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ABSTRACT: Snow and ice make road conditions and use difficult and represent a major challenge for the winter road
maintenance service. Optimizing winter maintenance service and safety thus requires accurate short-term forecasts of the
meteorological state of the roads. The most common approach to forecasting road conditions is an energy balance model
based on a one-dimensional diffusion equation. Physical models can predict the road surface temperature, which is the
most important parameter for determining the road surface condition (e.g. dry, wet, ice, snow). However, such models can
show a large degree of error at sites where physical processes are too complex to be simulated correctly. To solve this
problem, physical models are often combined with statistical approaches. This paper proposes a purely statistical method
for forecasting road surface temperature based on stepwise linear regression analysis with appropriate selection of the input
parameters and separate models for different time intervals. The method is tested on data from several Slovenian road
weather stations. Its accuracy is comparable to or better than that of physical models.
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1. Introduction

During the period from late autumn to early spring, many coun-
tries experience severe winter conditions such as snow, ice
and frost. Such conditions make the road conditions and use
difficult and present several challenges for the winter mainte-
nance service. Optimizing winter maintenance decisions (treat-
ment locations, timing, types and rates) will have an important
impact on the roadway efficiency and the possible risk of acci-
dents. An accurate prediction of road weather conditions is
important for providing safer roads (Fridstrøm et al., 1995;
Norrman et al., 2000), minimizing the environmental damage
from over-salting (Ramakrishna and Viraraghavan, 2005) and
for cutting the winter road maintenance costs. For example,
Chapman et al. (2001b) report that the total budget for win-
ter road maintenance in the United Kingdom is more than
140 million pounds every year, with salt corrosion causing a
further 100 million pounds of damage each year to vehicles
and structures.

Numerous models for predicting meteorological conditions
on the road have been introduced and accepted by winter
maintenance personnel for effective winter road maintenance
decisions. These prediction models are a part of advanced sys-
tems known as the road weather information systems (RWIS)
and maintenance decision support systems (MDSS). There are
many reports about savings from the use of such systems. The
State of Wisconsin, U.S., reports saving US$75 500 and reduc-
ing the salt usage by 2500 tons during a single winter storm
(Shao, 1998). Implementation of the MDSS in the State of Indi-
ana resulted in saving about US$11 million, 188 000 tons of salt
(36% saving) and 42 000 work hours (20% saving) in the winter
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of 2008–2009 compared to the previous season (McClellan
et al., 2009).

In contrast to the widely used physical models based on
a one-dimensional diffusion equation, this paper proposes a
purely statistical approach in the form of linear regression
models fitted on past data. To cope with non-linear interac-
tions between variables and with the unobserved properties of
locations, separate models are constructed for individual loca-
tions and hours, and then partially merged to increase their
robustness.

The paper is organized as follows. The next two sections
review the existing methods and the available data used in the
study. Description of the proposed method is followed by a
section in which the method is evaluated on testing data and
compared with a physical model.

2. Existing methods

Road surface temperature (RST) is influenced by numerous
meteorological, geographical and road parameters, which can
produce vast temperature variations across the road section
(Thornes et al., 2005; Chapman and Thornes, 2008). One
such example is shown in Figure 1, with temperatures vary-
ing from below 0 °C (dark) to above 20 °C (bright). The most
important factors are: air temperature, radiation fluxes, humid-
ity, precipitation, wind, topography, properties of the road
materials and traffic. Their influence on the road is stud-
ied in detail in literature (e.g. Thornes, 1991; Kawashima
et al., 2000; Chapman et al., 2001a; Weller and Thornes,
2001).

Classical weather forecasts are inadequate for road condition
forecasting since they are based on data from weather stations
that can be far from the road system and do not necessarily
reflect the weather conditions on the road.
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Figure 1. Thermal image showing a variation of the surface temperature on the road section near Ravbarkomanda in the southwestern part of
Slovenia. (Source: Articon d.o.o.). This figure is available in colour online at wileyonlinelibrary.com/journal/met

The most common approach to forecasting road conditions is
though a physical energy balance model. Several such models
with reasonably high accuracy have been developed in the
last decades (e.g. Sass, 1992; Shao and Lister, 1996; Sass
and Lister, 1997; Crevier and Delage, 2001; Korotenko, 2002;
Takahashi et al., 2006). These models take weather forecasts
and measurements of the road weather stations as inputs and
predict RST using the energy balance equation. The initial
temperature profile is interpolated using the measurements
from the road weather stations at the surface and at different
depths. The lower boundary condition is treated as a constant
temperature at some depth. The upper boundary condition
between the atmosphere and the road surface is expressed
by an energy balance equation. The road surface condition,
such as dry, wet, frost or ice, is then predicted from the
RST value and the amount of moisture or water on the road
surface.

