon rainfall
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(Rajeevan et al., 2007). All these statistical models have cer-
tain limitations due to their dependence on the interrelationship
of variables which should remain the same for future (Rajee-
van, 2001). However, some studies, such as Mooley and Munot
(1993) and Krishna Kumar et al. (1999), have examined the
variation of relationships between some global variables with
the Indian monsoon rainfall and showed that the relationship
changes with time. In spite of all these efforts the seasonal pre-
diction of monsoon rainfall has remained a challenging task for
forecasters.

After the availability of state-of-the-art General Circulation
Models (GCMs), various studies have been conducted for fore-
casting the Indian summer monsoon rainfall using GCMs (e.g.
Kang et al., 2004; Krishna Kumar et al., 2005; Sahai et al.,
2008; Pattanaik and Kumar, 2010; Acharya et al., 2011; Janaki-
raman et al., 2011; Kar et al., 2011). Preethi et al. (2010) have
analysed the skill of some of the coupled models for the
hind-cast run from 1959 to 1979 and found the skill of the
models to be positive. It is generally noted that the GCMs
have large variations in simulating the observed climatology
and the inter-annual variability (evaluated in terms of stan-
dard deviation). Recently, the performances of some of the
coupled and atmospheric models have also been evaluated by
Acharya et al. (2011). It was shown that although the GCM-
simulated values of both of the monsoon rainfall climatology
and inter annual variability (IAV) at the all India level are in
good agreement with the observed values, the models under-
estimate the IAV at the homogeneous zones as compared to
the observed IAV. Uncertainty to the initial conditions, the non
linearity in atmospheric dynamics and model errors contribute
to the inaccuracy of the GCM forecast products. Therefore,
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the use of direct GCM model output may not be appropriate
(Sahai and Chattopadhyay, 2006). Therefore, various methods
of post processing should be used with these GCM outputs
before making a seasonal prediction. Some of the statistical
post-processing methods are multi-model ensemble (MME),
principal component regression (PCR) and canonical correla-
tion analysis (CCA). Krishnamurti et al. (2000, 2006), Sahai
et al. (2008), and Acharya et al. (2011) have used the MME
for the seasonal prediction.

Canonical correlation analysis (Hotelling, 1936) is defined
as a multivariate statistical technique which relates the pattern
of the multivariate predictor field to the pattern of predictand
field. In other words, it finds a set of linear combinations of
data sets which are highly correlated. This property of CCA
can be used to correlate the pattern of GCM rainfall product
with the pattern of observed rainfall, which can be used for pre-
diction purposes. Earlier, CCA has been used for monthly as
well as seasonal prediction by Barnett and Preisendorfer (1987)
and Barnston (1994). Further, the technique was used by many
forecasters for the long range prediction of sea surface tem-
perature and precipitation all over the globe (e.g. Barnston and
Smith, 1996). Yu et al. (1997) have used both CCA and PCR
for the prediction of rainfall fluctuations and have used Pacific
SST as a predictor because it provides a good estimate of sea-
sonal climate variations. Further, they have found the usefulness
of both the models by analyzing their high skill for the winter
months. This analysis was also used for the operational long
lead forecast of South African rainfall (Landman and Mason,
1999). CCA can also be used to study predictability of rain-
fall extremes (Landman et al., 2005). This analysis has been
applied to the GCM forecasts for SST in order to correct the
model biases (Tippett et al., 2005). Further, Lim ef al. (2011)
introduced regularized CCA and implemented it for the pre-
dictions of precipitation over East Asia. They found that the
forecast obtained from this method was more skilful compared
to the results from the GCMs.

The potential of the CCA method to correct the model
forecasts over the Indian monsoon region has not been fully
exploited. Prasad and Singh (1996) have used this analysis to
estimate the monsoon rainfall over 29 meteorological subdi-
visions using global variables such as the 500 hPa ridge axis
position in April and the Darwin surface pressure tendency.
Recently, Sinha et al. (pers. comm., 2011) have used the CCA
technique to improve seasonal forecasts by developing model
output statistics (MOS) which consider several meteorological
variables from a global model as predictors.

