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ABSTRACT: A series of observation system simulation experiments (OSSEs) and a real case study are conducted to
investigate the application of the Doppler radar data assimilation technique for numerical model quantitative precipitation
forecasts (QPFs). A four-dimensional variational Doppler radar analysis system (VDRAS) is adopted for all experiments.
The first set of OSSEs demonstrates that when the background field contains the imperfect information predicted from
a mesoscale model, the incorrect convective-scale perturbations in the background can result in spurious scattered
precipitation. However, a smoothing procedure can be used to remove the fine structures from the primitive model output
in order to avoid this over-prediction. Results from the second set of OSSEs indicate that the lack of low-elevation data
owing to radar scan and/or beam blockage could significantly alter the retrieved low-level thermal and dynamical structures
when a different number of data assimilation cycles is applied. These impacts could lower the rainfall forecast capability
of the model. The third set of OSSEs shows that, when the rainwater is assimilated over a long assimilation window, the
non-linearity embedded in the microphysical process could lead the minimization algorithm in a wrong direction, causing a
further degradation of the rainfall prediction. However, using multiple short assimilation cycles produces better minimization
and forecast results than those obtained with a single long cycle. A real case experiment based on data collected during
Intensive Operation Period (IOP) #8 of the 2008 Southwest Monsoon Experiment (SoWMEX) is conducted to provide a
verification of the conclusions obtained from OSSEs under a realistic framework.
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1. Introduction

In the past few decades, close attention has been paid to using
the data assimilation technique to provide proper initial con-
ditions needed for weather prediction models, and to further
improve the model spin-up time and forecast accuracy. Doppler
radar can provide observation data with high temporal and spa-
tial resolution that is suitable for convective scale research.
A variety of radar data assimilation methods have been devel-
oped to improve the performance of numerical model prediction
for convective systems. Gal-Chen (1978) first tried to infer the
unobserved thermodynamic parameters (i.e. pressure and tem-
perature) from the radar-derived three-dimensional winds. Since
then, many studies have been carried out to use this concept to
optimize the initialization of numerical models based on prod-
ucts retrieved from radar observations (Lin et al., 1993; Crook,
1994; Crook and Tuttle, 1994; Weygandt et al., 2002; Zhao
et al., 2006).

The three-dimensional variational data assimilation (3DVar)
technique has been employed widely to assimilate Doppler
radar data in severe weather studies (e.g. Xiao et al., 2005; Hu
et al., 2006a, 2006b; Xiao and Sun, 2007; Chung et al., 2009;
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Gao and Stensrud, 2012). The four-dimensional variational data
assimilation (4DVar) adjoint technique is a more sophisticated
algorithm, which considers the model trajectory over the assim-
ilation window. Examples of 4DVar-based radar assimilation
systems include the variational Doppler radar analysis sys-
tem (VDRAS, Sun and Crook, 1997), Japan Meteorological
Agency’s 4DVar (Takuya et al., 2011), and Weather Research
and Forecasting (WRF) 4DVar (Sun and Wang, 2013; Wang
et al., 2013).

The use of the ensemble Kalman filter (EnKF) technique to
assimilate Doppler and/or dual-polarimetric radar observations
has also been investigated in numerous studies (Snyder and
Zhang, 2003; Tong and Xue, 2005; Xue et al., 2006; Jung
et al., 2008a, 2008b). The distinguishing feature of EnKF is its
capability to provide flow-dependent covariance using ensemble
forecast error statistics. Recently, active efforts have been made
to develop a hybrid technique combining EnKF and 3DVar for
the assimilation of radar data (Li et al., 2012; Pan et al., 2012).

