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Application of a radar-rainfall uncertainty model to the NWS multi-sensor
precipitation estimator products
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ABSTRACT: Given the increasing interest in using radar-based rainfall estimates in hydrologic studies, efforts are critically
needed to assess the applicability of recently-proposed methods that focus on quantitative modelling of radar-rainfall
uncertainties. The current study reports on the implementation and assessment of an empirically-based approach (known
as product-error driven (PED) method) for modelling uncertainties in radar-based rainfall products. In this study, the PED
method is applied to a suite of operational radar-based products produced by the U.S. National Weather Service (NWS)
Multi-Sensor Precipitation Estimator (MPE) algorithm. The tested MPE products range from a radar-only product, to other
products that include various degrees of mean-field and local bias adjustments and gauge-radar optimal merging procedures.
Data from an independent dense rain gauge cluster located in south-west Louisiana is used as a proxy for the unknown
surface rainfall rates. The focus is on assessing the transferability of the PED across different radar-rainfall products and
geographical regions, and the generality of the distributional and parametric assumptions of the PED method. The study
also provides insight on the critical issue of the sampling variability and data requirements that govern the implementation,
interpretation and possible future enhancements of the radar-error modelling methods.
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1. Introduction

Recent technological and scientific advances in the field of
rainfall estimation using weather radars present unprecedented
opportunities for providing accurate and timely rainfall informa-
tion. Weather radars provide many advantages over traditional
gauge observations especially in terms of their near real-time
extensive spatial coverage and relatively high temporal and
spatial resolutions, which can make them highly advantageous
for a variety of hydrological and meteorological applications.
However, radar-rainfall estimates are uncertain due to a vari-
ety of effects such as: hardware calibration, non-uniqueness in
the relationship between radar-measured reflectivity and rain-
fall rate, beam overshooting and partial beam filling, anomalous
propagation of the radar beam, and non-uniformity in verti-
cal profiles of reflectivity (see Villarini and Krajewski, 2010b
for a recent review). Implications of such uncertainties have
been well recognized in several hydrological applications that
use radar-rainfall estimates (e.g., Sharif et al., 2002; Gour-
ley and Vieux, 2005; Habib et al., 2008). While research on
uncertainties in radar-rainfall estimates has been going on for
many years, quantitative knowledge on the statistical charac-
teristics and the full structure of the estimation error is still at
an early stage. Ciach and Krajewski (1999) proposed a frame-
work known as the Error Variance Separation (EVS) method,
which focused on the estimation of one aspect (variance) of
the error distribution (Young et al., 2000; Habib et al., 2002;
Zhang et al., 2007; Mandapaka et al., 2009). While EVS is lim-
ited to the estimation of the error variance only, Habib et al.
(2004) developed a more general approach that filters out rain
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gauge errors and retrieves the bi-variate distribution of radar
estimates and the corresponding unknown true surface rainfall.
Building on such efforts, and motivated by the need for practical
methods for modelling radar-rainfall uncertainties, Ciach et al.
(2007) proposed a product-driven, empirically-based model
(referred to herein as PED) which focuses on modelling the
combined sources of uncertainties in radar-rainfall estimates.
Similar approaches for modelling the combined radar uncertain-
ties (or total estimation error) have been reported in Germann
et al. (2009).

The essence of the PED method is based on empirical
modelling of the relationship between radar-rainfall estimates
and the corresponding true surface rainfall (or its approxi-
mation from gauge observations) via explicit separation of
the radar error into two components: deterministic and ran-
dom. Both of these components are modelled as a function
of the radar-rainfall estimate. In its first application, Ciach
et al. (2007) demonstrated the implementation of the method
for the National Weather Service (NWS) Next Generation
Weather Radar (NEXRAD) Digital Precipitation Array (PDA)
hourly 4 × 4 km2 product in Oklahoma, the United States.
Villarini and Krajewski (2009) implemented the PED method
for a 2 × 2 km2 product from a C-band radar in Great
Britain and investigated its performance at different time scales
(5–180 min). Other applications of the PED method included
development of an ensemble generator of probable true sur-
face rainfall fields (Villarini et al., 2009a), analysis of the
impact of radar-rainfall uncertainties on rainfall-runoff mod-
elling (Habib et al., 2008) flash-flood forecasting (Villarini
et al., 2010), statistical validation of satellite-based precipita-
tion estimates (Villarini et al. (2009b), and scaling properties
of rainfall (Mandapaka et al., 2010). While the PED method-
ology provides a promising mechanism for characterizing and
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modelling radar-rainfall uncertainties, its assumptions, param-
eter estimation, and transferability to other geographic regions
and radar setups warrant further investigations. For example,
Villarini and Krajewski (2010a) investigated the sensitivity of
the PED method to the selection of the reflectivity-to-rainfall
(Z-R) relationship and to an algorithm to discriminate between
meteorological and non-meteorological returns. They also sug-
gested an additive formulation of the error in addition to its
originally proposed multiplicative form. The current study fol-
lows on these efforts focusing on several PED methodolog-
ical aspects such as: (1) application of the PED method to
a widely-used operational radar-based multi-sensor estimation
algorithm (MPE), (2) sensitivity of the method to different pro-
cessing procedures and products within the MPE algorithm,
(3) transferability of the PED formulation and functional rela-
tionships to other geographical regions different from those
in earlier applications, and (4) investigation of the sampling-
related effects on the estimation of the PED parameters and
relationships. Analysis of these aspects will provide further
insight into the generality and sampling requirements of the
PED methodology and its underlying assumptions, and more
importantly, will guide the development and further enhance-
ments of this and other future methods on uncertainty modelling
of radar-rainfall products.