Hagedorn et al. (2005) have described the rationale behind
the success of multi-model ensembles. The skill of the simple
arithmetical average of all the model products tends to yield
higher skill than the skill of individual participating models.
Kang et al. (2004) have examined the systematic errors of a
dynamical seasonal prediction system and estimated potential
predictability of summer mean precipitation with correction of
such systematic errors. Kar ef al. (2006) have used several
multi-model approaches to estimate the economic values of
the forecasts and have found that the multi-model ensemble
schemes improve the value of the forecasts over the single
model. Kug er al. (2008) have described the skill of several
MME methods for seasonal prediction and proposed a step-wise
pattern projection scheme for MME. The performance of multi-
model techniques for precipitation forecasting over India have
been examined in some recent studies (e.g. Chakraborty and
Krishnamurti, 2009). However, the success of such methods in
monsoon rainfall prediction is very limited (Kar ez al., 2011).
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If the skill of individual models is improved through some
statistical post processing method then it is expected that skill of
forecasts of the composite made out of such improved forecasts
(MME of improved forecasts) shall be higher than individual
improved forecasts or the MME of raw model forecasts. There
has been no study of the application of the CCA technique
to improve the Indian monsoon rainfall forecasts from GCMs
and no attempt has been made to document the skill of such
improved forecasts after applying MME.

Therefore, the main objective of the present study is to
use the CCA technique to improve the forecast skill of
a set of GCM products individually and then to estimate
the skill of composite forecasts prepared using such CCA
improved forecasts. Comparative skill assessment has also been
made between such composite forecasts and MME forecasts
made using raw model products. The region-wise impact of
the seasonal forecast is also important, along with the high
resolution gridded forecast. Therefore, in the present study
an attempt has also been made to evaluate the skill of
the CCA improved forecast at homogeneous rainfall regions
(Parthasarathy et al., 1995) along with the 1°x 1° grid boxes.
Section 2 of this article consists of a brief description on the
data and methodology. The results and related discussion are
elaborated in Section 3. Finally, the conclusion of the study is
presented in Section 4.

2. Data and methodology

2.1. Model and observed data

The lead-1 prediction of precipitation for monsoon season
(June to September, JJAS) with May start (model runs use
observations up to May 1) of six GCMs have been used
in this study. The prediction products used are from 1982
to 2008 and all the GCM hindcasts are collected from the
data library of the International Research Institute for Climate
and Society (IRI), Columbia University, USA. The GCMs
used in this study are now briefly introduced. The two fully
coupled versions of IRI models, referred to as MOM3ACI1
and MOM3DC?2, have the European Centre-Hamburg Model
(ECHAM version 4.5) as the atmospheric component coupled
with the Modular Ocean Model (version 3). MOM3ACI is
anomaly-coupled, while MOM3DC?2 is direct-coupled. IRI’s
mixed layer coupled model, referred to as ECHGML (Roeckner
et al., 1996; Pacanowski and Griffes, 1998), has also been
used. The fourth model, referred to as CFS, is the National
Center for Environmental Prediction (NCEP)’s climate forecast
system version-1 model (Saha et al., 2006). The last two
models, referred to as ECHcasst and ECHcfssst, are two two-
tier versions of ECHAMA4.5 forced with constructed analog SST
and CFS forecast SST (Li and Goddard, 2005), respectively. All
these models are also discussed in detail in Kar er al. (2011).
The number of ensemble members and spatial resolution of
these models are given in Table 1.

The predictand field is the observed rainfall values for the
summer monsoon period. These observed values are extracted
over the extended Indian domain from 10°S to 50°N and 50°E
to 120°E. Observed rainfall data over India are taken from
the IMD at 1° x 1° resolution (Rajeevan et al., 2006). It may
be noted here that there are several gridded rainfall datasets
available at 0.5°, such as the University of Delaware rainfall
data (Matsuura and Willmott, 2009) and the data sets from the
Climatic Research Unit (CRU) archive (Mitchell and Jones,
2005). Many of the same observational (rain-gauge) records
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Figure 1. Selected domain for the analysis (grey shaded are the Indian
land points for which data are taken from the IMD and merged with
CMAP data for the white shaded area).