A widely used physical model for forecasting RST and road
conditions is METRo (Crevier and Delage, 2001; Linden and
Drobot, 2010) which was first implemented in 1999 at the
Ottawa Regional Centre in Canada. METRo is composed of
three modules:

• the energy balance of the road surface model which describes
the energy fluxes at the road surface:

R = (1 − α)S + εI − εσT 4
s − H − LaE ± Lf P + A (1)

where R is net radiation flux, α albedo, S incoming solar flux,
ε emissivity, I incoming infrared flux, σ Stefan–Boltzmann
constant, Ts temperature of the road, H latent heat flux, La

vaporization or sublimation heat, E water vapour flux, Lf heat
of fusion of water, P precipitation rate, and A anthropogenic
flux,
• a heat-conduction module for the road material which can

predict the RST based on a one-dimensional diffusion
equation:

∂q

∂t
= −K

∂2q

∂x2 (2)

where q is heat flux in the road, t time, x depth and K heat
capacity of the road, and,

• a surface water/ice accumulation model.

Physical models still show a large degree of error for places
at which physical processes are too complex to be simulated
correctly. To solve this problem, they can be improved with
further parameterizations of the relevant phenomena (Shao

and Lister, 1995; Takahashi et al., 2006) or combined with
statistical approaches to improve the quality of input or output
variables (Shao, 1998; Pasero and Moniaci, 2006). Purely
statistical approaches have also been used. Berrocal et al.
(2010) propose two statistical methods for forecasting the
probability of ice formation. Sherif and Hassan (2004) study the
relationship between RST and weather variables with statistical
models that can be also used for forecasting RST.

3. Data

Slovenia lies in a meteorologically diverse European territory
between the western Alps, northern Adriatic and Pannonian
Plain. Its surface encompasses 20 273 km2, 63% of which is
covered by forests. Forty eight percent of the land lies at an
altitude higher than 500 m (Figure 2(a)). Average temperatures
in the coldest months do not drop below −3 °C, and at least
4 months have an average temperature above 10 °C. Average
annual minimum daily temperatures are below 2 °C in the high-
elevation parts, around 8 °C near the sea and around 5 °C in the
other parts.

Slovenia has more than 38 000 km of public and 13 000 km
of forest roads. Frequent daily and seasonal variations in
temperatures and precipitation cause rapid changes in road
conditions and require frequent and quick responses from
the winter maintenance service. There are nearly 90 road
weather stations (RWSs) on Slovenian roads, situated mostly
on motorways and regional roads. All of them are equipped
with embedded or remote road sensors and meteorological
sensors. The most common measurements on RWSs are: road
temperature on the surface and at different depths, thickness of
water film on the road, salt concentration, road condition, air
temperature and humidity, dew point, air pressure, amount and
type of precipitation, visibility, and speed and direction of the
wind.

The data used in this study were collected by three RWSs
that were selected as representatives of different kinds of
environments. RWS Jeprca is situated between the central
and northwestern part of Slovenia on a straight regional road.
Terrain around the station is very flat and the nearest buildings
and forest patches are 200 m away. RWS Mislinja (Figure 2(b))
is situated in northern Slovenia in a small valley on an
ascending and winding regional road. The station is surrounded
by trees and nearby objects. RWS Črmošnjice is situated at the
beginning of a small village in the southeastern part of Slovenia.
The nature of the moderate terrain is between those of the other
two stations. All three stations are regularly maintained and
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Figure 2. Map of Slovenia (source: Philippe Rekacewicz, Emmanuelle Bournay, UNEP/GRID-Arendal) with the locations of the RWSs used in
this study (a) and RWS Mislinja (b). This figure is available in colour online at wileyonlinelibrary.com/journal/met

Figure 3. Road surface (dashed line) and subsurface (solid line) temperature measurements on RWS Mislinja from 4 to 11 January 2011. This
figure is available in colour online at wileyonlinelibrary.com/journal/met

provide continuous measurements without any major losses.
For illustration, Figure 3 shows data for two temperature
measurements for eight consecutive days (4–11 January 2011)
on RWS Mislinja.