2. Study site and data sources

The current study is performed using surface rainfall observa-
tions and radar-rainfall estimates over a 35 km2 experimental
watershed (Isaac-Verot, IV) located in the city of Lafayette in
south-west Louisiana (Figure 1). The study area is frequently
subject to frontal systems, air-mass thunderstorms, and trop-
ical cyclones with annual rainfall of about 140–155 cm and
monthly accumulations as high as 17 cm. The study area is
fully within the boundaries of the NWS Lower Mississippi
River Forecast Center (LMRFC) where the MPE products are
primarily derived from the Lake Charles (KLCH) radar. The
KLCH site is ∼120 km from the watershed, where the height
of the lowest radar beam is about 1.82 km above the ground
surface.

2.1. Multisensor precipitation estimator (MPE) products

The Multisensor Precipitation Estimator (MPE) algorithm is
implemented at each NWS River Forecast Center (RFC) and
produces a set of seven rainfall hourly products over the nomi-
nal 4 × 4 km2 HRAP grid that are based on different techniques
of gauge and radar adjustment and merging (Seo et al., 2010).
Except the Gauge-only product, all of the other MPE prod-
ucts start from the hourly gridded Digital precipitation Product
(DPA). The DPA is generated by the Precipitation Processing
System (PPS) where a power law Z–R relationship is applied to
the raw reflectivity data, which are then integrated over time to
produce hourly accumulation. In the following, a brief descrip-
tion of each of the MPE seven products is provided, focusing
on aspects that are most relevant to the current study.

2.1.1. Radar-only (RMOSAIC)

This product is based on mosaicking of the DPA radar product
without any use of gauge observations. The RMOSAIC product
is expected to be contaminated with large biases that vary by
radar site, season and rainfall regime and, therefore, is rarely
used by itself (except in areas with no rain gauges). RMOSAIC
serves as the first basis for generating the other MPE products.

2.1.2. Gauge-only (GAGEONLY)

This product is based on optimal interpolation of hourly
observations from gauges within the service area of the RFC
with some climatic adjustments and corrections (Seo et al.,
2010). This product is useful in regions with poor radar
coverage: however, as expected, its quality and accuracy
depends largely on the density of rain gauge networks in the
area of interest.

2.1.3. Mean field bias-adjusted radar (BMOSAIC)

BMOSAIC is based on applying a radar-specific, time-
dependent bias multiplier factor to each pixel in the DPA radar
product (Seo et al., 1999). The intent of this product is to adjust
for systematic, spatially-uniform, spatially correlated biases that
may result from the use of inappropriate Z-R relationships or
radar calibration problems.

Figure 1. Map of the dense rain gauge network within the Isaac-Verot experimental watershed in Lafayette, Louisiana, the U.S.A. The 4 × 4 km2

pixels of the HRAP grid are superimposed over the watershed. The large circles indicate the 200 km umbrellas of the two closest WSR-88D
radar stations to the network. , Rain Gauge Station. This figure is available in colour online at wileyonlinelibrary.com/journal/met
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2.1.4. Merged multi-sensor mosaic based on BMOSAIC
(MMOSAIC)

This product is based on local merging of the BMOSAIC
product with gauge observations. The merging is done at each
grid point in the BMOSAIC field by linear distance-based
weighting of the BMOSAIC estimate with observations from
gauges that are within a user-specified radius of influence. As
such, MMOSAIC uses gauge observations both in a mean-
field sense (via BMOSAIC) and individually and locally within
an optimal estimation procedure. The expected outcome is a
reduction in both the overall mean error and the random error.

2.1.5. Local bias-adjusted radar (LMOSAIC)

Unlike the BMOSAIC, the LMOSAIC product (Seo and
Breidenbach, 2002) focuses on spatially non-uniform biases
that exist within the RMOSAIC field. The bias adjustment in
LMOSAIC is estimated and applied to all HRAP grid points in
the RMOSAIC product using hourly rain gauge observations
within a fixed user-specified radius of influence measured
from each grid point. As such, the bias factors are time and
space-varying, and hence the algorithm is computationally
demanding.

