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ABSTRACT: This study presents the methodologies used to develop a nowcasting system of Mesoscale Convective
Systems (MCSs) over the Mediterranean region on the basis of Meteosat Second Generation (MSG) imagery. The
nowcasting system is an algorithm that detects and tracks MCSs in Meteosat images and then forecasts the movement and
the evolution of the physical properties of a selected MCS through its entire lifecycle, at 15 min intervals. The forecasting
procedure combines a linear extrapolation method of the MCS life cycle history and information extracted from conceptual
models. As a final output, the system generates a complete life cycle forecast of the temporal evolution of several physical
characteristics of the MCS, such as areal extent, displacement, mean brightness temperature and convective potential, and
visualizes the forecast by drawing ellipses that represent the MCS with 15 min time steps. Forecasts of a complete life
cycle are updated every 15 min in accordance to the acquisition of a new satellite image.
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1. Introduction

Mesoscale Convective Systems (MCSs) are of great impor-
tance due to their direct impact on human life and property.
They produce severe weather conditions such as heavy rain,
hail, strong winds, tornadoes, lightning, and flooding that can
significantly impact human activities (Fujita, 1986; Maddox
et al., 1986; Rutledge et al., 1993; Romero et al., 2000; Gaye
et al., 2005; Correoso et al., 2006). MCSs mainly occur over
tropical and midlatitude regions taking many different sizes
and shapes (Jirak et al., 2003; Houze, 2004). Their horizontal
dimensions extend a few hundred kilometres in one direction,
reaching many thousand kilometres in some cases (Orlanski,
1975; Fujita, 1981; Roca and Ramanathan, 1999) and their
lifecycles range approximately from a few hours to as long
as 1–2 days (Hodges and Thorncroft, 1997; Morel and Senesi,
2002a, 2002b). The forecast of these systems is difficult and
complicated not only due to their small scale internal dynamics
but also because they can develop under various favourable con-
ditions depending on topography, synoptic weather conditions,
the humidity of the atmosphere, the atmospheric instability, the
wind shear and on many other factors.

Mesoscale convective models have been widely used to
simulate the convective processes involved in the development
of MCSs (Rutledge, 1991). However, these models are not
effective in developing and organizing convection at the correct
time and location due to the small-scale nature of many of
the features that contribute to the convection initiation and
development (Kain and Fritsch, 1992; Stensrud and Fritsch,
1994a, 1994b; Toth et al., 1998; Buizza et al., 1999). Moreover,
although mesoscale numerical models offer a satisfactory
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spatial resolution nowadays, this resolution still remains coarser
than that of the geostationary satellites.

Ground-based weather radars are commonly used to provide
accurate information about the presence, the shape and the
structure of MCSs (Doswell et al., 1996; Jirak et al., 2003;
Rigo and Llasat, 2004). Radar data were the basis for various
nowcasting methods focusing on convective patterns (e.g. Rigo
et al., 2010; Chaudhuri and Middey, 2011). They provide,
however, incomplete spatial coverage over remote land and
oceanic areas.

The use of modern geostationary meteorological satellites
with their fine time (15 min) and space (3 km at the sub-
satellite point) sampling and large geographical coverage has
become an excellent alternative way to face the uncertainness
and the restrictions of many numerical models and radars in
MCS forecasting. For example, the spatio-temporal resolution
of the Meteosat Second Generation (MSG) data provides the
capability to track and forecast the rapid evolution of dynamic
phenomena such as MCSs. The tracking quality of rapidly
developing convective cells can be further improved with the
5 min temporal resolution offered by Meteosat Rapid Scanning
Service (RSS) as demonstrated by Aoshima et al. (2008).

In general a short-range (0–12 h) MCS forecasting proce-
dure based on satellite or radar data can be implemented in three
main stages (Riosalido, 1996): early warning of convection,
detection of convective cells and forecasting their movement
and evolution. For the third stage (forecasting of movement
and evolution) most techniques often rely on linear extrapola-
tion or advection of satellite and radar data to produce very
short-range forecasts (Collier, 1989; Brown et al., 1994). The
linear extrapolation of recent trends, however, cannot deal with
the different development stages, splitting and merging of the
convective systems.

Therefore, new approaches were adopted to give information
about the behaviour and the development stage of convective
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events during very short-range forecasting, like the incorpo-
ration of conceptual life cycle models. In this context, many
studies combined linear extrapolation techniques with object-
oriented conceptual life cycle models of convective clusters to
provide very short-range forecasts of the movement and evolu-
tion of an existing convective system (Zipser, 1982; Hand and
Conway, 1995; Riosalido et al., 1998). In a recent study, Puca
et al. (2005) developed a fully automated system called ‘NEFO-
DINA’ that uses a linear extrapolation method along with a
neural network algorithm to forecast the MCS evolution for
the next 30 min over the Italian peninsula and its surroundings
based on multispectral MSG imagery. More recently, Vila et al.
(2008) combined linear extrapolation methods with a MCS life
cycle model to develop the ‘ForTraCC’ algorithm for track-
ing and forecasting radiative and morphological properties of
MCSs up to 120 min over South America.

