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ABSTRACT: A nowcasting system of Mesoscale Convective Systems (MCSs) based on Meteosat Second Generation
(MSG) imagery (described in part I) is applied on 109 MCSs identified over the Mediterranean region for a 16 day warm
season period in order to statistically asses its performance. The dependence of the accuracy on forecast lead time as well as
on the forecast cycle was also investigated. This first statistical verification of the system performance showed encouraging
forecast accuracy although a gradual accuracy degradation is observed with forecast lead time. In general, forecasts can
be acceptable up to a 105 min duration. Adequately accurate forecasts of the MCS parameters are obtained for a 45 min
forecast range while a very good spatial agreement between forecasted and observed MCSs was found for a 60 min forecast
range. A tendency for a slight improvement in the forecast skill is observed proceeding to the next forecast cycles. A
presented case study demonstrated the value of the forecasting system in predicting both the movement and intensity of
an MCS when applied in an appropriate situation. According to the verification results, the forecast scheme presented has
proven to be a valuable tool in predicting the evolution of warm season isolated MCSs over the Mediterranean basin, even
at the lower boundaries of the mesoscale.
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1. Introduction

In general, a Mesoscale Convective System (MCS) nowcasting
algorithm based on satellite data often relies on linear extrapo-
lation or advection of satellite data to produce very short-range
forecasts of the MCS movement and evolution (Collier, 1989;
Brown et al., 1994). The linear extrapolation of recent trends,
however, cannot handle the complex MCS lifecycles. To meet
the need for forecasting the behaviour and the development
stages of convective systems, conceptual life cycle models were
established based on local climatology.

Several automatic forecasting systems based on geostation-
ary satellite data combined linear extrapolation methods with
MCS conceptual life cycle models to provide very short-range
forecasts (up to 2 h) of the movement and evolution of an MCS
(Zipser, 1982; Hand and Conway, 1995; Riosalido et al., 1998;
Puca et al., 2005; Vila et al., 2008). Such a system has proved
to be a valuable and unique tool for monitoring and forecast-
ing mesoscale convection developed over remote land and sea
areas such as those in the Mediterranean basin (Riosalido et al.,
1998; Morel and Senesi, 2002; Puca et al., 2005).

Statistical verification of forecasting systems is an essential
component of their development and use. It helps in evaluat-
ing the quality or accuracy of forecasts by providing feedback
to developers throughout the development process, as deficien-
cies in the systems are unveiled, and giving information to
forecasters and end users to consider in their decision-making
processes (Davis et al., 2006). Moreover, forecast verification
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can be used to compare forecasts made by different forecasting
systems (Mahoney et al., 2002). Most of the MCS forecast-
ing systems developed in previous studies have been evaluated
using continuous (mean error, root mean square error, correla-
tion co-efficient etc) and categorical verification statistics (i.e.
probability of detection and false alarm ratios) based on the
entries of a contingency table.

The objective of this study is to test and evaluate the
forecasting accuracy of the automated nowcasting system
of MCSs described in the first part of the two-part study
(Kolios and Feidas, 2012). The nowcasting system is an
algorithm that detects and tracks MCSs in Meteosat Second
Generation (MSG) images and then forecasts the movement
and the evolution of the physical properties of a selected MCS
through its entire lifecycle, at 15 min intervals, over the entire
Mediterranean basin and its surroundings. A complete forecast
of the MCS evolution (forecast cycle) is provided every 15 min,
in accordance to the acquisition of a new satellite image.
The first forecast cycle starts 15 min after the first detection
of the MCS. Herein, the nowcasting system is applied over
the Mediterranean region for a 16 day warm season period to
statistically assess its performance. In addition, a case study is
presented to demonstrate the value of the forecasting system in
predicting both the movement and intensity of an MCS.