2.1.6. Merged multi-sensor mosaic based on LMOSAIC
(MLMOSAIC)

This product is similar to MMOSAIC except that it is based on
merging of the local bias-adjusted product (LMOSAIC) with
the point rain gauge observations.

2.1.7. RFC-selected product for hydrologic operations
(XMRG)

This is not a new product in itself, but represents what the RFC
forecaster decided to choose in real-time amongst the different
MPE products described above to use for operational purposes.
Such selection, which can vary from one hour to the next, is
driven by the forecaster’s own experience and evaluation of the
current situation. The product also includes occasional manual
corrections by the RFC forecasters.

2.2. Dense rain gauge network

Independent observations from an experimental dense rain
gauge network (Figure 1) are used to perform the current
analysis. The network is owned and operated by the Civil
Engineering Department of the University of Louisiana at
Lafayette and is composed of 13 12-in tipping-bucket rain
gauge sites, with each site having two gauges located side-
by-side (dual-gauge setup). The dual-gauge setup and frequent
site maintenance visits and bi-weekly data downloads ensure
early detection of malfunctioning problems and continuous data
records. To match the resolution of the MPE products, the gauge
tips were accumulated to an hourly scale. The period selected
for the current analysis is 2 years (2005 and 2006) during which
the MPE and gauge observations were available. These 2 years
represent average annual rainfall conditions (about 1300 mm or
50 in) with more than 130 events recorded (an event is defined
herein as continuous raining period interrupted by no longer
than 6 h of no rain and with a rainfall depth of at least 10 mm).
Frequent occurrences of sustained intense rain in excess of
25 mm h−1 (∼1 in h−1) are observed in the selected study
period (see Habib et al., 2009 for a more detailed description
of the rain gauge dataset).

3. Approach and methods

3.1. Estimation of approximate true surface areal rainfall

Based on the network spatial arrangement within the study
area, two HRAP pixels of the MPE products are covered
by multiple gauges (one pixel is covered by six gauges and
another pixel is covered by four gauges; Figure 1). Within
these two pixels, the inter-gauge distances are in the order
of 1–2 km, which is smaller than the correlation distance of
hourly rainfall in this area (Habib et al., 2009). Therefore, by
averaging observations from multiple gauges within each of
the two pixels, a fairly reliable estimate of the unknown true
pixel-average surface reference rainfall (which we refer to as
Rs) that is not significantly contaminated by the point-to-area
errors typically associated with single-gauge observations can
be obtained. In the remainder of this study, the estimation error
of a certain MPE product is defined as the deviation between
MPE estimate and the corresponding Rs value. For consistency,
the MPE-Rs samples are based upon paired datasets excluding
hours when rainfall was not recorded by Rs or any of the MPE
products.

3.2. PED method for radar-rainfall uncertainty modelling

A complete description of the Product-Error-Driven (PED)
method is given in Ciach et al. (2007) and Villarini and
Krajewski (2010a): only a brief overview is provided herein.
The PED approach starts with estimating and removing the
product overall bias (B0):

B0 =

∑

i

Rs,i

∑

i

R∗
r,i

(1)

Rr,i = B0R
∗
r,i (2)

where B0 is the bias factor, Rs,i is the i th hourly surface
reference rainfall (obtained by averaging observations from
multiple gauges within each pixel), R∗

r,i and Rr,i are the
corresponding hourly radar-product rainfall values (before and
after correction for overall bias, respectively). The summation
is taken over all hours available during the entire 2 year sample.

After removing the overall bias, the relation between surface
rainfall Rs and the radar-product rainfall can be described
as a combination of a systematic function (h) and a random
component (ε) using two possible formulations, additive and
multiplicative:

Rs = h(Rr) + εa(Rr) (3)

Rs = h(Rr)εm(Rr) (4)

Both h and ε are functions of the radar-rainfall values. The
systematic function characterizes the conditional bias in the
radar-rainfall product and can be estimated as a conditional
expectation function:

h(Rr) = E[Rs|Rr = rr] (5)

where rr and rs represent specific values of the random variables
Rr and Rs.
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The systematic function (h) can now be removed to yield the
random component in either the multiplicative or the additive
error forms:

εm(Rr) = Rs

h(Rr)
(6)

εa(Rr) = Rs − h(Rr) (7)

After removing the conditional and unconditional biases in
Rr, it can be reasonably assumed that the conditional means of
εm(Rr), E[εm|Rr = rr], and εa(Rr), E[εa|Rr = rr ], are equal to
1 and 0, respectively.

The conditional variances of εm (Rr) and εa (Rr) can be
expressed as:

σ 2
ε,m(rr) = E[(

Rs

h(rr)
− 1)2|Rr = rr] (8)

σ 2
ε,a(rr) = E[(Rs − h(rr))

2|Rr = rr] (9)

Following Ciach (2003) and Ciach et al. (2007), a kernel
regression approach is used to obtain a non-parametric estimate
of the two conditional statistics, h(rr) and σε (rr) using a
moving-window averaging formula (see equations (6) and (9)
in Ciach et al. (2007) and equation (10) in Villarini and
Krajewski (2010a)). For a comparison between parametric and
non-parametric approaches, the interested reader is pointed to
Villarini et al. (2008).