Table 1. The Global Circulation Models used in the study.

Serial no. Model Ensemble Resolution Type
members

1 CFS 15 T62 Fully coupled

2 GML 12 T42 Semi-coupled

3 MOM3ACI1 24 T42 Anomaly coupled

4 MOM3DC2 12 T42 Direct coupled

5 ECHcasst 24 T42 Two-tier

6 ECHcfssst 24 T42 Two-tier

are used in these data sets. However, each data set is not based
on exactly the same set of rain-gauge records. In these datasets,
the number of rain gauge station data used from India is very
limited. In contrast, the 1° x 1° Indian rainfall data (Rajeevan
et al., 2006) used in the present study considers 1803 stations
which had a minimum of 90% of data availability during the
analysis period 1951-2003. This rainfall data set was compared
with other similar global gridded rainfall data sets and this
dataset better represents rainfall over the Indian region. The
correlation co-efficients between this rainfall time series and
other global data sets are more than 0.80 (Rajeevan et al.,
2006). The observed data outside of India are taken from CPC
(Climate Prediction Centre) Merged Analysis of Precipitation
(CMAP) estimated precipitation (Xie and Arkin, 1995) which
is available at 2.5° x 2.5°. Further, these values are merged to
obtain the rainfall observation over the entire domain shown in
Figure 1. In the figure, the IMD observed values are obtained
for the grey shaded area and the CMAP data is merged for the
remaining part of the domain. The GCM precipitation outputs
are also extracted for the above selected domain.

2.2. Canonical correlation analysis (CCA)

In the CCA technique, the multivariate predictors (patterns)
are linearly related to the multivariate predictands (patterns),
i.e. a set of weights for predictors are linearly related to the
set of weights for predictand. These weighting sets are called
the loading pattern for predictors and predicands respectively.
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These patterns may represent the physical processes. CCA is
also known as a specialized version of an empirical orthogonal
function analysis (EOF) in which the correlation matrix of
predictor and predictand is analysed (Barnston and Smith,
1996). Each of the successive CCA modes defines more
completely the correlation structure between predictor and
predictand. It contains the patterns of canonical variables
(predictor and predictand) having maximum correlation. It may
be noted here that in the traditional manner the predictors
and predictands are augmented to obtain the CCA loadings.
However, some earlier studies such as Barnston and Smith
(1996) and Yu et al. (1997) have shown that it is possible
to estimate the CCA loadings using principal components of
predictors and predictands instead of using the full dataset.
This makes finding the CCA rather easy and also gives a way
of choosing the data based on the explained variance. This
procedure and not the extended empirical orthogonal function
(EOF) analysis method used in Singh and Kripalani (1986)
has been used in the present study. Details about the CCA
are available in Graham et al. (1987) and Wilks (1995). In the
present study, rainfall from the six GCMs is the predictor in
the CCA and each model enters in the analysis separately.

2.2.1. Pre-orthogonalization and standardization of data

Before performing the CCA, the data sets (predictor and
predictand) have been properly standardized and orthogonalized
separately (Barnston and Smith, 1996; Yu et al., 1997). This
step is essential in cases (such as here) where the length
of the historical record is smaller than the dimensions of
the predictor and predictand fields, and some regularization
method is necessary to invert the singular predictor covariance
matrix (Tippett et al., 2003). The orthogonalization compresses
the datasets using the concept of standard EOF analysis
as it reduces the large number of spatial dimension into a
smaller number which explains maximum variability within
that variable. Secondly, the EOF analyses also filter out the
incoherent variability (noise) as only a few EOF modes are
retained. The EOF analysis is thus performed on each of the
predictors (GCM outputs) and predictand. All preprocessing
is done for all the model data separately (similarly for the
predictand). As there is no universally agreed upon procedure
for determining how many EOF modes should be retained (Yu
et al., 1997), in this study the mode truncation has been selected
such that maximum variance explained by the chosen number
of modes is 85% for the predictor and 70% for predictand.
Henceforth, the leading 11 or 12 modes for the predictor and
12 modes for predictand are used for further analysis. These
selected EOFs (temporal) are then cross-correlated. Further, the
cross-covariance matrix for predictor predictand is the input for
the CCA.