Studies for developing very short-range forecasts of MCS
properties over the Mediterranean basin remain rare. Readers
may refer to the studies of Riosalido et al. (1998), Puca
et al. (2005) and Morel and Senesi (2002a) who developed
automated systems using Meteosat data with application areas
the Spain, Italy and central Europe, respectively. A widely used
nowcasting system is the Rapidly Developing Product (RTD)
developed under the Satellite Application Facility in support
to Nowcasting and Very Short Range Forecasting (SAFNWC)
(http://www.nwcsaf.org) This system, however, is limited to the
identification, tracking and monitoring of intense convective
systems using MSG data without forecasting their movement
and evolution.

Mediterranean basin, however, is of high interest due to
the severe convective activity occurring particularly during the
warm season of the year (from April to October) (Funatsu et al.,
2009). These convective systems often develop over remote
land and sea areas, where the lack of conventional observation
networks makes the use of satellite imagery essential for mon-
itoring and forecasting mesoscale convection in the Mediter-
ranean basin.

The purpose of this study is to develop an automated
algorithm for tracking and very short-range forecasting of the
physical properties of MCSs through their entire life cycle
over the entire Mediterranean basin and its surroundings using
the infrared multispectral information of the MSG satellite.
The basic objectives are twofold: identification, monitoring and
tracking of MCSs as well as forecasting their movement and
evolution for their entire life cycle.

Part II of this article (Kolios and Feidas, 2012) presents an
assessment of the performance of this algorithm.

2. Application area and data

The forecasting system produces analyses and forecasts over
a fixed domain on the MSG projection system, covering
the Mediterranean basin and its surroundings (from 28°N to
50°N, and 5 °W to 35 °E) (Figure 1). The system uses data
obtained with the Spinning Enhanced Visible & InfraRed
Imager (SEVIRI) instrument on board MSG satellites with a
15 min temporal sampling rate and about 3 km × 3 km spatial
resolution at the sub-satellite point, reaching 5 × 6 km2 at the
easternmost limit of the area of study. The dataset used includes
images from two spectral channels of SEVIRI, with centres
at the thermal infrared (10.8 µm) and water vapour (6.2 µm)
spectral region.

Figure 1. The system domain and orography.

Figure 2. A simplified flow chart of the methodology of the system.

3. The forecasting system

The forecasting system consists of five main procedures, shown
schematically in Figure 2: (1) an MCS detection algorithm
based on size and brightness temperature thresholding of MSG
infrared data which also computes a set of MCS radiative and
structural properties, (2) an algorithm for tracking the identified
MCSs based on their area overlap on consecutive images, (3) a
forecast procedure relying on a linear extrapolation technique
combined with a MCS conceptual life cycle model derived from
the local climatology, (4) a verification module that provides
real-time statistical verification measures for each forecast cycle
of a particular MCS, and (5) a visualization routine to visualize
the forecasts. The developed algorithms have been implemented
in the VB.NET programming language.

3.1. The detection algorithm

The first procedure aims at identifying cloud tops in the
infrared imagery based on a size and temperature threshold.
This approach relies on the premise that convective cloud
tops are strongly associated to low brightness temperatures in
infrared satellite data. The algorithm detects mesoscale cloud
cells, defined as clusters of contiguous pixels with brightness
temperatures lower than 228 K and areal extent over 100 km2

in the 10.8 µm channel. The 228 K is a temperature threshold
proposed by Kolios and Feidas (2007, 2010) who used a set of
lightning data to identify MCSs over the Mediterranean region.
This temperature threshold was also used by Morel and Senesi
(2002a, 2002b) for establishing the climatology of MCS over
Europe and is very close to the 221 K threshold used by Garcia-
Herrera et al. (2005) over the Iberian Peninsula. It is quite a
low temperature that enables us to locate the areas of active
deep convection that often reach or overrun the highest levels
of the tropopause (Johnson et al., 1990; Roca and Ramanathan,
1999; Setvak et al., 2008).

The area threshold of 100 km2 set for the first detection of
an MCS was also found by Kolios and Feidas (2007, 2010)
to best identify the small convective systems prevailing over
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Figure 3. An example of MCS detection over Corsica (France) and Sardinia (Italy). (a) The MSG infrared image at the 10.8 µm on 13 July 2005,
at 1330 UTC. (b) The same image with the detected MCS coloured in black. (c) The best fitting ellipse that approximates the shape of the MCS.

Dotted lines indicate the major and minor axes of the ellipse and θ the orientation of the ellipse.

Table 1. Main MCS parameters calculated by the detection algorithm and estimated by the forecasting algorithm.

Parameter Type Definition

Areal extent Morphological The area (km2) covered by the MCS, which represents the MCS size.
Semi-axis length Morphological The length (km) of the major semi-axis of the best fitted ellipse.
Location of centre of mass Positional Co-ordinates of the centre of the ellipse that represents the forecasted

MCS.
Mean brightness temperature Radiative MCS mean brightness temperatures at the infrared (10.8 µm) and

water vapour (6.2 µm) channels
Brightness temperature of 10% coldest MCS
pixels

Radiative The brightness temperature at the infrared (10.8) channel
corresponding to the 10% coldest MCS pixels

Convective potential Radiative The percentage of MCS pixels with positive brightness temperature
difference between water vapour (6.2 µm) and infrared (10.8 µm)
channels (Kolios and Feidas, 2010)

the Mediterranean basin. Consistent and continuous tracking
of these small MCSs during the early phases of development
is ensured by the high temporal sampling of SEVIRI data
(15 min). Most of the detected cloud cells using the 100 km2

area threshold reach their maximum extend in the meso-β
scale (with typical dimensions ranging from 25 to 250 km).
An example of MCS detection over the central Mediterranean
is presented in Figure 3.