To provide further characterization of the distribution of the
conditional random error, the PED method also computes the
conditional quantiles (qp) for various levels of probabilities P :

Pr[εm(Rr) ≤ qp|Rr = rr] = P (10)

Pr[εa(Rr) ≤ qp|Rr = rr] = P (11)

Following the same non-parametric estimation method,
weighted-point-counting procedure was used to estimate qp (see
equation 11 in Ciach et al. (2007)).

Besides marginal statistics, the PED method in-
cludes characterization of spatial and temporal auto-
dependencies of the random error using the Pearson’s product-
moment correlation coefficient. The spatial auto-correlation of
the random component is estimated by calculating the correla-
tion between the MPE errors at the two neighbouring multiple-
gauge HRAP pixels. The limited spatial coverage of the current
gauge network allows for estimating the auto-spatial correlation
at one spatial lag only (4 km). The temporal auto-correlations
can be computed at various separation time lags (1–6 h) using
the random error sample over a single pixel.

3.3. Bootstrap distributions

To assess the impact of sample size on the estimated parameters
of the PED method (especially at high rain rates where
the sample size is small), their sampling distributions were
computed using a bootstrap re-sampling technique. This was
achieved by random drawing with replacement from each
conditional sample and repeating the calculations of the specific
conditional statistic for each of these bootstrap pseudo-samples
that had the same size as the original conditional data sample.
This re-sampling procedure was repeated 500 times for each
conditional sample to deliver stable uncertainty bounds for
the derived conditional statistic. The bootstrap distributions are
summarized by presenting their 5 and 95% percentiles.

4. Results and discussions

4.1. Overall bias

The overall bias (B0) was calculated for each MPE product
and the results are summarized in Table 1. We also include
the corresponding results from Ciach et al. (2007), Villarini
and Krajewski studies (2009, 2010a). For space limitations,
papers are referred to as Ciach and V&K studies, respec-
tively). We calculated the bias over the entire sample (2 years)
combining data from the two individual multiple-gauge pix-
els. Based on the definition of B0, a value of B0 smaller
(larger) than 1 indicates overestimation (underestimation) by
the MPE product. The radar-only product (RMOSAIC) shows
a strong overestimation bias (B0 = 0.83). This agrees with
the results reported in the Ciach and V&K studies. How-
ever, their bias values were significantly lower (0.38–0.73,
depending on the selected Z–R relationship). The overall
overestimation bias in RMOSAIC was significantly alleviated
after removing the mean-field bias in the BMOSAIC prod-
uct (B0 = 0.99). The next product (MMOSAIC) which opti-
mally merges BMOSAIC with individual gauges does not
change the overall bias, which is consistent with the overall
intent of MMOSAIC that does not focus on bias improve-
ment. Application of a local bias removal approach (LMO-
SAIC) instead of the mean-field bias adjustment has introduced
an underestimation overall bias (B0 = 1.09). Merging LMO-
SAIC with individual gauge data (resulting in the MLMO-
SAIC product) eliminated most of the overall bias (B0 =
1.01).

4.2. Conditional bias

After removing the overall bias, the conditional bias (described
by the systematic distortion function, h, Equation (5)) was
estimated for each of the MPE products (Figure 2). We limited
the conditional analysis for Rr < 20 mm h−1 to maintain an
adequate sample size (∼100 Rr –Rs pairs). The bootstrap-
derived sampling distributions (summarized by the 5 and
95% bounds) of the h function are also presented (only
one example is shown for space limitations; other products
showed similar distributions). The uncertainty bound of the
systematic distortion function is quite narrow for small rain
rates (<5 mm h−1) but grows wider with the increase of Rr

to reach about ±2 mm h−1 when Rr = 20 mm h−1. Following
Ciach et al. (2007), a parametric power-law function was fitted
to the non-parametric empirical estimates of h(rr):

h(rr) = ahr
bh
r (12)

The resulting fitting coefficients of this function (ah and bh)
are summarized in Table 1. It is noted that the distortion func-
tion of RMOSAIC and MLMOSAIC have an S-shape, which
makes the power fitting model less satisfactory. Except the
GAGEONLY product, all MPE products have bh coefficients
that are close to 1.0, which indicates a fairly linear relation-
ship between h and Rr. The nonlinear features in the distortion
function (as reflected in the bh coefficient) are less obvious than
those in Ciach and V&K studies, which indicates a less severe
conditional bias in the MPE products.