2. Verification area and data

The verification analysis was performed over the fixed applica-
tion domain of the nowcasting system, covering the Mediter-
ranean basin and its surroundings (from 28°N to 50°N, and
5 °W to 35 °E) (Figure 1). The nowcasting system was applied
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for the period of 21 May to 5 June 2008 using data in the
thermal infrared (10.8 µm) and water vapour (6.2 µm) spec-
tral region obtained with the Spinning Enhanced Visible and
Infrared Imager (SEVIRI) instrument on board MSG satellites.
They have a 15 min temporal sampling rate and about 3 km
× 3 km spatial resolution at the sub-satellite point, reaching
5 × 6 km2 at the easternmost limit of the area of study. One
hundred and nine MCSs identified in the study area during the
16 day period were included in the verification.

3. The verification methodology

Two different methodologies were used to verify the forecast
accuracy of the system. The first verification process uses
continuous verification statistics based on the comparison
between the forecast and observed parameters of an MCS
during its entire lifetime. To this end, five parameters were
used to measure the closeness of the forecasts to the observed
values: the correlation co-efficient (r), the mean error (ME )
or bias, the root mean square error (RMSE ) after the bias is
removed, the mean absolute error (MAE ) and the efficiency
score (eff ) which is defined as follows:

eff = 1 −

n∑

i=1

(Fi − Oi)
2

n∑

i=1

(Fi − O)2

(1)

where Fi are the forecast values and Oi are the observed values.
Both MAE and ME express the systematic error whereas RMSE
ascertains the random error in a forecast. The eff represents the
model’s skill relative to the observed data ranging from −∞
(poor skill) to 1 (perfect skill) with 0 indicating that model
forecasts are as accurate as the mean of the observed data (Nash
and Sutcliffe, 1970; Legates and McCabe, 1999).

The second verification procedure uses a categorical yes/no
dichotomous statement to compute a contingency table, where
yes/no denotes a pixel belonging/not belonging to the MCS.
The contingency table is a matrix representing the frequencies
of forecast and observed MCS pixel occurrence and non-
occurrence. This table is built by overlapping the two ellipses
that represent the observed and the forecast MCS.

In this study, the following categorical verification statistics
have been computed from the entries in the contingency table.

Figure 1. The verification domain and orography.

• The probability of detection (POD), representing the fraction
of all MCS pixels that were correctly identified. It is a
measure of the ability of the forecast procedure to identify
correctly the occurrence of a MCS. The perfect score for
POD is 1.

• The false alarm ratio (FAR), defined as the fraction of
forecasted MCS pixels, which were found to be, in fact, non-
MCS pixels. A perfect forecast has a FAR score equal to 0.
POD and FAR must always be considered together as neither
of them alone is sufficient.

• The critical success index (CSI ), or threat score (TS ), which
measures the fraction of observed and/or forecasted MCS
pixels that were correctly forecasted (Donaldson et al., 1975).
CSI values vary from 0 to 1 (perfect forecast).

4. Results

4.1. Statistical verification

In order to evaluate the forecast accuracy of the developed
algorithm described in the first part of the study (Kolios and
Feidas, 2012), the observed and forecast parameters for all
the MCSs detected by the algorithm for the period of 21 May
to 5 June 2008 were compared. This verification process was
applied only in MCSs which did not display any merging or
splitting during their lifetime. A total number of 109 MCS
trajectories were identified in the area of interest during the
verification period. In order to examine how the accuracy varies
with forecast lead time, and as a function of the forecast cycle,
the verification analysis was performed for all the 109 MCSs
and for each forecast cycle and lead time separately using the
automated verification module of the forecasting algorithm.

Verification is carried out using two types of processes.
The first process was calculation of continuous verification
statistics for the main MCS parameters. The second process is
based on contingency tables and categorical statistics resulted
by the comparison of the ellipses representing observed and
forecast MCS.

4.1.1. Continuous statistics

The first verification analysis was carried out by considering the
main MCS parameters estimated by the forecasting algorithm
(see part I). The verification procedure uses the measures of
the closeness of the forecasts to the observed values presented
in the description of the verification algorithm (r, ME, RMSE,
MAE and eff ) and the scatter plots of the forecasts against
observations. Comparison statistics were obtained for eight
forecast cycles by taking into account the forecasted evolution
of all the MCSs detected by the algorithm during the period of
verification.