The main purpose of this work is to discuss three important
topics regarding the application of Doppler radar data assimi-
lation technique to quantitative precipitation forecasts (QPFs).
They include the treatment of a background field containing
model prediction error, the lack of low-elevation radar obser-
vations owing to standard plan position indicator (PPI) scans
and/or beam-blockage and the impact from microphysical non-
linearity. The discussion of these three issues provides us a
guideline to design an optimal assimilation strategy when both
radar radial wind and reflectivity are available at multiple time
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(a)
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Figure 1. Horizontal cross section at the lowest level (250 m) showing the rainwater mixing ratio (shading) in g kg−1 and flow vectors from the
natural run: (a) at T = 9300 s and (b) 10 800 s. Vectors are plotted every 9 km. The positions of two pseudo-radars are marked by solid circles in (a).

levels. The radar data assimilation system adopted for all exper-
iments is the VDRAS developed by the National Center for
Atmospheric Research (NCAR). VDRAS uses the 4DVar tech-
nique to assimilate radial wind and reflectivity from single
or multiple Doppler radar(s) to retrieve the unobserved three-
dimensional winds, thermodynamic field and microphysics for
the convective scale systems. VDRAS has been implemented
for the assimilation of high-resolution data from operational
Doppler radar and surface networks to produce real-time low-
level analyses (Sun and Crook, 2001). VDRAS has also been

used to demonstrate its potential for the short-term forecast-
ing of severe storms in field projects (Sun, 2005; Sun and
Zhang, 2008), Sydney 2000 Forecast Demonstration Project
(Crook and Sun, 2002) and Beijing 2008 Forecast Demon-
stration Project (Sun et al., 2010). Tai et al. (2011) were the
first to apply VDRAS in Taiwan and its vicinity. They demon-
strated that the model’s QPF ability can be improved signifi-
cantly by merging the VDRAS analysis fields with the WRF
model.

This paper is organized as follows. In Section 2, the VDRAS
system is briefly introduced. Section 3 describes the natural
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Figure 2. Illustration of VDRAS assimilation and forecast cycles for the experiments BGR1, BGR1SM, BGR2 and BGR2SM. The down-pointing
arrows labelled V1-V6 at the top denote the assimilated volumes for both radar 1 and radar 2. The times at the top show the starting and finishing

time for each 4DVAR cycle with respect to the simulation time for the natural run.

run and simulated radar observation for the observation system
simulation experiments (OSSEs). The verification indices are
defined in Section 4. In Section 5, the main topics are
examined. A brief introduction of a real case study from
Intensive Operation Period (IOP) #8 of the 2008 Southwest
Monsoon Experiment (SoWMEX), the experimental design and
the results are presented in Section 6. Finally, the summary and
conclusions are presented in Section 7.

2. Description of VDRAS

VDRAS is composed of four major components: data acquisi-
tion, data pre-processing, 4DVar data assimilation and model
outputs. Detailed descriptions can be found in Sun and Zhang
(2008) and Sun et al. (2010).

The 4DVar radar assimilation system in VDRAS includes
a forward cloud-resolving numerical model, the adjoint of the
numerical model, a cost function and a minimization algorithm.
The numerical model is formulated within a Cartesian co-
ordinate system with a flat surface, and uses Kessler-type warm-
rain microphysical parameterization. There are six prognostic
variables in the numerical model: wind velocity components
(u , v , w ), rain water mixing ratio (q r), total liquid water mixing
ratio (q t) and liquid water potential temperature (θ l). The total
liquid water mixing ratio is the sum of rainwater, cloud water
and the vapour mixing ratio. The temperature (T ) and the
cloud water mixing ratio (qc) are diagnosed from the prognostic
variables by assuming that all vapour greater than the saturation
value is converted to cloud water. The pressure (p) is diagnosed
through a Poisson equation. An open lateral boundary condition
is used in the VDRAS numerical model. The along-beam and
cross-beam components of the horizontal inflow are determined
by a combination of the radar radial velocity observation
and the background wind field, respectively. The horizontal
outflow is extrapolated using the values at the closest two
inner grid points. The top and bottom boundary conditions
are set to zero for vertical velocity, and all other variables
are defined such that their normal derivatives vanish. The
detailed model set-up can also be found from Sun and Crook
(1997, 2001).