The distortion function h shows some degree of sensitivity
to the product type with MLMOSAIC attaining the lowest con-
ditional overestimation levels especially for the intermediate
ranges of Rr (10–14 mm h−1). However, the observed dif-
ferences amongst the various MPE products (except for the
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Figure 2. (a) The deterministic distortion (h) as a function of the
radar-rainfall rate (Rr) for all MPE products (key: RMOSAIC (solid
thick grey line), GAGEONLY (solid thick black line), BMOSAIC (line
with triangle symbol), MMOSAIC (dashed line), LMOSAIC (line with
circle symbol), MLMOSAIC (dotted line), XMRG (solid thin black
line)). (b) The bootstrap 2.5 and 97.5% sampling confidence bounds
for the estimated deterministic distortion (shown only for MMOSAIC

as an example).

MLMOSAIC) do not seem to be quite significant as they all
fall within the 5 and 95% uncertainty bounds (Figure 2). It is
also noted that the gauge-only product (GAGEONLY) is char-
acterized by a strong statistically-significant conditional over-
estimation that continues to deteriorate with the increase of the
conditioning Rr value.

4.3. Standard deviation of the random error component

After estimating for the overall bias and the systematic dis-
tortion function, we can estimate the Rr-conditioned random
component of the MPE errors using the two error formulations:
multiplicative (εm(Rr)) and additive (εa(Rr)). Since the overall
and conditional biases were both removed, the mean of εm and
εa can be assumed equal to one and zero, respectively. Their
conditional standard deviations (σεm(Rr)) and (σεa(Rr)) for each
MPE product were then calculated and plotted as a function
of Rr (Figures 3 and 4). An example of the bootstrap sam-
pling distributions for one of the MPE products is also shown.
Similar to the distortion function, two parametric relationships
of the power-law type and the hyperbolic type were fitted to
the standard deviation of the multiplicative and additive error,
respectively:

σε,m(rr) = σ0ε,m + aε,mrbε,m
r (13)

σε,a(rr) = aε,ar
bε,a
r (14)

The results of the fitting coefficients for the two relationships
and for every MPE product are summarized in Table 1 along
with the corresponding results from Ciach and V&K studies.

As expected, both standard deviations show strong depen-
dence on the MPE rainfall rates. The standard deviation of
the multiplicative error (εm) decreases with the increase of
Rr while the additive error (εa) has a standard deviation that
grows with the increase of Rr. The σε,m decreases rapidly at
small rain rates and then tapers off with the increase of Rr.

Table 1. Values of the overall bias (B0) and the fitting parameters of the systematic distortion function (h) and the standard deviation of the
multiplicative and additive random error for the different products in the MPE algorithm.

Radar product Overall
bias (B0)

Systematic
distortion

function (h)

Standard
deviation of

random
additive error

Standard deviation
of random

multiplicative error

ah bh aε,a bε,a σ0ε,m aε,m bε,m

RMOSAIC 0.83 1.26 0.82 1.34 1.34 0.37 0.70 −0.54
GAGEONLY 1.02 1.42 0.67 1.74 1.74 0.78 0.52 −0.63

Current study (south-west
Louisiana)

BMOSAIC 0.99 1.22 0.85 1.22 1.22 0.43 0.59 −0.63

MMOSAIC 0.99 1.26 0.82 1.16 1.16 0.33 0.61 −0.48
MPE LMOSAIC 1.09 1.21 0.84 1.16 1.16 0.24 0.73 −0.44

MLMOSAIC 1.01 1.25 0.81 1.25 1.25 0.50 0.34 −0.69
XMRG 1.03 1.30 0.81 1.21 1.21 0.33 0.62 −0.54

Villarini and Krajewski (2009)
(south-west England)

C-band Wardon Hill
radar

1.26 1.14 0.73 N/A N/A 0.56 0.09 −1.2

Villarini and Krajewski (2010a)
(Central Oklahoma)

NEXRAD (default
Z-R)

0.68 1.21 0.87 1.83 1.83 0.00 1.20 −0.25

Ciach et al. (2007) (Central
Oklahoma)

DPA 0.72 1.23 0.87 N/A N/A 0.15 1.00 −0.31

The corresponding values from earlier studies are also shown.
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Figure 3. (a) Standard deviation of the random component (multiplica-
tive form; εm) for the different MPE products (key: RMOSAIC (solid
thick grey line), GAGEONLY (solid thick black line), BMOSAIC (line
with triangle symbol), MMOSAIC (dashed line), LMOSAIC (line with
circle symbol), MLMOSAIC (dotted line), XMRG (solid thin black
line)). (b) The bootstrap 2.5 and 97.5% sampling confidence bounds
for the estimated standard deviations (shown only for MMOSAIC as

an example).