Another important data source is weather forecasts by the
INCA (Integrated Nowcasting through Comprehensive Analy-
sis) system, which has been developed primarily for provid-
ing improved numerical forecast products in the nowcasting
with very short time range (up to 12 h) and good spa-
tial resolution of 1 km (Haiden et al., 2011). INCA analy-
sis and nowcasting data include temperature, humidity, wind
and the amounts and types of precipitation. The model
proposed in this paper also uses predictions of radiation
fluxes, pressure and cloudiness data from ALADIN numeri-
cal weather prediction model with a coarser spatial resolution
of 9.5 km.

The available data of appropriate quality currently cov-
ers the period of the last two winters. For a realistic test-
ing of the method, the data collected in winter 2009/2010
(1 December 2009 to 1 April 2010) are used for fitting the
model, and the available data from the second winter (1 October
2010 to 1 February 2011) are used for testing.

The input parameters to the modelling procedure are hourly
measurements from the selected Slovenian RWSs and the

meteorological data from INCA/ALADIN weather forecasts for
the locations of the RWSs (Table 1). All input parameters are
scaled by subtracting the mean and dividing by two standard
deviations.

Table 1. Input parameters and abbreviations.

Abbreviation Meaning

RWS measurements (first letter M)
MA Air temperature
MR Road surface temperature
MD Road subsurface temperature (30 cm)
MH Air humidity
MF Thickness of water film

Weather forecasts for 6 h (first letter F)
FA3 3 h air temperature forecast
FA6 6 h air temperature forecast
FH Air humidity
FW Wind speed
FP Precipitation amount
FL Longwave radiation
FS Shortwave radiation
FC Cloudiness
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4. Method

The proposed purely statistical approach for forecasting RST
is based on stepwise linear regression analysis with appropriate
selection of the input parameters. The classical linear regression
model can be written in matrix notation as: y = Xβ + e, where
y is a n × 1 vector of response variable, X is an n × p matrix
of observable variables, β is a p × 1 vector of parameters and
e is an n × 1 random error vector (errors are assumed to have
independent normal distributions with a mean of 0 and standard
deviation σ ); p is the number of parameters and n is the number
of data instances. The least squares estimate of β that minimizes
the sum of squared errors,

∑n
i=1(yi − Xi β̂)2, is computed as

β̂ = (X′X)
−1X′y, where ′ denotes matrix transposition.

Stepwise regression is a form of regression modelling which
selects a subset of parameters, for instance by using the Akaike
information criterion (Akaike, 1974): AIC = 2v − 2 log(L),
where v represents the number of variables in the fitted model
and L is the likelihood of the model. Stepwise regression finds
and uses a subset of variables that minimizes AIC.

The model construction does not include any data on physical
properties of the locations. This decision is intentional since
it is difficult to measure or assess such properties and also to
include them properly in the model. This may represent a major
source of inaccuracy in physical models. As a consequence,
a single, general linear regression model encompassing all
stations and times of the day would assume that the effects
of the variables (the co-efficients β̂) are independent of time
and of a location’s properties. To cope with this, separate
linear models are first constructed for each station and each
hour. In this way, the unobserved properties of locations
are implicitly included through differences in co-efficients of
different models. According to the bias-variance decomposition
of error, these partial models have smaller bias but high
variance due to the small sample sizes used for fitting them.
To enhance them by decreasing the variance part of the error
without (significantly) increasing the bias, similar models for
different times of the day are merged as described below. In the
same fashion, it would be possible to merge models for similar
stations if data on more weather stations were available.

Let M0, M1, . . . ,M23 be a list of models for each hour of
the day and let D0, D1, . . . , D23 be sets of data instances used
for fitting these models. Let Ei be the root mean square (RMS)
error of Mi computed using cross-validation on the training
data set. To determine which pair of models to merge, a new set
of models M0,1,M1,2, . . . , M22,23,M23,0 is constructed from the
unions of consecutive data sets D0 ∪ D1, D1 ∪ D2 . . . , D22 ∪
D23,D23 ∪ D0. The error of each merged model, denoted by
Ei,i+1 is compared with the weighted average error of the two
separate models:

E′
i,i+1 = Ei · |Si | + Ei+1 · |Si+1|

|Si | + |Si+1| (3)

where |Si | is the number of elements of the training set Si for the
model Mi , and with summation by modulo 24, e.g. 23 + 1 = 0.