The application of the 4DVar technique in VDRAS allows
the use of prognostic equations as constraints to minimize the
cost function. VDRAS assimilates the Doppler radar data and
then finds an optimal initial condition through the minimization
algorithm. The cost function (J ) for measuring the misfit
between the model state variables and the radar observations

can be written as:

J = (xo − xb)
T B−1 (xo − xb) +

∑
σ ,t

[ηv
(
Vr − V o

r

)2

+ ηq
(
qr − qo

r

)2
] + Jp + Jmb (1)

where xo is the model state variable at the beginning of the cur-
rent assimilation window, xb is background field forecast from
the previous cycle and B denotes the background covariance
matrix. The second term in Equation 1 represents the discrep-
ancy from the radar observations, and it is assumed that there
is no spatial error correlation between observations. The sum-
mation is over space (σ ) and time (t). The co-efficients ηv and
ηq represent the inverse of the observation error variance for
radial velocity and rainwater, respectively. The variables V r

and q r are the model output of Doppler radial velocity and
rainwater mixing ratio, and the variables V o

r and qo
r are their

observational counterparts, respectively. V r is calculated from
the model Cartesian velocity components using the following
relation:

Vr = x − xr

r
u + y − yr

r
v + z − zr

r
(w − VT) (2)

where r represents the distance between a grid point (x ,y ,z )
and the radar location (x r,y r,z r) and V T (m s−1) is the terminal
velocity for rain. The terminal velocity is estimated using
rainwater through the following relation (Sun and Crook,
1997):

VT = 5.4(p0/p)0.4 (ρaqr)
0.125 (3)

where p is the base-state pressure, p0 is the pressure at the
ground and ρa represents density of air. The rainwater mixing
ratio q r is estimated from the radar reflectivity (Z in dBZ) by
using the formula (Sun and Crook, 1997):

Z = 43.1 + 17.5 log10 (ρaqr) (4)

assuming a Marshall–Palmer raindrop size distribution. A spa-
tial and temporal smoothness penalty term (J p) is applied in
Equation 1 to force the minimization results to smoothly fit the
observations. The final term J mb denotes a mesoscale back-
ground field. This term ensures that the 4DVar analysis does
not drift too far from the larger-scale background in the radar
data-void region. The mesoscale background field in VDRAS
combines data from in situ observations such as radiosondes,
profilers, surface networks, velocity-azimuthal-display (VAD)
analyses, mesoscale model analyses and reanalysis data through
an objective analysis. Sun and Zhang (2008) and Sun et al.
(2010) discussed the combination procedure in details.
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Figure 3. The horizontal cross section at Z = 250 m for (a, b) the rainwater mixing ratio in g kg−1 and horizontal wind vectors shown every
9 km, (c, d) the u component of wind (contour interval is 0.5 m s−1) and (e, f) the u component of wind smoothed by the Barnes technique

(contour interval is 0.5 m s−1) at a simulation time of T = 9300 s. The left and right columns are for simulations R1 and R2, respectively.

3. Natural run and simulated radar observation for the
OSSEs

The natural run for the OSSEs is the simulation of a squall
line using the cloud-resolving model built in VDRAS. The
model domain used for both simulation and assimilation is
330 × 330 × 15 km3. The grid spacing is 3 km in the horizontal

and 500 m in the vertical, respectively. The time step for the
model integration is 5 s.