Figure 2 presents the verification scores of five main MCS
parameters (areal extent, mean temperature, the 10% lowest
temperature at the infrared channel, convective potential and
major semi-axis length of the ellipse) for eight forecast cycles.
The plot also gives the mean value and the associated standard
deviation of the observations. It is noted that the extension
of the standard deviation bars to negative values for areal
extent is an indication of a skewed distribution and has no
physical meaning. The standard deviation of the parameters
indicates a considerable variability, since for each forecast cycle
the evolution of all the MCSs detected during the period of
verification is considered.
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Figure 2. Verification scores for five main MCS parameters (a) areal extent (km2), (b) major semi-axis length of the ellipse (km), (c) mean
brightness temperature at the 10.8 µm infrared channel (K), (d) the 10% lowest temperature at the at the 10.8 µm infrared channel (K) and
(e) convective potential (%), for eight forecast cycles when considering the forecasted evolution of all the MCSs detected during the period
from 21 May to 5 June 2008. : The mean observed values; : the associated standard deviation of the observations; : MAE; : ME;

: RMSE.

Inspection of Figure 2 reveals a slight overestimation of
the MCS areal extent in the first two forecast cycles and an
underestimation after the fifth forecast cycle, as indicated by the
sign of ME. The exactly opposite pattern is observed in the other
morphological parameter, which is the major semi-axis of the
best-fitted ellipse. This means that ellipses forecasted in the first
two forecast cycles are slightly larger and more circular than the
observed MCSs and become smaller and more elongated after
the fifth forecast cycle. The pattern of the ME of the mean
temperature and the 10% lowest temperature is coincident with

that of the areal extent. A systematic underestimation of the
convective potential by the forecasting algorithm is present in
all the forecast cycles.

When considering the random errors (MAE and RMSE ),
a tendency for a slight improvement in the forecast skill is
observed proceeding from the first to the eighth forecast cycle.

The MAE ranges from 426 to 897 km2, (from 26.5 to 50.1%
of the mean observed value, respectively) for areal extent, from
12.3 to 24% for convective potential and from 12.1 to 18.2 km
(from 31 to 36% of the mean observed value, respectively)
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Figure 3. Scatter plots of the forecasted and observed parameters: areal extent (a–c), major semi-axis length of the ellipse (d–f), mean brightness
temperature at the 10.8 µm infrared channel (g–i), the 10% lowest temperature at the 10.8 µm infrared channel and (j–l), convective potential

(m–o), for three forecast cycles: first cycle (left column), fourth cycle (middle column) and eighth cycle (right column).

for the major semi-axis length. The MAE for the 10% lowest

temperatures is very low lying between 1.18 and 1.97° while

for the mean temperature the MAE is even lower spanning from

0.75 to 1.26°. A similar behaviour is evident for RMSE score.

Finally, a slight but clear decreasing tendency for both errors

(MAE and RMSE ) is evident proceeding to the next forecast

cycles. This improved forecast skill is attributed to the increased

observational input information being taken into account by the
model in the subsequent forecast cycles.

Scatter plots of the observed and forecast parameters for
three forecast cycles (first, fourth and eighth cycles) are
shown in Figure 3. Correlation co-efficient, efficiency score
and sample size are presented in Table 1. The best agreement
between the observed and forecast values is observed for the
areal extent (r from 0.8 to 0.9 and eff from 0.64 to 0.9)

 2012 Royal Meteorological Society Meteorol. Appl. 20: 296–307 (2013)
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Figure 4. Total RMSE between the forecasted and the observed centre of mass of the MCSs for eight forecast cycles when considering the
forecasted evolution of all the MCSs detected during the period from 21 May to 5 June 2008.

whereas the forecasts of the convective potential show the
poorest correspondence with observations (r from 0.57 to 0.74
and eff from 0.2 to 0.9), especially for the first forecast cycle.

As expected, a gradual improvement in the forecast skill is
observed proceeding from the first to the eighth forecast cycle.
This improvement is notable on the scatter plots of the areal
extent and convective potential, showing a dispersion which is
gradually reduced from the first to the eighth forecast cycle.
For the length of the major ellipse semi-axis, a substantial
amelioration is evident only in the eighth cycle. These patterns
are also reflected on the increase of r , which for the areal
extent starts from 0.8 at the first forecast cycle and ends up to
0.91 and 0.96 at the fourth and eighth cycle, respectively. The
respective increase for eff values are from 0.64 to 0.8 and 0.9.
The same behaviour is also observed for convective potential
(r from 0.57 to 0.61 and 0.74). On the contrary, the forecast
skill improvement for the brightness temperature parameters is
not pronounced.