The pair of models whose merging increases the error the
least (or even decreases it), as measured by Ei,i+1 − E′

i,i+1, is
replaced by the merged model. The whole procedure is repeated
until there is only a single model left (see Figure 4 for an
illustration).

The difference Ei,i+1 − E′
i,i+1 for the selected pair is

expected to be negative in the first few steps (merging increases
the accuracy), while in the later steps the error will start increas-
ing. The overall error as the function of the number of models is

shown at the bottom of charts in Figure 4. After the procedure
is finished, the number of models that will actually be used
for making predictions is determined based on the expected
errors. A suitable robust criterion is to use the last local mini-
mum (that is, the local minimum with the smallest number of
models) at which the RMS error does not exceed the smallest
average RMS error by more than 0.5 °C. For instance, for RWS
Jeprca such a minimum occurs in four models, as shown at the
bottom of Figure 4(a).

The procedure is generally expected to yield two main
models, one for daytime and another for night time, possibly
with some intermediate models for transition periods. On the
other hand, solutions that end up with multiple models covering
short time intervals are unreliable and should be avoided.

5. Evaluation

The main goal set forth in this study is to predict the RST
for 6 h in advance. Models are constructed as described in
Section 4 on the training data from winter 2009–2010 and
tested on data from winter 2010–2011. The selection of
parameters used in the model for each location and hour is based
on the Akaike information criterion, as described in Section 4.

Figure 4 visualizes the models for each location. The left
part shows the absolute importance of individual parameters
(columns) for hourly models (rows); darker colours denote
larger co-efficients in the linear model, with white meaning
that the parameter is not used and black signifying co-efficients
of absolute value 5 or more (see Table 2 for the exact numerical
values of co-efficients in the final models). The dendrogram on
the right-hand side shows how the models were merged, and the
plot under it shows the corresponding RMS errors. The cut-off
point that gives the final models is represented by the vertical
dashed line. Horizontal dashed lines separate the corresponding
final models.

The absolute importance of parameters for a particular RWS
can be assessed by observing their values across the hourly
models. Parameters with mostly high values (e.g. above 2)
can be considered as more important and vice versa. Figure 4
shows some general similarities between the stations. The
merging procedure proposed, as expected, two large models
for each RWS, one for daytime when the shortwave radiation
is important and the overall average temperature (intercept)
is higher (columns FS and IN), and another for night time
when the shortwave radiation is unimportant and the intercept
is low. Between these two there are models that cover 1–3 h
and smoothen the transition.

Table 2 shows the numerical values of co-efficients in the
final, merged model. Some input parameters are important most
of the time, in particular, air temperature measurements and
forecasts (MA, FA3 and FA6), RST measurements (MR) and
road subsurface temperature (MD). The latter is more important
for RWSs Mislinja and Črmošnjice than for RWS Jeprca; the
main reasons may be differences in road construction and the
topography in the vicinity of the RWS. Particular characteristics
of locations (e.g. road materials, topography, anthropogenic
influences) are reflected in different co-efficient values for
each RWS and with different boundaries of time intervals. For
example, at the location of RWS Mislinja the late afternoon
solar flux is screened by some high trees on the western side.
As a result, the transition to the night time model begins 2 h
earlier than at the other two stations.

Table 3 shows RMS errors for the final models for each
location (columns marked as ‘S’). Four models are used for
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Figure 4. (a,b,c) Heat maps (Wilkinson and Friendly, 2009), merging schemes, and average RMS error graphs for the models on selected RWSs.
Heat squares represent the absolute importance of parameters; white colour is used for unused parameters and black for those with co-efficients
of 5 or more. Parameters abbreviations are listed in the Table 1; IN denotes the intercept. Solid vertical lines represent each merging step, vertical
dashed lines represent the final cut (at the right-most local minimum of the average RMS error), and horizontal dashed lines separate the final
models for each location. Hours are in UTC and represent the time of making the 6 h prediction (e.g. 09 denotes the prediction for temperature

at 1500 UTC made at 0900 UTC).
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Figure 4. (Continued ).

Table 2. Selected input parameters with co-efficient values for final models.