Assuming that X,, ,, Y, , are the matrices for predictor and
predictand where m, o are the number of grid boxes for the
predictor and predictand, respectively, and ¢ is the number of
years, separate EOFs E,, ,, and E, , are evaluated for X and Y
as:

Xm,t = Emmet (1)
Yo,t = Eo,nTa,r (2)
In equations (1) and (2), E,,,, and E,, are the spatial modes,
whereas 7,,, and T,, are the corresponding time co-efficients

(Yu et al., 1997). Assume that i and j are the retained EOF
modes for the predictor and predictand variable. The canonical

Meteorol. Appl. 19: 179—188 (2012)
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variables Z and W are defined as the linear combination of post processing of each GCM product using the CCA technique

canonical vectors U and V:

Z=u'Ty,, and W =v'T}, 3)
The predicted value of the canonical predictand following Wilks
(1995) is defined as:

W=2A4,,Z )
Here, A, , is the diagonal matrix of correlation between the
canonical variables known as the matrix of canonical correlation
of order g x g, where ¢ = minimum (i, j). The predicted
value of the original predictand, that is the rainfall observed
at o spatial points, is obtained by using the property of EOFs
and the inverse transformations predicted rainfall value for time
t + [ is given below where / is the lead time:

Yourt = Eoj (V)" Ay qU'(Ep) X (5)
A brief derivation of the prediction equation used here is
available in Yu ef al. (1997). The predicted values of rainfall
over the interested domain are obtained using each GCM output
separately as explained above. After carrying out the statistical

composite of all corrected predictions is obtained.

3. Results and discussion

The detailed discussion of the results regarding the developed
CCA model is divided in the forthcoming sub-sections. Firstly,
the canonical patterns are discussed in detail with the canonical
component time series. As discussed earlier, the models have
large variability in the simulation of ISMR. Therefore, in the
present study the post-processing of the GCMs is done using
the CCA technique. The post-processed GCMs are further
combined to obtain a single predicted series for further analysis
and the evaluation. The skill assessment of the developed CCA
model is done at each grid point as well as at the regional level
in leave-one-out cross validation mode.

3.1. CCA patterns

It is well known that the predictand loadings will change
with the choice of predictor. The canonical loading patterns
for mode-1 of different predictors (models) are shown in
Figure 2. Plots 2(a) to 2(d) show the loading patterns for
the coupled models used in this study: plots 2(e) and 2(f)

CCA predictor loading pattern for mode 1
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Figure 2. CCA predictor loading pattern for mode 1. Plots (a) to (f) are the pattern for the different GCM outputs. This figure is available in
colour online at wileyonlinelibrary.com/journal/met
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Figure 3. CCA predictand loading pattern for mode 1. Plots (a) to (f) are the pattern of predictand loading corresponding the different GCM
outputs. This figure is available in colour online at wileyonlinelibrary.com/journal/met

display the two-tier models. The first canonical loading pattern
for predictand (observed rainfall) corresponding to different
predictors (models) is shown in Figure 3(a)—(f) in the same
order as that of Figure 2. It is seen that the loading patterns
for predictor and predictand are different for different GCMs.
The mode 1 for the coupled models explains about 20—-24%
of the total variability whereas the leading mode of predictand
(Figure 3) explains about 11-12% of the total variability. The
details about the percentage variance explained and the retained
modes are given in Table 2. In Figure 2(a), the canonical
loadings for the coupled model CFS show high negative values
over the Indian land points mainly in the central part of India.
However, there are some patches of positive values over the
hilly areas and some parts of northeast and southern India which
show similar kind of variation over the entire country while
the northeastern part behaves in a different phase (Kulkarni et
al., 1992). Out of phase loadings over the western and eastern
equatorial Indian Ocean resemble the rainfall pattern due to
the Indian Ocean dipole mode. These predictor loadings are
compared with the predictand loadings for the same model.
It can be clearly noticed in Figure 3(a) that over some parts
of the hilly regions and the west central region the predictor
loadings are comparable (i.e. they show similar kinds of rainfall