The validation of the forecast MCS location was performed
in terms of the distance between the forecast and observed
centres of mass of the system. This distance determines as
well the displacement and velocity accuracy of the forecasted
MCS. The root mean squared error (RMSE ) is widely used to

Table 1. Basic statistics referring to the scatter plots of the observed
and forecasted areal extent (Figure 3): correlation co-efficient (r),

efficiency score (eff ) and total number of cases (N).

MCS Statistical Forecast cycle
parameters parameters

First Fourth Eighth

Areal extent (km2) r 0.8 0.91 0.96
eff 0.64 0.8 0.9
N 995 614 144

Major semi-axis length r 0.75 0.76 0.89
of the ellipse (km) eff 0.5 0.53 0.67

N 995 614 144

Mean brightness r 0.83 0.78 0.86
temperature in the eff 0.67 0.6 0.74
channel of 10.8 µm (K) N 995 614 144

10% lowest brightness r 0.85 0.86 0.85
temperature in the eff 0.7 0.71 0.72
channel of 10.8 µm (K) N 995 614 144

Convective potential (%) r 0.57 0.6 0.74
eff 0.12 0.81 0.9
N 995 614 144

determine the residuals in a geometric correction procedure and
it was chosen as a measure of closeness between the observed
and the forecast MCS location.

Figure 4 exhibits the RMSE between the forecasted and the
observed centres of mass of the MCSs for the eight forecast
cycles of the verification period. As expected the largest RMSE

Figure 5. Evolution of verification scores (MAE, ME, RMSE) with lead
time for areal extent (km2), for the (a) first and (b) third forecast cycle
when considering the forecasted evolution of all the MCSs detected
during the period from 21 May to 5 June 2008. The mean and the
associated standard deviation of the observations are also plotted in
the graph. The x-axes were adjusted to correspond to the same time
of the MCS life cycle. : Mean observed values; The associated
standard deviation of the observations; : MAE; : ME; : RMSE.
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Figure 6. Same as Figure 5 but for the mean brightness temperature (K) at the 10.8 µm channel. : Mean observed values; : the associated
standard deviation of the observations; : MAE; : ME; : RMSE.

(7.7 km) is produced in the first forecast cycle, probably due
to the short MCS life history available for assimilation in the
forecasting system. The RMSE falls to 5 km in the second
forecast cycle being gradually reduced to less than 5 km, which
is approximately the MSG pixel size in the area of study. This
significant improvement in the forecast accuracy of the MCS
location can be ascribed to the continuous increase of the MCS
life history observations ingested into the model.

Another validation test was performed to investigate how the
model accuracy varies with forecast lead time in each forecast
cycle. In general, lead time refers to the period between the
issue time of the forecast and the occurrence of the predicted
phenomenon (AMS, 2000). In the present case, the forecast
lead time begins at the time of first detection of the MCS being
expressed as number of 15 min time steps.

The evolution of the verification scores of two main MCS
parameters (areal extent and mean brightness temperature at
the 10.8 µm channel) with forecast lead time is presented in
Figures 5 and 6, for two indicative forecast cycles (first and
third cycles). The plot also gives the mean value and the
associated standard deviation of the observations. Note that the
x-axes were adjusted to correspond to the same time of the
MCS lifecycle.

As expected, both random errors (MAE and RMSE ) deterio-
rate with forecast lead time, following the same pattern in both
forecast cycles. The third forecast cycle, however, provides sig-
nificantly lower errors than those of the first cycle. For example,
for the early first forecast cycle of the areal extent (Figure 5(a)),

MAE lies below the 57.4% of the mean for the 90 min fore-
cast range (sixth lead time), whereas for the third forecast cycle
(Figure 5(b)) the error for the corresponding times of the MCS
lifecycle (up to the forth lead time) is reduced below 38%. The
ME points to an overestimation of the observed values for all
the lead times of the first forecast cycle. This overestimation
is significantly reduced in the third forecast cycle, when more
MCS life history observations are ingested into the model.