The soundings used for the initial temperature and mois-
ture profiles are from Weisman and Klemp (1982). This
initial sounding can provide a suitable environment for con-
vection development. The initial thermal perturbation is in a

 2014 Royal Meteorological Society Meteorol. Appl. 21: 444–458 (2014)
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Figure 4. ETSs for predicted 5 min accumulated rainfall at threshold
of 1.25 mm (5 min)−1 versus forecast time for (a) BGR1 (solid line)
and BGR1SM (dashed line), (b) BGR2 (solid line) and BGR2SM

(dashed line).

north–south-oriented line with a 2.0 K maximum potential tem-
perature excess (Klemp and Wilhelmson, 1978), superimposed
by small (0.1 K) random perturbations. The unidirectional ini-
tial wind shear profile is surface-based (Weisman and Rotunno,
2004), with a magnitude of 15 m s−1 within the lower 3 km. The
initial u component of wind at surface is −10 m s−1, while the
v component of wind at all levels is zero. The initial rainwater
mixing ratio and vertical velocity are zero. Figure 1 parts (a)
and (b) presents the horizontal distribution at Z = 250 m of the
rainwater mixing ratio from the natural run, at T = 9300 and
10 800 s, respectively. Isolated convection cells appear during
the early stage in the simulation (Figure 1(a)). In the mature
stage, the individual cells grow and merge to form a squall line
(Figure 1(b)).

The positions of two pseudo-radars are denoted in
Figure 1(a). The maximum range of detection is set to 250 km.
For the distance between radars, we adopt the average distance
(166 km) among Taiwan’s Central Weather Bureau (CWB)
operational S-band Doppler radars. The two radars are set
in the east and west of the squall line, respectively, with a
distance of 170 km, to imitate an idealized scenario that the
squall line can be completely observed under the coverage of
two radars. The simulated observations of the radial velocity
and reflectivity are calculated from the model outputs of the
natural run through Equations 2 and 4, respectively. The
reflectivity is available at each grid within the radar coverage.

The radial velocity is considered observable only at the places
where the reflectivity exceeds 0.0 dBZ.

4. Verification indices

The accuracy of the predicted accumulated rainfall is used to
evaluate the model performance. In each time step (�T ), the
accumulated precipitation P (mm) for each grid at the lowest
model plane can be written as:

P = ρaqrVT

ρw
× 1000 × �T (5)

where ρa and ρw (kg m−3) represent the density of air and
water, respectively. On the basis of Equation 5, one can
compute the required accumulated rainfall over a given period
of time for verification.

For a quantitative comparison of the accuracy of the predicted
precipitation obtained in different experiments, the equitable
threat score (ETS) is chosen to verify the forecast performance.
This index was proposed by Schaefer (1990) and Rogers et al.
(1996), and can be defined as follows:

ETS = H − R

F + O − H − R
(6)

where H stands for the number of correctly predicted points, F
is the number of model forecast points, O denotes the number of
observed points and R represents the number of hits by chance,
which is written as:

R = F × O

N
(7)

where N is the total number of points in the verification domain.
The number of points is counted in H , F and O only when
the precipitation is above a certain prescribed threshold. In
this section, the threshold is 1.25 mm (5 min)−1, which is a
criterion converted from the official definition of a ‘heavy
rainfall event’ by Taiwan CWB. When ETS reaches one, the
forecast is considered perfect.

The root-mean-square error (RMSE) is also applied to
conduct a quantitative comparison between the analysis from
VDRAS and the observations, defined as follows:

RMSE =

√∑
(XR − XO )2

N
(8)

where subscripts R and O respectively represent the retrieved
and observed values for a certain parameter X , and N is the
total number of grid points used for the computation. It should
be noted that the observed data indicated in Equations 6–8 are
the model outputs from natural run in all OSSEs.