Copyright © 2012 Royal Meteorological Society

variations over the country) with the predictand loadings, but
over some areas such as the central part of India the patterns
are opposite. Moreover, over the Indian Ocean (mainly over the
western Indian Ocean and the north Bay of Bengal) the loadings
for predictor and predictand show patterns of opposite sign. The
other coupled GCM, the GML (shown in Figure 2(b)), shows
similar loading patterns but their magnitude is lower than that
of the CFS. These loadings are also similar to the pattern of
the predictand loadings shown in Figure 3(b). The loadings for
MOM3AC] and MOM3DC2 (Figure 3 parts (c) and (d)) show
large positive loadings over the Indian Ocean and over the hilly
areas, while the predictand loadings show negative values over
these areas. Moreover, predictand loadings for this mode are
positive over some parts of the central northeast but no such
signal is evident for the predictor loadings. MOM3DC2 is able
to capture the pattern of the observed loading in some parts
of the domain but overestimate their magnitude. The leading
modes of the two-tier models explain about 30-34% of the
total variability. Both of the atmospheric models show similar
kind of loadings over the southern part of India as well as over
the Indian Ocean.

Figure 4 shows the time series of the canonical component
for all the predictors with the predictand. These time series

Meteorol. Appl. 19: 179—188 (2012)
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Table 2. The variance explained by EOFs and the retained canonical modes for the analysis.

Serial no. Model Explained variance in % Explained variance in % Canonical correlation and
(mode 1 for predcitor) (mode 1 for predcitand) retained CCA modes
1 CFS 20 12 0.97, 12
2 GML 26 12 0.98, 12
3 MOM3ACI 31 11 0.97, 12
4 MOM3DC2 23 12 0.98, 12
5 ECHcasst 33 10 0.97, 12
6 ECHcfssst 32 10 0.97, 12
Amplitude time series for mode 1
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Figure 4. Amplitude time series for the canonical components for mode 1. Subplots (a) to (d) are the canonical pairs for the coupled models,
(e) and (f) are for the atmospheric models.

indicate the year-to-year variation in the amplitude of the
predictor loading patterns, which in turn are related to the
predictand loading pattern for the respective mode (Hwang
et al., 2001). The canonical correlation for the corresponding
mode 1 is very high (of the order of 0.97) for almost all of the
models. From the figure it is clear that the temporal patterns
of these two series are almost similar for the entire domain.
Similarly for the CFS model, the two series are exactly similar
for the domain.

The patterns in the observation and predictor are in opposite
phase for almost all the models for mode 2 (figure not
shown). Moreover, the amplitude time series for predictors is
also of opposite sign compared to the observed time series
for the majority of the years (figure not shown). As the
actual contribution of a particular mode is obtained from
multiplication of the pattern loadings and the time series, it
can be said that, for most of the models, canonical loading
pattern for predictor and predictand for the second mode are
very similar.

Copyright © 2012 Royal Meteorological Society

In short, it can be said that some of the models are able
to show a similar kind of loadings for both the predictor and
predictand. As an example, the GML model (Figure 4(b)) best
captures the predictand loadings over the entire domain whereas
the other coupled models have missed some parts of the domain.
Among the atmospheric models, ECHcasst (Figure 4(c)) has
missed some parts for mode-1 as well as for mode 2.

3.2. CCA cross-validated skill

In the present study, as the number of hindcast years is 27,
the dataset cannot be separated into two independent periods
in order to develop a model from one part (training data)
and then to verify it on the independent data set (verification
data). Therefore, a leave-one-out cross-validation scheme has
been used for the verification of the developed CCA model.
For this, each year has been successively withheld from the
training dataset and the remaining 26 years have been used for
development of the CCA model. This model is then used for

Meteorol. Appl. 19: 179-188 (2012)
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calculating the forecast for the verification year (the year that
was withheld). This procedure is repeated to generate a cross-
validated sample at all grid points. These predicted values are
then correlated with the observed value to obtain the skill of

the CCA model.