The MAE of the mean brightness temperature in the first
forecast cycle (Figure 6(a)) rises with forecast lead time from
0.4 to 1.5 K, whereas a constant overestimation is evident when
considering the ME. Both errors are reduced in the third forecast
cycle (Figure 6(b)). These values are considered very small
given that the absolute mean brightness temperatures range
from 220 to 227 K, spanning a range of 7 K.

In general, the first forecast cycle is capable of providing
accurate enough results, although overestimated, for a 45 min
forecast range (the first three lead times) with an MAE less than
38% of the mean value for the areal extent and absolute MAE
less than 1 K for mean temperature. Forecasts, however, can
be acceptable up to the 105 min forecast (seventh lead time),
with an MAE up to 60% of the mean value for the areal extent
and absolute MAE up to 1.5 K for mean temperature. Similar
results were found for other parameters and forecast cycles.

Figures 7 and 8 show the scatter diagrams of the observed
and forecasted areal extent and mean brightness temperature
for three lead times (second, fourth and sixth) and two
forecast cycles (first and third cycles). Correlation co-efficient,
efficiency score and sample size are shown in Tables 2 and 3
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Figure 7. Scatter plots of the observed and forecasted areal extent (km2) of MCSs during the validation period for the second lead time (a and
d), fourth lead time (b and e) and sixth lead time (c and f) and two forecast cycles: first forecast cycle (a–c) and third forecast cycle (d–f).

Scatter plots for corresponding times of the MCS life cycle are linked with an arrow.

Figure 8. Same as Figure 7 but for the mean brightness temperature (K) at the 10.8 µm channel.

respectively. As expected, a gradual degradation in the forecast
skill is observed with forecast lead time. This degradation
is evident in the dispersion of the points and expressed as
well in both the correlation co-efficient (from 0.97 to 0.7 for
areal extent and from 0.93 to 0.75 for mean temperature) and
efficiency score (from 0.94 to 0.37 for areal extent and from
0.85 to 0.55 for mean temperature). More precisely, for the
first forecast cycle, the correlation co-efficient declines from
0.97 to 0.7 for areal extent (Table 2 and Figure 7(a)) and from
0.93 to 0.75 for mean temperature (Table 3 and Figure 8(a)),

whereas for efficiency score the decrease is from 0.94 to
0.37 and from 0.85 to 0.55, respectively. A good agreement
between the observed and forecast values is observed up to the
fourth lead time (60 min). Despite the significant decrease in
the forecast skill in the sixth lead time (90 min forecast), levels
of statistical scores are still high. The forecast skill of the model
is improved, though not considerably, in the third forecast cycle
(see scatter plots for corresponding times of the MCS life cycle
linked with an arrow in Figures 7 and 8).
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Figure 9. Categorical statistics (POD, FAR and CSI) for the first eight
forecast cycles resulted by the comparison of the ellipses that represent
the observed and the forecasted MCS during the period from 21 May

to 5 June 2008. : POD; : FAR; : CSI.

Table 2. Basic statistics referring to the scatter plots of the observed
and forecasted areal extent (Figure 7): correlation co-efficient (r),

efficiency score (eff ) and total number of cases (N).

Forecast
cycle

Statistical
parameters

Second
lead time

Fourth
lead time

Sixth
lead time

First r 0.97 0.82 0.7
eff 0.94 0.62 0.37
N 109 109 109

Third r 0.84 0.75 0.6
eff 0.66 0.32 −2.8
N 109 109 76

Table 3. Basic statistics referring to the scatter plots of the observed
and forecast mean brightness temperature (Figure 8): correlation
co-efficient (r), efficiency score (eff ) and total number of cases (N).