In order to represent a detected cloud cell as a simplified
object, its shape is approximated by a best-fit ellipse, as
proposed by Zittel (1976) and Dixon and Wiener (1993)
(Figure 3(c)). In this way, the shape of the cloud cells is
described by the length of the major and minor axis of the
ellipse and the orientation of the major axis relative to the
x-axis.

Finally, some basic structural and radiative parameters are
computed for each detected cloud cell. The parameters of
importance for the forecasting system are described in Table 1.
An extensive description of all the parameters computed by
the system is provided in Feidas (2003) and Kolios and Feidas
(2010).

3.2. The tracking algorithm

The tracking algorithm allows building trajectories of cloud
cells identified by the detection algorithm. The tracking method-
ology is based on the area overlap method presented by Feidas
(2003). This technique matches cloud cells in successive images
by comparing the detected cells in the current image with those
of the previous image and determining their overlap. Then, a

‘trajectory’ is defined for each MCS by linking its matching
cells in consecutive images. In our case, only trajectories with
a lifetime longer than 2 h are considered. The tracking proce-
dure also takes into account any likely mergers and splits of a
cell following the criteria set by Feidas (2003).

At this point, the motional properties of the MCS are
calculated (displacement vector and velocity) according to the
cloud cell displacement in the last two sequential images.
Finally, for each trajectory (MCS) extracted by the tracking
algorithm, a time series of the morphological, positional and
radiative properties of the cloud cells forming the trajectory is
calculated and stored for further use.

3.3. The forecasting algorithm

The forecasting procedure generates forecasts of the movement
and evolution of the physical properties of a MCS through
its entire lifecycle at 15 min intervals, by combining a linear
extrapolation of recent trends with a MCS conceptual life
cycle model derived from the local climatology (Kolios and
Feidas, 2010). This climatology was build by Kolios and
Feidas (2010) to study the climatic characteristics of warm
season isolated MCSs over the Mediterranean basin using MSG
infrared imagery.

Based on the results of this climatology, conceptual life cycle
models for each MCS parameter and statistical relationships
among these parameters were derived and then used to forecast
the movement and evolution of an existing MCS. The dataset
used to build the MCS climatology consists of 4718 isolated
MCSs, namely single convective cells not affected by splitting
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or merging with neighbour systems during their life cycle. This
is to ensure that the estimated conceptual life cycle model is
characteristic of a typical MCS with a complete life cycle in
the area of interest. This sample of isolated MCSs represents
the 22.4% of the 20 992 MCSs identified by the tracking algo-
rithm over the Mediterranean basin during the warm season of
a 3 year period. Each MCS in the sample satisfies the follow-
ing criteria: (1) the MCSs’ generation and dissipation must be
spontaneous (without splitting or merging), (2) the MCSs have
at least a 2-h lifetime, and (3) the MCSs lie entirely inside the
study area (Figure 1) during their lifetime (Kolios and Feidas,
2010).

The mean lifetime of the 4718 MCS used to construct the
conceptual life-cycle models was 180 min (median: 165 min)
with a small standard deviation of less than 30 min (Kolios
and Feidas, 2010). These results are in close agreement with
the statistics of the isolated thunderstorms (mean lifetime of
204 min and median of 192 min) examined by Rigo et al.
(2010) for the warm season in the NW Mediterranean using
radar and lightning data. Regarding to the duration of the
development and dissipitation phases Rigo et al. (2010) were
concluded that they last the same (mean duration of 48 min
at both of them), which is consistent with the conceptual life-
cycle model of the areal extent where the phase of a typical
MCS changes in the middle of its lifetime (Kolios and Feidas,
2012).

The developed forecasting methodology is implemented in
four steps. The first three steps are related to the forecast of
(1) the life cycle phase and duration, (2) the MCS displacement
and shape, and (3) the evolution of the physical properties of a
given MCS, whereas the last step, (4), deals with the real time
verification of the forecasts.

3.3.1. MCS life cycle duration

The estimation of the MCS life cycle duration is a fundamental
issue in forecasting its evolution. For this reason, it is important
to find a connection between the life cycle duration and a
parameter that can be easily calculated during the first time
of detection (initiation) or at least at the early stages of the
MCS development.