An opposite behaviour is associated with σε,a which grows sys-
tematically with the increase of Rr with some signs of leveling
off at larger rain rates. The bootstrap sampling distributions
of the two estimated standard deviations have distinctly dif-
ferent behaviours. For small rain rates (Rr < 2–3 mm h−1),
the uncertainty bound of the estimated standard deviation is
fairly wide (narrow) for the multiplicative (additive) error. This
is possibly due to that the ratio-nature of the multiplicative
error makes it rather volatile to small values of Rr, which
is not the case for the additive definition of the error. For
medium to large Rr values, σε,m(Rr) maintains a fairly uni-
form width of its sampling distribution, while that of σε,a(Rr)

gets wider as Rr increases. The degree of product sensitivity of
the error standard deviation depends on which error formula-
tion is being used. The standard deviation of the random error
in its multiplicative form does not show any noticeable sensi-
tivity to the MPE product. A higher sensitivity is observed for
the additive form of the error especially for medium to large
rain rates. However, the significance of such sensitivity may
not be affirmed given the relatively wide uncertainty bounds
in its sampling distribution. It is also observed that moving
from a radar-only algorithm (RMOSAIC) to a multi-sensor
algorithm with bias-removal and gauge-merging techniques

Figure 4. Same as Figure 3 but for the case of the additive form of the
error.

(e.g., MMOSAIC) has resulted in a noticeable reduction
in the standard deviation of the multiplicative error espe-
cially for relatively large rain rate values (Rr > 10 mm h−1).
A similar reduction but with less magnitude is also observed
with the additive form of the error. While such reductions
may not appear highly significant, they are consistent with the
intention of applying optimal merging techniques in the MPE
algorithm to reduce the random errors in the rainfall estimates.

4.4. Probability distribution of the random error component

To provide further statistical description of the MPE estimation
error random component, the empirical quantiles of the random
error at different probability levels (p) conditioned on Rr using
Equations (10) and (11) (Figures 5 and 6) were calculated. We
also estimated the sampling distributions of the empirical quan-
tiles using the bootstrap technique and show some examples
in Figure (7) in terms of the 5 and 95% distribution bounds.
The quantiles of the additive error have narrow sampling dis-
tributions at low and intermediate Rr ranges (Rr < 10–15 mm
h−1) and becomes wider at large rain rates. On the other hand,
the sampling distribution of the multiplicative error quantiles is
quite wide for all Rr ranges, especially for the upper quantiles
(compare the bounds of p = 90% to those of p = 10%).

Following Ciach et al. (2007) and Villarini and Krajewski
(2010a), the possibility of using a Gaussian probability dis-
tribution to describe the conditional distribution of both σε,m

and σε,a was assessed. Therefore, the Gaussian quantiles for
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Figure 5. (a–g) Comparison of the empirical (solid line) and the Gaussian theoretical (dotted line) quantiles (10% and 90%) of the random error
in its multiplicative form. The Gaussian distribution has mean equal to zero and standard deviation equal to the conditional standard deviation
shown in Figure 4. (h) Bootstrap 2.5 and 97.5% sampling confidence bounds of the estimated quantiles (shown only for MMOSAIC as an

example).

different probability levels were calculated using a constant
mean of 1and 0 for σεm and σεa, respectively, and the empir-
ically estimated conditional standard deviations (σε,m(Rr)) and
(σε,a(Rr)). The empirical and Gaussian conditional quantiles are
compared versus each other for every MPE product (Figures 5
and 6). A good agreement between the empirical and the the-
oretical Gaussian quantiles is observed for the additive error
for all ranges of Rr . The quality of the agreement is consistent
across all MPE products. The results of the multiplicative error
form shows a clear deviation of the empirical quantiles from
the assumed theoretical Gaussian distribution at small rain rates
(Rr < 2–3 mm h−1) which indicates that the Gaussian distri-
bution is not suitable for describing the multiplicative error
distribution at such rain rates. It is noted that the empirical
lower quantiles (e.g., at p = 10%) are bounded by a value of
zero due to the definition of the multiplicative error (Rr >= 0).

However, the theoretical distribution does not have a lower
bound and takes negative values. The agreement is significantly
improved for medium and large rain rates independently of the
MPE product.

4.5. Spatial and temporal self-correlation
of the random error component

Besides the marginal statistical moments (standard deviation
and quantiles), the self-correlation characteristics of the random
error component are now examined. The spatial auto-correlation
of the random error was estimated by calculating the Pearson’s
product-moment correlation coefficient (ρ) between the MPE
errors at the two neighbouring multiple-gauge HRAP pixels.
This provides correlation at one single separation distance of
4 km. The results are summarized in Table 2 where the median
and the 5 and 95% of the bootstrap sampling distribution of the
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Figure 6. Same as Figure 5 but for the case of the additive error.