Forecast
cycle

Statistical
parameters

Second
lead time

Fourth
lead time

Sixth
lead time

First r 0.93 0.86 0.75
eff 0.85 0.71 0.55
N 109 109 109

Third r 0.93 0.72 0.48
eff 0.85 0.52 0.2
N 109 109 76

4.1.2. Categorical statistics

The second verification test is a feature-based approach that
evaluates how well the forecast MCSs spatially match the
observed MCSs based on the overlap of the ellipses representing
the cloud system cells. The categorical statistical indices
of POD, FAR and CSI were computed from the resulted
contingency table to evaluate the forecast performance.

Figure 9 shows the categorical statistics for the first eight
forecast cycles when considering the forecasted evolution of all
the MCSs detected during the period of verification. POD score
shows a slight but insignificant increase during the first five
forecast cycles. At the same time, the FAR score is generally

Figure 10. Evolution of categorical statistics (POD, FAR and CSI)
with lead time for the (a) first and (b) third forecast cycle, resulted
by the comparison of the ellipses that represent the observed and the
forecasted MCS during the period from 21 May to 5 June 2008. The
x-axes were adjusted to correspond to the same time of the MCS life

cycle. : POD; : FAR; : CSI.

decreasing, while the CSI score remains almost constant. More
precisely, the POD scores vary from 52 to 55% and the FAR
score from 53 to 62% in the first five forecast cycles. These
values can be deemed as satisfactory when considering that the
spatial match of the ellipses depend on the additive uncertainty
arising from the errors in the estimation of the four parameters
used to calculate the forecasted ellipse (co-ordinates of the
centre, major axis length, areal extent and orientation). For the
next three forecast cycles, the previous trends reverse with the
POD and CSI scores decreasing and the FAR score increasing.
This deterioration in the spatial match between ellipses is
attributed to the double penalty effect which becomes important
in the last forecast cycles due to the gradual decrease of the
observed MCS size during the dissipation phase. The double
penalty effect arises when the observed small-scale feature is
misplaced by the forecast. The forecast model is then penalized
twice; once for not getting the feature at the correct location
(miss) and again for forecasting it where it is not (false alarm)
(Anthes, 1983; Mass et al., 2002).

Figure 10 presents the same verification scores (POD, FAD
and CSI ) for each lead time of the first and third forecast cycle.
Again, the x-axes were adjusted to correspond to the same
time of the MCS lifecycle. Examination of the time evolution
of these categorical statistics shows that all scores deteriorate
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Figure 11. (a) Sea-level pressure analysis map with fronts provided by the UK Meteorological Office, (b) 500 hPa geopotential height (lines
with 30 m interval) and temperature analysis (dashed lines with 1 °C interval) (b) 850 hPa geopotential height (solid line with 15 m interval)

and temperature analysis (dashed lines with 1 °C interval), for 30 May 2008 at 1200 UTC.

with forecast time. For example, for the first forecast cycle
POD decreases from 74.5% in the 15 min forecast (first lead
time) to 36% in the 120 min forecast (eighth lead time), and
FAR increases from 45 to 67.5%, respectively (Figure 10(a)).
Obviously, the third forecast cycle exhibits a better skill, with
significantly lower FAR and slightly better POD (Figure 10(a)).
As a result higher CSI values are obtained.

According to Figure 10(a), the first forecast cycle of the
model provides adequately accurate MCS forecasts for a 60 min
forecast range (the first four lead times) with a POD exceeding
66% and FAR being less than 59%.

4.2. A case study

Besides the statistical evaluation of the forecast algorithm for
a large number of MCSs, it is also helpful to gain a visual
impression of the forecasts and assess the forecast accuracy for
individual tracks. For the sake of brevity, a single case study is
presented in this section, aiming to show the method operating
and to give the reader a sense of the forecasts produced by the
system.

At 1200 UTC, 30 May 2008, a cold front (Figure 11(a))
associated with a trough oriented in a west–east direction in
the lower and middle troposphere (Figure 11(b) and (c)) was
crossing the Balkan Peninsula. The scattered clouds located
north of Greece (Figure 12) were the result of the low-level

Figure 12. Infrared MSG images at the 10.8 µm channel for
30 May 2008 at 1215 UTC. The inner square with the cross marks the
isolated MCS whose temporal evolution is forecasted by the algorithm.

forcing for ascent along the southern edge of the cold front. As
a result, several MCSs were formed over the mountainous area
of the western Balkans. An isolated convective cloud system
with a size of 300 km2 was first detected by the forecasting

 2012 Royal Meteorological Society Meteorol. Appl. 20: 296–307 (2013)
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(a)

(b)

Figure 13. Three snapshots of the MCS life cycle developed in Serbia on 30 May 2008. (a) Infrared MSG images with the MCS denoted by a
square. (b) The cloud cell identified by the detection algorithm inside the frame.