The leave-one-out correlation skill at each grid point is
shown in Figure 5, where panels (a) to (f) display the CCA
post-processed predictions from each participating model. The

0.6

04 r

0.2

skill in the prediction of area averaged JJAS rainfall is evaluated
for the country as a whole for each individual model. In
Figure 6(a) the skill for both raw and CCA post-processed
model are shown. CCA exhibits a noticeable improvement in

the skill of the prediction at all-India level. The post-processed

output of the ECHcasst exhibits a positive correlation which
was negative in the raw model. Also, out of the four coupled
GCMs used in the study, the CCA technique has improved skill

(a) All India Correlation (b) Regionwise Correlation
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Figure 6. Correlation skill of CCA (a) correlation over the homogeneous regions for CCA (black), for raw mean of models (white), (b) skill for
individual GCM averaged over the Indian land points (white), GCM output skill after the postprocessing (CCA in black bars).
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of two of them at all-India level. The possible reason for the
improvement in the skill of some of the GCMs may be the
similarity between the loading patterns of model predictions
and the observed rainfall.

In order to examine whether the multi-model ensemble
of these improved products has higher skill than the simple
MME of raw models, skill assessment has been made based
on the leave-one-out cross validation scheme. First, multi-
model ensemble of output from all the models (without
applying any correction) has been carried out using a simple
arithmetic average. In the following text, this is referred to
as MME (referred to as Simple MME in figures). A simple
arithmetic average of all the improved products (CCA model
output) has then been carried out and this is referred to
as Composite in the following text. Figure 5(g) shows the
forecast skill of the Composite of all the CCA post-processed
models and Figure 5(h) represents the skill of the MME.
A comparison shows that there are several parts of India
where the Composite exhibits better skill compared to the
MME. The CCA composite predictions possess some high
positive correlation values over the hilly areas and west
central part of the country. It can also be noticed that the
composite prediction has better skill in some parts of northwest
India, west Uttar Pradesh, Haryana, Chandigarh and Delhi
than the MME does. From Figure 6(a) it is seen that the
noticeable skill improvement of individual models through
CCA is further improved in Composite forecasts at the all-India
level. Similarly, the skill of the Composite is compared with
the MME at a regional level and is shown in Figure 6(b). A
noticeable improvement can be noticed in composite CCA over
the MME in the regions such as the west central and the hilly
areas. This indicates that after the post processing the model
performance has improved at the all-India level, and in addition
there are some regions where the Composite shows better skill
compared to the simple MME.

The observed rainfall anomaly time series of the CCA
corrected MME rainfall at the all-India level are shown in
Figure 7. These are cross-validated anomaly time series for the
country as a whole for the entire period from 1982 to 2008,
for the predicted rainfall (white bars) and the observed rainfall
(black bars). From the figure it can be clearly observed that
the CCA model is able to capture the observed features in
almost 70% of the total cases (in terms of positive/negative
departures). It is also seen that the CCA model is able to provide
indications of the drought and flood years (e.g. rainfall with
negative anomalies in 1987, 2002 and 2004) and with positive
anomalies (e.g. 1988, 1994, 1998 and 2005). The model is able

0 Ilr“ 'lnl”'llﬂﬂrlhh
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Figure 7. Anomaly time series for the observed and the Composite at
the all India level. The black bars are for the observed anomaly for the
year, while the white bars corresponds to the Composite.
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to predict the negative/positive departures as observed although
the magnitude of the predicted departures is very low.