By investigating the statistical relationships between MCSs
lifecycle duration td and the mean evolution of basic physical
parameters during their lifetime derived by the database built
by Kolios and Feidas (2010), a general relationship between td
and the maximum areal extent Amax (Figure 4(a)) was found,
which can be approximated by the exponential equation:

td = a1(Amax − b1)
c1 (1)

where a1 = 1.98, b1 = 2198.37 and c1 = 0.21 are constants
derived by fitting the equation to the data of the MCS
database (see Figure 4(a)). In general, convective systems
with a small maximum areal extent have short life duration
and the MCS lifetime increases as its maximum areal extent
increases. For Amax larger than 6000 km2 the relationship
tends to be asymptotic. The very high correlation co-efficient
(R = 0.95) suggests that, within error limits, the maximum
areal extent could serve as an indicant of the MCS life cycle
duration, and that the average relationship can be simulated
by the exponential function of Equation (1). This relation has
also been pointed out in other studies dealing with MCS
characteristics (Morel and Senesi, 2002b; Garcia-Herrera et al.,
2005).

Figure 4. (a) Duration td (in number of 15 min time steps) of the
MCS lifecycle as a function of the maximum areal extent Amax.
(b) Maximum areal extent Amax as a function of the areal expansion
rate dA/dt . Values at the x-axis are grouped in class intervals. The fitted
curve, the associated standard deviations and number of cases are also
plotted. : Parameter; : standard deviation; : fitted curve; :

Number of MCSs.

The statistical relationships between the physical properties
of the MCSs also revealed a significant statistical correlation
(R = 0.98) between the areal expansion rate dA/dt at the initial
time (between the first two time steps) of the MCS lifecycle and
its maximum areal extent Amax (Figure 4(b)). On average, the
maximum areal extent increases exponentially with the areal
expansion rate according to the following equation:

Amax = a2 + b2

(
dA

dt

)c2

(2)

where a2 = 1369.93, b2 = 0.0011 and c2 = 1.814 are also
constants derived by fitting the relation to the data of the MCS
database (see Figure 4(b)). In general, the growth of convective
systems with a weak areal expansion rate during the initiation
phase leads to a small maximum areal extent of the MCS.

This connection is reasonable from a satellite point of
view, since the growth rate of these convective systems can
be represented by their areal expansion rate in consecutive
images. In this context, the growth rate during the first stages
of the MCS development can be associated not only to the
areal expansion rate of this system but also to its maximum
areal extent, given that the later is the outcome of the MCS
convective activity during its growing phase.

In this concept, the forecasting system can provide timely
forecasts of life cycle duration after the first detection of a MCS
by a two-step procedure. First, the areal expansion rate dA/dt

at the initiation time of the MCS lifecycle is calculated in order
to estimate the maximum areal extent Amax with Equation (2).
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The estimated Amax value is then used to estimate the life cycle
duration td of the MCS (in a number of 15 min time steps) with
Equation (1).

3.3.2. MCS displacement

The forecast of the MCS displacement refers to the estimation
of the co-ordinates of the centre of the ellipse that represents the
forecasted MCS. The methodology used is a modified version
of the technique devised by Vila et al. (2008) who based their
estimations on the displacement of the geometrical centre of
mass (the temperature-weighted centre using the brightness
temperature of each cloud pixel as a weight) in the last two
time steps. In this case, the co-ordinates of the centre of the
ellipse representing the forecasted MCS are derived using a
displacement vector that is an average of the MCS displacement
in the last time step and the mean displacement during the
lifetime of the MCS. This procedure is presented graphically in
Figure 5.

The displacement Vt in the last time step is a vector joining
the geometrical centres of mass of the MCS at times t − �t and
t . In order to make the forecast as consistent as possible to the
mean past motion of the system and smooth possible abrupt
or non-realistic MCS displacements introduced by splits and
mergings, the mean displacement vector Vm was used to adjust
the linearly extrapolated displacement vector Vt . To this end, a
displacement vector V during the entire life cycle of the MCS
is calculated considering the positions of the centre of mass of
the MCS at the present time t and the time of first detection
t − n�t , where n is the number of the time steps corresponding
to the life history of the system (n = 2 in the case of Figure 5).
The mean displacement vector Vm is computed as the one nth
of the displacement vector V during the entire life cycle:

Vm = 1

n
× V (3)

The forecasted MCS displacement vector Vt+�t for the next
time step t + �t is estimated by the equation:

Vt+�t = 1

2
× (Vt + Vm) (4)

Figure 5. Graphical representation of the method used to forecast the
displacement of the MCS, using the positions of the centre of mass
of the MCS in three consecutive steps (t − 2�t , t − �t and t). The
forecasted position of the MCS is indicated with the dashed ellipse.

The estimated displacement Vt+�t is used to forecast the
displacement Vt+2�t for the next time step t + 2�t by applying
the same methodology. This procedure is implemented to all the
next time steps until the end of the estimated MCS lifecycle
duration.

3.3.3. Evolution of MCS physical parameters

This section aims at developing a general model to simulate and
then forecast the evolution of the MCS physical parameters.
Forecasts can be made for several physical parameters. The
MCS parameters of importance to the forecasting technique are
(Table 1): two parameters of the best fitted ellipse (location of
the centre and axis length), the areal extent, the mean brightness
temperatures, the 10% coldest temperature and the convective
potential.