Figure 14. Observed (gray colour) and forecasted (black colour) ellipses
for two forecast cycles representing the lifecycle of the MCS identified
by the system in Serbia on 30 May 2008, at 1215 UTC. The solid
gray ellipses represent the observations corresponding to the forecasts
issued at 1245 UTC and 1330 UTC for the first and fourth forecast
cycle, respectively. The dotted gray ellipses depict the MCS history
prior the first lead time while the dashed gray ellipses represent the
MCS life cycle not predicted by the model. The centres of the ellipses

are also indicated in the figure.

system in Serbia at 1215 UTC (Figure 12). Three snapshots
of the MCS life cycle are presented in Figure 13. The cloud
system propagated to the north and dissipated at 1530 UTC,
195 min after the time of its first detection.

Figure 14 presents the plot of the MCS track in terms of
best fitted ellipses, showing the recent MCS history, the current
position, and the forecast for two forecast cycles (first and
fourth cycle). The forecast MCS lifespan is 30 min shorter
that the observed life cycle duration. There is, however, a
quite satisfactory spatial match between forecast and observed
ellipses of the studied MCS and a general agreement in the
direction of movement. The MCS started to move north-
northwestward but after 1 h it turned slightly right into a north-
northeast direction. This small change in the trajectory caused
by factors such as topography and upper level winds cannot
be predicted by a forecasting system using the MCS history
to forecast the MCS displacement. In fact, the first forecast

headed steadily the system north-northwestward driven by the
MCS history during the first two time steps of its life cycle.
Moreover, the model moved the MCS less far to the north
than the observations. The forecasted trajectory is amended
and corrected during the next forecast cycles as more MCS
life history observations are ingested into the model (see for
example the fourth forecast cycle).

This is also reflected to the evolution of the distance between
the forecasted and observed centre of the ellipses with lead
time shown in Figure 15. The increasing trend of the distance
observed after the fourth lead time of the first forecast cycle
(Figure 15(a)) and the corresponding first lead time of the fourth
forecast cycle (Figure 15(b)) is the result of a small change in
the direction of movement of the MCS. This error is ameliorated
in subsequent forecast cycles (Figure 15(c)). In general, the
error in the position of the forecasted MCS is overall small,
being of the order of one MSG pixel (less than 5 km), at least up
to the sixth lead time of the first forecast cycle (Figure 15(a)).

Figure 16 exhibits the comparison between the forecasted
and observed MCS life cycle expressed as the time evolution
of three characteristic parameters (areal extent, temperature of
the 10% coldest pixels in the 10.8 µm channel and convective
potential) for three forecast cycles (first, fourth, and eighth).
The forecasted lifetime for the first and fourth forecast cycles
ends at 1500 UTC, 30 min earlier than the time of the MCS
last detection. Given that the time of maximum areal extent
depends on the MCS lifetime, this 30 min difference between
the forecasted and observed lifetime resulted in a 15 min
time lag between the estimated and measured maximum areal
extent (Figure 16(a)). However, there is a good correspondence
between the time evolution of forecast and observed areal extent
in the development phase. The main discrepancy is discerned in
the dissipation phase, during which the MCS dissipated more
slowly than forecast. The correspondence between forecasts
and observations is improved only after the sixth forecast
cycle (not shown in Figure 16) when observations from the
dissipation phase became available to the forecasting system.
This is evident in the forecasts of the eighth forecast cycle
shown in Figure 16(a).