RWS Parameter MA MR MD MH MF FA3 FA6 FH FW FP FL FC FS IN

Model

Jeprca From 0300 to 0800 −2.1 2.6 0.7 0.7 0.1 2.8 1.5 −1.2 −0.6 −0.4 −1.2 1.4 2.1 5.9
From 0900 to 1000 1.2 3.1 0.8 0.4 – −3.4 2.2 −0.4 −0.4 −0.3 0.3 −0.3 1.4 4.8
From 1100 to 1200 0.9 2.1 0.7 0.4 – −3.1 5.0 – −0.2 −0.3 – – 0.3 2.6
From 1300 to 0200 – 2.4 – 0.2 – – 4.2 – – −0.1 – – – 0.4

Mislinja 0300 1.4 2.6 1.3 −0.6 – −3.0 6.0 0.7 – −0.6 0.6 1.1 2.4 3.5
From 0400 to 0900 −3.6 2.1 1.4 – – −2.3 5.7 0.4 – – −0.3 – 2.7 6.8
1000 1.4 1.0 0.9 – – – 3.1 – – – – – 0.5 4.0
From 1100 to 0200 – – 1.6 – – – 3.3 – – – – – – 0.6

Črmošnjice From 0300 to 0900 −2.9 1.2 1.6 0.3 0.2 3.0 3.2 0.2 −0.9 −0.5 0.6 0.5 2.4 6.0
From 1000 to 1200 1.8 1.4 1.2 – 0.2 −2.7 5.7 0.2 0.1 −0.4 – 0.2 0.9 2.6
From 1300 to 0200 – 1.1 1.1 – 0.2 −2.1 3.0 – – −0.2 – – 0.3 0.3

Parameter abbreviations are given in the Table 1. Empty cells correspond to unused parameters.

making predictions at RWS Jeprca. Only the model for hours
from 0300 to 0800 has a significant proportion of the predic-
tion error larger than 4 °C (15%) which may be considered too
high. As these predictions correspond to daytime when temper-
atures typically increase, this does not represent a substantial
road safety problem. The model predicting temperatures in the
more critical time frame covering the late afternoon and night
(from 1300 to 0200) has a high predictive accuracy. Similar
observations can be made for the other two stations: daytime
models make somewhat larger errors, while the evening and
night time predictions are quite accurate.

Predictions made for the transitional periods are also suffi-
ciently accurate, even for RWS Mislinja, in which they cover
only single-hour intervals, so much smaller data samples were
used for fitting them.

Deeper analysis of the daytime model errors at RWS Mis-
linja show that errors mostly occur when RST rises faster than
predicted, which is not as critical for the road safety as would
be the opposite type of error, underestimating the decrease of

temperature in the evening or at night). However, RST can be
still near the critical range around 0 °C. Large prediction errors
typically occur when shortwave radiation and cloudiness vari-
ability are high. This could be explained by inaccurate weather
forecasts, especially for the shortwave radiation, which is partic-
ularly important for model from 0400 to 0900. Unfortunately,
RWSs are not equipped with shortwave radiation sensors so
it was not possible to verify directly the correlation between
the prediction error and the difference between the forecast
and the actual shortwave radiation. However, a small posi-
tive correlation (R2 = 0.22) between the model’s errors and
air temperature forecast errors (Figure 5) offers a weak indi-
rect indication that the RST prediction error may be related to
weather forecast errors.

Such post hoc analyses are however speculative and more
data would be needed to support them.

The usefulness of the proposed merging procedure is tested
by comparing the resulting models by linear models for entire
days, that is, a single linear model constructed for each RWS.
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Table 3. Errors of 6 h RST predictions for statistical approach (S) and for METRo physical model (P ).

RWS Model time frame
(UTC hours of the
beginning of the

prediction)

RMS error
on test set

Percent of the
predictions on

test set with error
larger than 2 °C

Percent of the
predictions on

test set with error
larger than 4 °C

S P S P S P

Jeprca From 0300 to 0800 2.86 3.42 43 69 15 32
From 0900 to 1000 1.63 1.53 22 16 2 4
From 1100 to 1200 1.41 2.46 16 48 0 12
From 1300 to 0200 1.55 2.86 20 56 0 20
From 0000 to 2300 (average) 1.88 2.86 26 55 4 21

Mislinja 0300 1.99 3.00 30 64 5 23
From 0400 to 0900 3.21 3.09 48 56 21 26
1000 1.70 2.23 24 48 1 6
From 1100 to 0200 1.33 3.26 13 73 0 26
From 0000 to 2300 (average) 1.84 3.16 23 67 6 25

Črmošnjice From 0300 to 0900 2.65 3.29 42 66 15 31
From 1000 to 1200 1.49 1.46 17 17 1 3
From 1300 to 0200 1.30 2.37 12 41 0 10
From 0000 to 2300 (average) 1.72 2.52 21 45 5 15

Average errors for every RWS are weighted by the sizes of time intervals.