The convective potential is a measure of the convective
intensity of the MCS expressed as the percentage of MCS pixels
with positive brightness temperature difference between water
vapour (6.2 µm) and infrared (10.8 µm) channels (Kolios and
Feidas, 2010). Positive differences may be obtained when deep
convective clouds penetrate into the stratosphere (Fritz and Las-
zlo, 1993; Tjemkes et al., 1997). One possible explanation for
this phenomenon is the presence of stratospheric water vapour
due to overshooting clouds. Nevertheless, the ‘warm’ WV pixel
phenomenon could also have different causes such as a previ-
ous very active cell, calibration uncertainties and variability
of the viewing angle of geostationary instrumentation (Lat-
tanzio et al., 2005). Besides, Bedka et al. (2010) have shown
that the use of the ‘warm’ WV pixels is not always a safe
criterion to characterize deep convection and especially over-
shooting tops. The use of this difference in combination with
other brightness temperature differences (e.g. 3.8–10.8 µm,
10.8–12.1 µm) could lead to a substantial improvement
of the characterization of MCSs’ convective intensity, but this
is a topic for future work.

The aforementioned parameters are forecasted for the entire
life cycle duration estimated in the previous step, by combining
a simple linear extrapolation method with a conceptual life-
cycle model representing the mean evolution of the parameter.
Simple linear extrapolation techniques have been proved to be
very efficient in very short-range forecasting when information
about the development stage and the behaviour of a MCS is
provided by a conceptual life cycle model (Zipser, 1982; Hand
and Conway, 1995; Riosalido et al., 1998).

The MCS life-cycle model used in this procedure has been
obtained by previous 3 year satellite climatology of isolated
warm season MCSs built for the Mediterranean area (Kolios and
Feidas, 2010). Life-cycle model for each parameter is derived
as a mean of nearly 4700 isolated MCSs after being normalized
by the maximum value of the parameter and life cycle duration
(Figure 6). The conceptual life cycle model was introduced to
define the life cycle phase of a given MCS (growth or decay)
and simulate the evolution of its parameters during the decay
phase. Given the large variability of each parameter in the
dataset, it is expected that these estimates to diverge from reality
in the cases of individual MCSs that deviate from the normal.
This statistical approach, however, works in improving the
results of a simple linear extrapolation method and extending
the forecast period.

Figure 6(a) shows the life cycle model of cloud cell area.
Using this model two main stages or phases in the MCS life
cycle can be defined: a phase in which area is growing (growing
phase) and a stage in which area is decreasing (decaying phase).
The transition from the one phase to the other occurs at the

 2012 Royal Meteorological Society Meteorol. Appl. 20: 287–295 (2013)



292 S. Kolios and H. Feidas

(normalized) time when the area reaches its maximum value.
Both phases have the same duration, a result that is consistent
with the finding of Rigo et al. (2010).

The life cycle models for two radiative parameters (bright-
ness temperature at the 10.8 µm channel and convective poten-
tial) and one morphological parameter (major semi-axis of the
ellipse fitted to the MCS) are also shown in Figure 6. These
models exhibit a main characteristic commonly observed in
many studies, that is the time lag between the maximum (min-
imum) values of the radiative parameters and the peak in the
cloud cell area (Arnaud et al., 1992; Riosalido et al., 1998;
Feidas and Cartalis, 2001). The minimum brightness tempera-
tures occur first, followed by the peak of the cloud area. Given
that brightness temperatures reflect cloud-top height, this time
lag indicates that MCSs grow vertically first and horizontally
thereafter.

From the life cycle model of each parameter and the MCS
life cycle duration estimated in the previous step, the time to
of the transition between the growing and the decaying phase
can be estimated, which could be different for each parameter
(Figure 6).

The probable evolution of a given parameter X during the
growing phase of a MCS is determined by a linear regression
between the history data of the parameter Xt , Xt−�t , Xt−2�t ,
. . ., Xt−n�t and time t , where t is the present, t − �t , t − 2�t ,
. . . are time steps in the past, and n is the elapsed time steps

from the time of first detection. The linear regression fits a
straight line to the history data with its slope dX/dt being a
mean rate of change for the parameter X. The forecast model
uses the current value Xt and the estimated mean rate dX/dt

of change to forecast the value Xt+n�t at the nth time step in
the future according to equation:

Xt+n�t = Xt + dX

dt
n�t (5)

where �t is the temporal sample rate of MSG.
This linear extrapolation is implemented up to the end of the

growing phase. The duration of the growing phase is estimated
by multiplying the estimated lifetime (td) of the MCS with the
normalized transition time (to) from the growing to the decaying
phase derived by the life cycle model (Figure 6).

The forecast of parameter X during the decaying phase
is based on a new linear equation with a slope dX/dt that
is proportional to the slope dXn/dtn of the straight line AB
connecting the two points of the curve of the normalized life
cycle model corresponding to the start and the end of the
decaying phase (Figure 6(a)):

Xt+n�t = Xo + dX

dt
n�t (6)

Figure 6. MCS normalized life cycle model for four parameters: (a) areal extent, (b) mean brightness temperature at the 10.8 µm, (c) convective
potential, and (d) major semi-axis length of the ellipse fitted to the MCS. The dashed line indicates the transition time (to) from the growing to

the decaying phase for each parameter.
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where Xo is the value of the parameter X given by Equation (5)
at the end of the growing phase, td is the estimated life
cycle duration, n is the number of time steps in the future
counting from the transition time to between the growing and
the decaying phase, and dX/dt is the slope of the fitting line in
the normalized life cycle given by:

dX

dt
= dXn

dtn

Xo

td
(7)

The application of this linear equation stops when time n�t

reaches the estimated duration td of the MCS.
The algorithm is able to provide a complete life cycle fore-

cast with updates every 15 min, in accordance with the acqui-
sition of a new satellite image. The first forecast cycle starts at
one time step after the first detection of the MCS. The forecast
period covers the whole (estimated) life cycle duration td using
Equations (5) and (6) for the growing and decaying phases,
respectively.