5. OSSE designs and results

5.1. Background field from model output

In this section a suitable treatment is sought for a back-
ground field which is required by VDRAS, but inevitably
contains incorrect information. Four experiments (BGR1,
BGR1SM, BGR2 and BGR2SM) are designed to explore
this topic. These experiments have the same assimilation
and forecast cycles as illustrated in Figure 2, but with
different backgrounds and first guesses at the beginning of
the first cycle (i.e. the cold start). The assimilation period
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(a)

(b) (c)

(d) (e)

Figure 5. (a) The 3 h accumulated rainfall amount (in mm) from the natural run starting from a simulation time of T = 10 800 s. (b–e) The
predicated 3 h accumulated rainfall amount (in mm) from experiments BGR1, BGR1SM, BGR2 and BGR2SM, respectively.

begins at a corresponding simulation time of the natural
run at T = 9300 s, followed by two 10 min 4DVar cycles.
Each 4DVar cycle assimilates both radial wind and reflec-
tivity (computed from the natural run) at three time levels
(or volume scans), with an interval of 5 min. The data from
radar 1 and radar 2 are assimilated synchronously. The first
and last volumes fit the starting and ending times of each

cycle. A 5 min forecast is inserted between 4DVar cycles,
and provides the background and first guess for the follow-
ing cycle. A 3 h forecast follows the assimilation period.
This is our default assimilation and forecast design for the
OSSEs.

The two simulations, R1 and R2, are designed, such
that the information provided by these runs represents the

 2014 Royal Meteorological Society Meteorol. Appl. 21: 444–458 (2014)
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Figure 6. Illustration of VDRAS assimilation and forecast cycles for the experiments (a) 2CYC and 2CYCE3; (b) 1CYC and 1CYCE3; (c) 3CYC,
3CYCE3 and 3CYC_2E3. In these experiments, the background and first guess for the first 4DVar cycle are provided by the initial sounding of

the natural run.

Table 1. A list of the experiments.

Experiment Assimilation cycles Description

One
cycle

Two
cycles

Three
cycles

Long
cycle

BGR1 X R1 as background and first guess
BGR1SM X Smoothed R1 as background and first guess
BGR2 X R2 as background and first guess
BGR2SM X Smoothed R2 as background and first guess
1CYC X With different numbers of 4DVar cycles, and sounding as background

and first guess
2CYC X
3CYC X
1CYCE3 X Same as 1CYC, 2CYC and 3CYC, but lacking radar data below 3◦

elevation angle
2CYCE3 X
3CYCE3 X
3CYC_2E3 X Same as 3CYCE3, but lacking radar data below 3◦ elevation angle for

the first two cycles
L5V_5Z X Long assimilation cycle covering five radar volumes
L5V_3Z X Long assimilation cycle, but assimilating the radial wind for five

volumes and reflectivity for the first three volumes
L5V_3ZL X Same as L5V_3Z, but assimilating the reflectivity for the last three

volumes
R2CYC X Real case studies
RL5V_5Z X
RL5V_3Z X

incorrect background fields from a mesoscale model output.
The convection lines initialized in R1 and R2 have the same
maximum potential temperature excess, 1.8 K, which is 0.2 K
lower than that in the natural run. In addition, the position
of the initial temperature perturbation in R1 is deliberately
shifted 42 km westward as compared to the natural run, while

in R2 the location is unchanged. The background fields for
the first 4DVar cycle in experiments BGR1 and BGR1SM are
all provided by R1. The difference is that in the latter experi-
ment, the model output (horizontal wind, temperature and water
vapour mixing ratio) from R1 is interpolated and smoothed by
the Barnes technique (Barnes, 1964). The formulation for the

 2014 Royal Meteorological Society Meteorol. Appl. 21: 444–458 (2014)



Four-dimensional variational Doppler radar data assimilation system 451

Figure 7. Rainwater mixing ratio (shading) in g kg−1 in a vertical cross section through X = 174 km for the natural run at a simulation time of
T = 9300 s. The solid and dashed lines in this cross section indicate the height of radar beams with an elevation angle of 3◦ for radar 1 and

radar 2, respectively. The curvature of the Earth is considered when computing the height of the radar beams.