The time evolution pattern of the temperature of the 10%
coldest pixels (Figure 16(b)) is well predicted in the first fore-
cast cycle. The time lag in the minimum temperature occurrence
and the slower rate of the temperature rise during the dissipa-
tion phase are the two main differences between observation
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Figure 15. Evolution of the distance between the forecasted and
observed centre of mass of the examined MCS (30 May 2008) with
lead time, for three forecast cycles: (a) first, (b) fourth, and (c) eighth
cycles. The x-axes were adjusted to correspond to the same time of the

MCS life cycle.

and forecasts. The discrepancy in the fourth forecast cycle
is increased by the inclusion of the minimum observed at
1300 UTC in the least squared equations.

The system provides the best forecast when considering the
MCS convective potential, with a notable agreement between
forecasts and observations both in terms of life cycle phases and
absolute values (Figure 16(c)). This agreement is very encour-
aging since the convective potential is a crucial parameter in
forecasting the strength of the MCS.

Figure 16. Comparison between the forecasted and observed life
cycle of the examined MCS (30 May 2008) expressed as the time
evolution of three characteristic parameters: (a) areal extent (km2),
(b) temperature of the 10% coldest pixels in the 10.8 µm channel
(K), and (c) convective potential (%). Forecasts are presented for three
forecast cycles (first, fourth, and eighth). : observed values; : first

forecast cycle; : fourth forecast cycle; : eighth forecast cycle.

5. Conclusions

This study presents an evaluation of the forecasting accuracy
of the automated nowcasting system of MCSs described in the
first part of this two-part study (Kolios and Feidas, 2012). The
nowcasting system, which is able to forecast the movement
and the evolution of the physical properties of a MCS through
its entire lifecycle using MSG SEVIRI satellite data, is applied
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over the Mediterranean region for a 16 day warm season period
in order to statistically assess its performance.

The forecast accuracy of the developed forecasting algorithm
was first evaluated by comparing the observed and forecasted
parameters for the 109 MCSs detected by the algorithm in
the verification period (21 May to 5 June 2008). Categorical
verification statistics were then used to evaluate how well the
forecast MCSs spatially match the observed MCSs based on the
overlap of the ellipses representing the cloud system cells. Both
verification processes investigated how the accuracy varies with
forecast lead time, and as a function of the forecast cycle. In
addition, the capability to forecast the MCS properties has been
demonstrated for an indicative case study. The main results of
the verification are summarized as follows.

• The accuracy of the forecasts is encouraging although a
gradual degradation in the model forecast skill is observed
with forecast lead time.

• In general, the first forecast cycle is capable of providing
adequately accurate forecasts of the MCS parameters for
a 45 min forecast range (the first three lead times). When
the categorical statistical indices are taking into account, a
very good spatial agreement between forecasted and observed
MCSs is found for a 60 min forecast range. A forecast
skill decline is distinctive for longer lead times. Forecasts,
however, can be acceptable up to the 105 min forecast
(seventh lead time).

• A tendency for a slight improvement in the forecast skill
is observed proceeding to the next forecast cycles. This
improved forecast skill can be ascribed to the positive impact
brought by the continuous increase of the MCS life history
observations ingested into the model procedures.

• The presented case study demonstrated the value of the
forecasting system in predicting both the movement and
intensity of a MCS when applied in an appropriate situation.

The presented results show that the performance of the
developed forecasting algorithm is encouraging. The forecast
scheme presented has proven to be a valuable tool in predicting
the MCS time evolution for short forecast times and efficient
enough for early and accurate warning. It can be used with
radar-based nowcasting techniques in a synergetic way to anal-
yse and forecast convection at different spatial scales. A further
development of this work will be to the direction of enhancing
the forecasting scheme to handle more complex MCS lifecycles
(e.g. mergers and splits), using a better object representation of
the MCS and improving the forecasts accuracy by incorporat-
ing numerical weather prediction models’ fields such as wind
fields (Corfidi et al., 1996) at different atmospheric levels. Fur-
ther work will comprise different and more sophisticated criteria
for selecting cloud cells, such as the additional use of tempera-
ture thresholds in different channels and a less simplistic object
representation of the MCS. Finally, the adaptation of the algo-
rithm to the Rapid Scan High rate SEVIRI with the 5 min time
sampling could improve the accuracy of forecasts especially for
rapidly developing convective cells.
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