When, however, the forecast cycle enters into the decaying
phase of the system, the MCS evolution is simulated using a
linear extrapolation method with a straight line that best fits
the history data of the parameter X during the decaying phase
along with the estimated value Xd at the end of the forecasted
lifetime td, according to the life cycle model. The value Xd

is obtained when the recorded maximum (minimum) value Xo

at the transition time tt between the growing and the decaying
phase is inserted into the normalized life cycle model. This
value is taken into account to adjust the slope of the regression
line to the life cycle model and avoid equations of straight lines
that could lead to the estimation of unrealistic parameter values
at the end of the forecasted lifetime td. This could be the case
during the first forecast cycles when a small number of the
parameter X history data is available, thus sometimes inducing
large random departures from the general model.

The previous methodology is also implemented to forecast
the shape parameters of the best fitted ellipse. As mentioned
before, the co-ordinates of the centre are forecast by extrapolat-
ing the displacement of the actual centre of the MCS. The other
ellipse parameters are obtained by keeping constant the orienta-
tion and estimating the major and minor axes of the ellipse. The
forecast of the major semi-axis a is based on the methodology
applied to forecast the other physical parameters of the MCS,
which is a linear extrapolation method combined with the con-
ceptual life cycle model of the major axis length (Figure 6(d)).
The minor semi-axis b results from the forecast major semi-axis
α and areal extent E using the following equation:

b = a

4πE
(8)

3.4. The verification algorithm

The developed system also includes an automatic verification
procedure that is able to provide real-time verification statisti-
cal measures for each forecast cycle of a particular MCS. Two
different methodologies were used to implement the verifica-
tion procedure. The first one relies on a systematic comparison
between the observed and the forecasted MCS parameters. The
second methodology uses statistical parameters computed by
the entries of a contingency table resulting from the compari-
son of the ellipses representing the observed and the forecasted
MCS. A detailed description of the verification methodology is
presented in Part II of this paper (Kolios and Feidas, 2012).

3.5. The visualization algorithm

The forecasting system operates in a fully automated inter-
face which comprises a visualization routine and a series of
menus through which the user is able to choose data and actions
(Figure 7). After the selection of a cloud system by the user,

Figure 7. A snapshot of the forecasting system’s interface. The forecasted life cycle of a MCS detected over the Southern France is presented
by drawing ellipses and graphs.
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the system visualizes the forecast by drawing the ellipse repre-
senting the MCS at the current time and the forecasted ellipses
for a complete life cycle. The series of the ellipses represent
the MCS evolution for a complete life cycle. At the same time,
graphs with the time evolution of two selected parameters along
the entire life cycle are provided by the visualization routine.
Moreover, a list of the MCS properties (forecast and measured)
during its life cycle is displayed as a text output in the screen
and stored in ‘ascii’ format for further analysis.

4. Conclusions

In this study, the methodologies for detecting, tracking and
very short-range forecasting of isolated MCSs over the Mediter-
ranean region using MSG imagery are presented. The forecast-
ing algorithm developed first to detect MCSs in satellite images
and then to forecast the movement and the evolution of the
physical properties of a MCS through its entire lifecycle at
15 min intervals, by combining a linear extrapolation method
with information extracted from conceptual life-cycle models
derived from the local climatology.

The forecasting system is fully automatic, being able to
provide operational real-time forecasts updated every 15 min
with the acquisition of a new satellite image. The system
also includes an analytical graphical interface to visualize the
forecasts and a verification routine to evaluate the forecasts’
accuracy in nearly real-time mode. Verification of the forecasts
is presented along with a case study in the second part of this
paper (Kolios and Feidas, 2012).

The developed system should be considered as a first contri-
bution to the nowcasting of the MCSs over the Mediterranean
basin using exclusively MSG satellite data, given that the devel-
oped methodology is trained with typical cases of isolated MCS.
Although the new developed scheme is applicable to every con-
vective cloud system, the greatest benefit is obtained by MCSs
with no splits – mergings during their life cycle. These typical
MCSs mainly represent thermally induced convective clouds
in the lower bounds of the mesoscale, which are difficult to
forecast by current NWP models.

Acknowledgements

This study is a part of a research project co-financed by
E.U.-European Social Fund (75%) and the Greek Ministry of
Development-GSRT (25%) with the title: ‘Automated system
of Mesoscale Convective Systems short range forecast with
the use of Meteosat imagery’. The authors would like also to
express their appreciation to the anonymous reviewers for their
constructive comments that helped to improve the completeness
and clarity of the paper.