Figure 5. Small positive correlation between RST prediction errors
(axis x) and air temperature forecast errors (axis y) on RWS Mislinja
for hours between 0400 and 0900. Each point represents a prediction

for a specific hour and day.

The RMS errors of these models on test data, 3.37, 3.92 and
3.45 for RWS Jeprca, Mislinja and Črmošnjice, respectively, are
about two times higher than the average errors of the proposed
method.

Finally, the proposed approach was compared with a physical
model METRo tested on the data from the same winter
(2010–2011) and using the same forecasts (INCA/ALADIN
with 1 km/9.5 km horizontal resolution). The specific road
construction parameters that would require coring the road
were not available, so standard road construction profiles from
the road data bank were used. This may put METRo at a
disadvantage, yet it reflects the common practice in which
METRo is used with imperfect data since coring is not feasible
due to practical and cost issues. The authors are not aware of

any study about the effect of imprecise data on the accuracy of
the METRos predictions.

Despite this, the METRos performance on the three Slove-
nian locations is similar to that reported by Crevier and Delage
(2001) for Canada: about one half of daytime temperature pre-
dictions of METRo are within the ±2 K error range. Crevier
and Delage also report that night time RMS error is about 2 K;
results of METRo for Slovenian RWSs are somewhat worse
(2.46, 3.26 and 2.37 for RWSs Jeprca, Mislinja and Črmošnjice,
respectively).

METRo’s results, split into the same intervals as used for
the statistical model, are shown in Table 3, in columns marked
by ‘P’. The METRo physical model shows marginally better
accuracies in some of the shorter transitional intervals, while
other errors are generally higher. The only larger interval for
which the physical model slightly outperforms the statistical
one is the daytime model for RWS Mislinja, which has already
been scrutinized above.

The Wilcoxon signed rank test (Wilcoxon, 1945) on absolute
errors for both approaches gives very low p-values for all three
RWSs, so the statistical approach significantly outperforms the
METRo physical model.

6. Discussion and conclusions

This paper proposes a novel approach for construction of
models for predicting the RST based on purely statistical
modelling. A standard multivariate linear regression model
is used for its simplicity and robustness. To consider the
varying importance of individual factors over the day, multiple
models are constructed for different time intervals. The number
of intervals and their boundaries is governed by the data
themselves. The method merges the models to minimize the
number of models and the predictive error on the training set
at the same time. Comparison between the accuracy of a single
model for the entire day and the composite model showed the
advantage of the latter approach.

Physical models are set up using the data about each
location, which may be difficult, error-prone and can cause large
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predictive errors. The premise of this research is that this can
be avoided by using the past measurements and constructing a
separate set of models for each location. Experiments confirm
this hypothesis and show that the statistical model mostly
outperforms the physical one in the given experimental setup.

A restriction of the proposed approach is that it needs
at least one harsh winter to have sufficient data for proper
fitting of the model. On the other hand, the model can be
continuously improved as new data are gathered. The physical
model can be used with just a few hours of historical data for
the coupling phase but cannot be, in its basic form, improved
by measurements from RWSs.

It is encouraging that even with the rather small amount of
available data (a single winter worth of data was used for fitting
the model), the study already showed very promising results.
Due to the simplicity of their construction and application,
this makes statistical models a suitable alternative to physical
models of road surface temperature and conditions.

Recent research (Chapman and Thornes, 2011) considers
geomatics to help in creating a detailed geographical database
along the road system (considering latitude, longitude, alti-
tude, sky-view factor, topography, road construction, traffic,
land use). Appropriate weather forecasts are then used to
interpolate the RST and road surface condition across the
entire road network with high spatial and temporal resolu-
tions. The point-based approach to predicting RST on the
RWS location, as proposed here, could provide the neces-
sary reference points to compute route-based RST predictions
and thus achieve a complete coverage of the road system
needed for safe but cost-efficient winter road maintenance ser-
vice.
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