The above findings show that the CCA has some potential
to improve the forecast skill over some of the homogeneous
regions as well as noticeable improvement is observed at the
all India level as far as the Indian monsoon rainfall prediction is
concerned. Further, the role of the CCA method in preparation
of rainfall anomaly magnitudes for individual years has been
examined. Forecasts for various regions of India, as well as for
the country as a whole, are prepared independently for 3 years
(2006, 2007 and 2008). The leave-one-out and independent
prediction are slightly different procedures. In the leave-one-
out procedure, the forecast for a year (say 2006) is made using
the data from all the other years (1982—2005 and 2007-2008)
leaving out the selected forecast period. On the contrary, the
independent prediction procedure uses only the data available
up to the selected forecast period, e.g. if the year selected for the
forecast is 2006 then only data up to and excluding 2006 will be
used. The forecast values from the composite are evaluated in
terms of percentage departure and compared with the observed
departure (Figure 8). In this figure, the black and white bars
represent the departures for observed and forecast, respectively.
For 2006 the sign of the predicted and observed percentage
departure of rainfall for all the regions are in the same direction.
Similar results are also noticed for the 2007 prediction for all
the regions except the northeast region where the forecast skill
is also not satisfactory. Over this region for 2007 the observed
rainfall departure is 20% while the predicted rainfall departure
is —2%. Similarly, in 2008, the forecast departures are of the
same sign except for the central northeast part, in which correct
sign of anomaly is obtained but the magnitude is smaller. In
conclusion, the CCA corrected predictions are able to capture
most of the observed features in the years 2006, 2007 and 2008.

4. Summary and conclusion

The main objective of the present study is to develop a forecast
model for the improvement of the GCM’s forecast of rainfall
during the summer monsoon season. The lead-1 predictions for
monsoon seasons (June to September) with May start (model
runs use observations up to May 1) have been used in this study.
It is found that these model outputs do not have significant skill
over all the homogeneous regions as well as for the country
as whole. To improve the forecast skill, a postprocessing
technique, the Canonical Correlation Analysis (CCA), has been
used. The CCA has been applied on each of the GCM outputs
for rainfall in order to project the observed rainfall pattern onto
the GCM predicted rainfall over the selected domain. Finally,
a composite of all the post processed GCM has been made.
The skill of such postprocessed products has been estimated
in a leave-one-out cross validation mode and it was found
that the atmospheric models having poor skill have shown
noticeable improvement after the CCA corrections. It is also
seen that the forecast skill of two coupled models has also
improved after the post processing. The possible reason for the
improvement in the skill of some of the GCMs may be the
similarity between the loading patterns of model predictions
and the observed rainfall. The skill of composite forecasts
made using the improved products is higher than the MME
over some parts of northwest India such as the plains of west
Uttar Pradesh, Haryana, Chandigarh and Delhi. Prediction skill
over the homogeneous regions such as the west central, hilly
region as well as the country as a whole improved noticeably

Meteorol. Appl. 19: 179-188 (2012)



Prediction of ISMR by canonical correlation analysis

(a) Percentage departure for the vear 2006

80 4
B Obs
60 - O Forecast
40 A
20
Q-J_lll_ll -_'I—l —
_zu-
z ) = = - = =
¥ 2 E 2 3§ § %
o
(c)
40 1
30 1
20
10 4

-4 o z ]
E E Z “

187

(b)

Percentage departure for the vear 2007
40 4

B Obs
301 O Forecast
20 4
10 4
Nl IN sl l i 5l =
K
=20 -

PEN
wcC
NW

NE

CNE

India

HILLY

Percentage departure for the year 2008

m Obs
O Forecast

HILLY
CNE
India

Figure 8. Forecast rainfall percentage departure (%) using CCA (in white bars) and the observed departure (in black bars) (a) for 2006, (b) for
2007, (c) for 2008.

with the Composite forecasts as compared to the MME. Prasad
and Singh (1996) have used the CCA method to estimate the
monsoon rainfall using some global observed variables, such as
the 500 hPa ridge axis position in April and the Darwin surface
pressure tendency, and had obtained significant positive skill
for the large contiguous meteorological subdivisions of India
with high skill score (>0.3), particularly for the meteorological
subdivisions lying in west-central India. The present study,
using GCM products, has been able to achieve better skill
over most of the homogeneous regions considered. Therefore,
it can be concluded that canonical correlation analysis has some
potential to improve the forecast skill over most parts of the
country, whereas the simple mean of raw model products does
not exhibit satisfactory skill.
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