References

Aoshima F, Behrendt A, Bauer HS, Wulfmeyer V. 2008. Statistics of
convection initiation by use of Meteosat rapid scan data during the
Convective and Orographically-induced Precipitation Study (COPS).
Meteorol. Z. 17: 921–930.

Arnaud Y, Desbois M, Maizi MJ. 1992. Automatic tracking and
characterization of African convective systems on Meteosat Pictures.
J. Appl. Meteorol. 31: 443–453.

Bedka K, Brunner J, Dworak R, Feltz W, Otkin J, Greenwald T.
2010. Objective satellite-based detection of overshooting tops using
infrared window channel brightness temperature gradients. J. Appl.
Meteorol. Climatol. 49: 181–201.

Brown R, Newcomb PD, Cheung-Lee J, Ryall G. 1994. Development
and evaluation of the forecast step of the FRONTIERS short-term
precipitation forecasting system. J. Hydrol. 158: 79–105.

Buizza R, Hollingsworth A, Lalaurette F, Ghelli A. 1999. Probabilistic
predictions of precipitation using the ECMWF ensemble prediction
system. Weather Forecast. 14: 168–189.

Chaudhuri S, Middey A. 2011. Nowcasting thunderstorms with
graph spectral distance and entropy estimation. Meteorol. Appl. 18:
238–249.

Collier CG. 1989. Applications of Weather Radar Systems. Ellis
Horwood: Chichester; 1–249.

Correoso FJ, Hernandez E, Garcia-Herrera R, Barriopedro D, Paredes
D. 2006. A 3-year of cloud-to-ground lightning flash characteristics
of Mesoscale convective systems over the Western Mediterranean
Sea. Atmos. Res. 79: 89–107.

Dixon M, Wiener DG. 1993. TITAN: thunderstorm identification,
tracking, analysis and nowcasting. A Radar based methodology.
J. Atmos. Oceanic Technol. 10: 785–797.

Doswell CA, Brooks HE, Maddox RA. 1996. Flash flood forecasting:
an ingredients-based methodology. Weather Forecast. 11: 560–581.

Feidas H. 2003. A software tool for monitoring features of convective
cloud systems with the use of Meteosat images. Environ. Model.
Softw. 18: 1–12.

Feidas H, Cartalis C. 2001. Monitoring mesoscale convective cloud
systems associated with heavy storms with the use of Meteosat
imagery. J. Appl. Meteorol. 40: 491–512.

Fritz S, Laszlo I. 1993. Detection of water vapor in the stratosphere
over very high clouds in the tropics. J. Geophys. Res. 98(D12):
22959–22967.

Fujita T. 1981. Tornadoes and downbursts in the context of generalized
planetary scales. J. Atmos. Sci. 38: 1511–1534.

Fujita T. 1986. Mesoscale classifications: their history and
their application to forecasting. In Mesoscale Meteorology and
Forecasting, Ray PS (ed.). American Meteorological Society:
Boston, MA, 18–35.

Funatsu B, Claud C, Chaboureau JP. 2009. Comparison between
the large-scale environments of moderate and intense precipitating
systems in the Mediterranean region. Mon. Weather Rev. 137:
3933–3959.

Garcia-Herrera R, Hernandez E, Paredes D, Barriopedro D, Correoso
JF, Prieto L. 2005. A MASCOTE-based characterization of MCSs
over Spain, 2000–2002. Atmos. Res. 73: 261–282.

Gaye A, Viltard A, De Felice P. 2005. Squall lines and rainfall over
Western Africa during 1986 and 1987. Meteorol. Atmos. Phys. 90:
215–224.

Hand HW, Conway BJ. 1995. An object-oriented approach to
nowcasting showers. Weather Forecast. 10: 327–341.

Hodges KI, Thorncroft CN. 1997. Distribution and statistics of African
mesoscale convective weather systems based on the ISCCP Meteosat
imagery. Mon. Weather Rev. 125: 2821–2837.

Houze RA. 2004. Mesoscale convective systems. Rev. Geophys. 42:
38–43.

Jirak I, Cotton W, McAnelly R. 2003. Satellite and radar survey of
mesoscale convective system development. Mon. Weather Rev. 131:
2428–2449.

Johnson RH, Gallus WA Jr, Vescio MD. 1990. Near tropopause vertical
motion within the trailing stratiform region of a mid-latitude squall
line. J. Atmos. Sci. 47: 2200–2210.

Kain JS, Fritsch JM. 1992. The role of the convective “trigger function”
in numerical forecasts of mesoscale convective systems. Meteorol.
Atmos. Phys. 49: 93–106.

Kolios S, Feidas H. 2007. Correlation of lightning activity with spectral
features of clouds in Meteosat-8 imagery over the Mediterranean
basin. Proceedings of the 8th Pan-Hellenic Geographic Conference,
4–7 October, Athens.

Kolios S, Feidas H. 2010. A warm season climatology of mesoscale
convective systems in the Mediterranean basin using satellite data.
Theor. Appl. Climatol. 102: 29–42.

Kolios S, Feidas H. 2012. An automated nowcasting system of
mesoscale convective systems for the Mediterranean basin using
Meteosat imagery. Part II: Verification statistics. Meteorol. Appl.
DOI: 10.1002/met.1281.