estimated spatial correlation coefficients are reported. Temporal
auto-correlations were estimated at different separation time
lags starting from 1 h and up to 6 h (Figure 7). The results are
reported for both formulations of the random error. In general,
the random error, either in its multiplicative or additive form,
is more correlated in space than in time. At a 4 km lag, the
spatial correlation coefficient can be as high as 0.8–0.9 but the
temporal correlation does not exceed a value of 0.36 at 1 h
lag. The results of the spatial correlations agree quantitatively
with those of Ciach and VK studies: however, these studies,
especially Ciach et al. (2007), report slightly higher temporal
auto-correlations. The additive error is highly correlated in
space (ρ = 0.8–0.9) and shows little sensitivity, if any, to
the type of the multi-sensor estimation product. However,
the radar-only product (RMOSAIC) has a clearly stronger
correlation than the multi-sensor products, which indicates that
some of the spatial dependency features in the error field
are reduced after applying bias-removal and gauge-merging
techniques. Compared to the additive formulation case, the

multiplicative error has weaker spatial auto-correlations (ρ ∼
0.56) and shows more sensitivity to the different MPE products
(e.g., MMOSAIC and XMRG compared to the other MPE
products). It is also interesting to note that application of
a gauge-radar optimal merging technique (e.g., going from
BMOSIAC to MMOSAIC) has resulted in a reduction in the
spatial correlation of the multiplicative error. However, this
behaviour is not observed in the case of the additive form of
the error. The stronger correlation associated with the additive
error compared to the multiplicative error is consistent with
the VK study. Considering the temporal auto-correlation, the
random error correlation seems to be significant only at 1-h
separation lag (0.25–0.36) and is much less than the spatial
correlation. This reflects weaker self-dependence between the
hourly sequences of the random error fields than that attained
within the same spatial field. Lower levels of temporal self-
correlation are associated with the multiplicative error than
the additive error. The degree of sensitivity of the temporal
auto-correlations to the type of the MPE product is similar in

 2011 Royal Meteorological Society Meteorol. Appl. 20: 276–286 (2013)



284 E. Habib and L. Qin

Figure 7. Temporal auto-correlations of the random error component
for the case of additive form (a) and the multiplicative form (b).

behaviour to that of the spatial auto-correlation in both error
forms where the additive error shows less sensitivity than the
multiplicative error (a similar sensitivity behaviour was reported
in the VK study). It is also interesting to note that, similar
to the spatial correlation, the error of the radar-only product
(RMOSAIC) is more self-correlated in time than the other
multi-sensor product.

5. Summary, conclusions and final remarks

In this study a product-error driven (PED) radar-rainfall uncer-
tainty modelling methodology was applied the different prod-
ucts of the NWS multi-sensor precipitation (MPE) algorithm.
The focus was on some aspects of the PED methodology includ-
ing: transferability across different radar-rainfall products and
geographical regions, and generality or specificity of the PED
distributional and parametric assumptions. Some insight on the
critical issue of the sampling variability and data requirements
that govern the implementation, interpretation and possible
future enhancements of the PED method has been provided.
It is noted that the sample available to the current study was
limited to two full years with more than 130 events. A longer
period with a larger sample size may be required to reach more
stable statistics and possibly to stratify the sample into different
rainfall seasons (e.g., hot vs cold) or regimes (e.g., stratiform
vs convective), for which the model parameters can be better
identified. The following is a summary of the main findings
along with some concluding remarks for future investigations.

1. All MPE products exhibit a consistent conditional overesti-
mation bias for rain rates beyond 4–5 mm h−1. The system-
atic distortion function shows some sensitivity to the product
type with the local-bias gauge-merged product attaining the
lowest conditional overestimation levels.

2. The conditional standard deviation of the random error com-
ponent (using either formulation, additive or multiplicative)
shows strong dependence on rainfall rate. The multiplicative
error standard deviation is insensitive to the selection of a
certain MPE product. Signs of sensitivity, that cannot be
confirmed statistically, are observed for the additive error.

3. The Gaussian probability distribution seems as a valid
candidate for modelling the random component of the MPE
error especially for the case of the additive error form. A
lesser agreement is obtained with the multiplicative error
especially for small rain rates.

4. The random error shows strong spatial auto-corre-
lations especially with the additive form of the error
(0.8–0.9). The multiplicative form of the error has lesser
correlations that are significantly different from zero (up to
0.56). Using a multi-sensor estimation procedure, instead of
a radar-only product, seems to reduce some of the spatial
coherence in the error fields in both types of error forms.
However, the correlation of the additive error does not show
any sensitivity to which multi-sensor procedure was used

Table 2. Values of the 4-km spatial auto-correlation coefficients of the multiplicative and additive random error for the different products in the
MPE algorithm.

Radar product Additive model Multiplicative model

RMOSAIC 0.91 (0.81–0.94) 0.56 (0.46–0.74)
GAGEONLY 0.68 (0.62–0.75) 0.52 (0.24–0.77)

Current study (south-west Louisiana) BMOSAIC 0.80 (0.74–0.86) 0.46 (0.37–0.63)
MMOSAIC 0.80 (0.73–0.86) 0.15 (0.14–0.40)

MPE LMOSAIC 0.81 (0.73–0.87) 0.47 (0.40–0.66)
MLMOSAIC 0.82 (0.72–0.89) 0.40 (0.26–0.57)
XMRG 0.81 (0.73–0.87) 0.12 (0.08–0.32)

Villarini and Krajewski (2009) (south-west England) C-band Wardon Hill radar N/A 0.57
Villarini and Krakweski (2010) (Central Oklahoma) NEXRAD (default Z-R) 0.67 0.65
Ciach et al. (2007) (Central Oklahoma) DPA N/A 0.70

The numbers in the parentheses represent the (5–95%) bounds estimated by the bootstrap re-sampling method. The corresponding values from earlier studies are
also shown.
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(e.g., using gauges for bias removal only or for further opti-
mal merging). The multiplicative form of the error shows
higher sensitivity to the various MPE products.