Lattanzio A, Watts PD, Govaerts Y. 2005. Activity Report on physical
interpretation of warm water vapor pixels. EUMETSAT Technical
Memorandum 14.

Maddox RA, Howard KW, Bartles DL, Rodgers DM. 1986.
Mesoscale convective complexes in middle the latitudes. In
Mesoscale Meteorology and Forecasting, Ray PS (ed.). American
Meteorological Society: Boston, MA, 390–413.

 2012 Royal Meteorological Society Meteorol. Appl. 20: 287–295 (2013)



Automated nowcasting system of MCSs for the Mediterranean basin 295

Morel C, Senesi S. 2002a. A climatology of mesoscale convective
systems over Europe using satellite infrared imagery. I:
methodology. Q. J. R. Meteorol. Soc. 128: 1953–1971.

Morel C, Senesi S. 2002b. A climatology of mesoscale convective
systems over Europe using satellite infrared imagery. II.
Characteristics of European mesoscale convective systems. Q. J. R.
Meteorol. Soc. 128: 1973–1995.

Orlanski I. 1975. A rational subdivision of scales for atmospheric
processes. Bull. Am. Meteorol. Soc. 56: 527–530.

Puca S, Biron D, De Leonimbus L, Melfi D, Rosci P, Zauli F.
2005. A neural network algorithm for the nowcasting of severe
convective systems. CIMSA 2005 – IEEE International Conference
on Computing Intelligence for Measurement System Applications ,
20–22 July, Giardini Naxos.

Rigo T, Llasat MC. 2004. A methodology for the classification
of convective structures using meteorological radar: application
to heavy rainfall events on the Mediterranean coast of Iberian
Peninsula. Nat. Hazards Earth Syst. Sci. 4: 59–68.

Rigo T, Pineda N, Bech J. 2010. Analysis of warm season
thunderstorms using an object-oriented tracking method based on
radar and total lightning data. Nat. Hazards Earth Syst. Sci. 10:
1881–1893.

Riosalido R. 1996. Current status and principal challenges in strong
convection nowcasting in COST-78 frame. Proceedings of COST-78
International Workshop on Improvement of Nowcasting Technology ,
25–28 March, Bologna, EUR 16996 EN; 37–47.

Riosalido R, Carretero O, Elizaga F, Martin F. 1998. An experimental
tool for mesoscale convective systems nowcasting. SAF Training
Workshop on Nowcasting and Very Short Range Forecasting , Madrid,
Spain, 9–11 December, 127–135.

Roca R, Ramanathan V. 1999. Scale dependence of monsoonal
convective systems over the Indian Ocean. J. Clim. 13: 1286–1298.

Romero R, Doswell CA, Ramis C. 2000. Mesoscale numerical study
of two cases of long-lived quasi-stationary convective systems over
eastern Spain. Mon. Weather Rev. 128: 3731–3751.

Rutledge SA. 1991. Middle latitude and tropical mesoscale convective
systems. Rev. Geophys. (Suppl.) 29: 88–97 (U.S. National Report
to International Union of Geodesy and Geophysics 1987–1990,
American Geophysical Union).

Rutledge SA, Williams RE, Petersen AW. 1993. Lightning and
electrical structure of mesoscale convective systems. Atmos. Res.
29: 27–53.

Setvak M, Lindsey TD, Novak P, Rabin RM, Wang KP, Kerkmann
J, Radova M, Stastka J. 2008. Cold-Ring shaped storm in
Central Europe. EUMETSAT Meteorological Satellite Conference,
8–12 September, Darmstadt.

Stensrud DJ, Fritsch JM. 1994a. Mesoscale convective systems in
weakly forced large-scale environments. Part II: generation of a
mesoscale initial condition. Mon. Weather Rev. 122: 2068–2083.

Stensrud DJ, Fritsch JM. 1994b. Mesoscale convective systems
in weakly forced large-scale environments. Part III: numerical
simulations and implications for operational forecasting. Mon.
Weather Rev. 122: 2084–2104.

Tjemkes S, van de Berg L, Schmetz J. 1997. Warm water vapour pixels
over high clouds as observed by METEOSAT. Beit. Phys. Atmos.
70(1): 15–21.

Toth Z, Zhu Y, Marchok T, Tracton MX, Kalnay E. 1998. Verification
of the NCEP global ensemble forecasts. Preprints: 12th Conference
on Numerical Weather Prediction, 11-16 January, Phoenix, AZ.
American Meteorological Society: Boston, MA. 286–289.

Vila AD, Machado AL, Laurent H, Velasco I. 2008. Forecast and
Tracking the Evolution of cloud clusters (FORTRACC) using
satellite infrared imagery: methodology and verification. Weather
Forecast. 23: 233–245.

Zipser EJ. 1982. Use of a conceptual model of the life cycle
of mesoscale convective systems to improve very-short range
forecast. In Nowcasting, Browning K (ed.). Academic Press: New
York, NY. 191–204.

Zittel WD. 1976. Computer applications and techniques for storm
tracking and warning. Preprints: 17th Conference on Radar
Meteorology , Seattle, WA; 514–521.

 2012 Royal Meteorological Society Meteorol. Appl. 20: 287–295 (2013)