5. The temporal auto-correlations of the random error appear
less significant (<0.4) than the spatial correlations with the
additive error being more correlated than the multiplicative
error.

While the PED method proposed by Ciach et al. (2007)
provides a fairly comprehensive approach for modelling radar-
rainfall uncertainties, some of its main features may be too
general and need further refinements. For example, the most
basic element of this method is based on removal of the overall
bias. The lumped nature of the overall bias masks out some
important details about its composition in a certain product.
While the overall bias may be equivalent for any two given
MPE products, its sources due to lack of successful detection or
false detection can be quite different. A logical refinement of the
PED method is to explicitly handle the detection-dependent bias
components of the product and develop statistical modelling
of each bias component. Further investigations are needed to
analyse the complexity added by such refinements and assess
its applicability.

In this study, two formulations of the random error compo-
nent, additive and multiplicative, were evaluated. Both forms
seem to offer advantageous features over one another; for exam-
ple, the standard deviation of the multiplicative error appears to
be fairly insensitive to the selection of a specific MPE estima-
tion method and thus offers some degree of product-generality,
which is lacking in the case of the additive form of the error.
The additive error formulation provides a remarkably good
fit to the Gaussian theoretical probability distribution for the
entire range of the distribution. The quality of such fit is not as
satisfactory with the multiplicative form of the error at low
rain rates where the definition of the error makes it inher-
ently bounded by a lower value of zero. The validity of the
Gaussian assumption is particularly useful for the purposes of
development of statistical generators of probable rainfall fields
conditioned on available radar rainfall products (Villarini et al.,
2009a). At present, the use of one error form over the other
is not adopted, but further investigations into their estimation
robustness, sampling requirements, and utility under different
data and product scenarios are recommended.

The analysis reported in this study provides some insight on
the product and regional transferability of the PED uncertainty
modelling approach developed earlier by Ciach et al. (2007).
The current study implemented the uncertainty methodology in
a different climatic region (south-west Louisiana vs Oklahoma,
USA in Ciach et al. (2007) and Villarini and Krajewski (2010a),
and south-west England in Villarini and Krajewski (2009)) and
for a different radar estimation algorithm (MPE vs NWS-DPA
in Ciach et al. (2007) and user-specific Z-R relations in Villarini
and Krajewski (2009) and Villarini and Krajewski (2010a)).
While the reported results indicate the general applicability
of the methodology under these new regional and algorithm
conditions, some remarks are worth noting. First, as expected,
the overall bias is highly dependent on the specific product
under consideration. The radar-only product has an overall bias
that is quite different from the multi-sensor versions in the NWS
operational MPE algorithm. They are all different from the
overall biases reported in the earlier applications (e.g., products
based on using different Z-R relationships). The power-law and
hyperbolic parametric relationships proposed for describing the
systematic distortion function or the standard deviation of the

random error seem to be adequate and compatible enough to be
used at different regions and estimation algorithms. However,
while maintaining similar overall magnitudes, the values of the
parameters of such relationships seem to be rather specific and
require local estimation. The same applies to the spatial and
temporal self-correlation in the error fields. Commonality is
observed in the evident strong spatial correlations and fairly
weak, but non-negligible temporal correlations. The proposed
adoption of a Gaussian distribution as a possible fit for the
random error component seems to hold under the regional and
data situations of the current study.

An important aspect that the current study addressed is the
sampling variability associated with the estimation of the PED
different components. A bootstrap approach was implemented
to derive the sampling distributions of the empirically-derived
error characteristics. The estimation of the systematic distortion
function (i.e., the conditional bias) seems to be fairly stable for
most rain rates, except at extreme rain rates (>20–25 mm h−1)
where the sampling distribution becomes relatively wide. As
expected, the sampling impact on the standard deviation and the
upper quantiles of the random error is more alarming. However,
it is interesting to note that the additive error is significantly
affected by the sample size limitations at larger rain rates (Rr >

15–20 mm h−1) while the multiplicative error is stable at such
ranges but more volatile at small rain rates (Rr < 3 mm h−1).
Future studies should investigate the performance of the radar
uncertainty model in the extreme tails of the distribution,
both high and low extremes. Analytical approximations or
parameterization of the sampling requirements is important
for interpretation, generalization, and setting guidelines for
implementation and developments of future radar-error models.
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