Barnes scheme can be expressed by:

φj =

N∑
i=1

Wi φ
o
i

N∑
i=1

Wi

(9)

Wi = e−f (r/R)2
(10)

where φj is the interpolated value of variable φ at grid point
j , φo

i denotes the value of variable φ at selected grid point i
with coarse spatial resolution, W i stands for the weighting co-
efficient, r represents the distance between the interpolated and
the selected grid points, R denotes the radius of influence and
f is used to control the smoothness. In this study, R and f are
set to 50 km and 2.3, respectively.

The first guess for each cycle is specified to be the same as
the background field, except for the rainwater. In VDRAS, the
first guess for rainwater is always computed from the observed
radar reflectivity through Equation 4. This is because the radar
reflectivity is a rather realistic description of the atmosphere.
Therefore, by using the reflectivity-converted rainwater in the
first guess, the errors such as misplaced or spurious convective
systems embedded in the original background field can be
corrected effectively. Experiments BGR2 and BGR2SM denote
a second set of background field test in which the squall line
from R2 is also weaker, but with a relatively correct position
when compared against the natural run.

Figure 3(a) and (b) illustrates the horizontal distribution of
rainwater produced by R1 and R2 at T = 9300 s, respectively.
As expected from the experimental designs, the strength of the
convective cells in R1 and R2 is weaker than in the natural run.
The convective cells in R1 are shifted further westward, while
in R2 the location is similar to the natural run (Figure 1(a)).

Figure 3(c) and (d) displays the simulated u component
of wind obtained from R1 and R2, while their smoothed
counterparts are illustrated in Figure 3(e) and (f), respectively.
It can be seen that in the smoothed wind field, the small scale
structure of the convective cells has been removed. However,
the wind speed outside of the convective cells in Figure 3(e)
and (f) remains similar to that in Figure 3(c) and (d), implying
that the environmental wind field is generally intact after the
smoothing.

A comparison of the ETSs of predicted accumulated rainfall
with a threshold of heavy precipitation (i.e. 1.25 mm (5 min)−1)
between BGR1 and BGR1SM is exhibited in Figure 4(a). It
can be seen that in BGR1SM, a smoothed background indeed
improves the rainfall forecast. However, Figure 4(b) reveals
that the QPF capability of heavy rain in BGR2SM does not
differ from BGR2 significantly. This is because, in BGR2,
it is assumed that the location of the squall line in the
background field has been rather correctly predicted. It is the
initial temperature perturbation that is underestimated, but this
discrepancy can be recovered to a certain extent through the
radar data assimilation.

The above section discusses the forecast of heavy pre-
cipitation. To understand the model’s QPF capability for a
longer period of time, the spatial distributions of a 3 h accu-
mulated precipitation obtained from the natural run and the
four experiments are exhibited in Figure 5. The natural run
(Figure 5(a)) shows a clear quasi-linear distribution of precip-
itation. However, as can be seen in Figure 5(b), because of
erroneous convective-scale perturbations from the background
field, BGR1 produces spurious scattered rainfall to the west
of the squall line. Nevertheless, by a proper smoothing of the
background field, the over-prediction of the rainfall can be mit-
igated in BGR1SM (Figure 5(c)). In Figure 5(d), because the
location of the initial convective cells in BGR2 is sufficiently
accurate, much less scattered rainfall is predicted if compared
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(a)

(b)

Figure 8. (a) Line-average of the rainwater mixing ratio in g kg−1 for
the natural run at a simulation time of T = 9300 s along a vertical
cross section. (b) Same as (a), but is the rainwater existing above the

observed elevation angle 3◦ for radar 1 and radar 2.

against BGR1. Figure 5(e) indicates that further suppression of
the over-predicted scattered rainfall is achieved in BGR2SM.

5.2. Impact of the lack of low-elevation radar observation

In this section, the impact of the absence of low-elevation
radar observations on the retrieved analysis fields and rainfall
prediction is examined. The background field and first guess for
all experiments are provided by a sounding. As illustrated in
Figure 6 and Table 1, experiment 2CYC includes two 4DVar
cycles with one forecast period inserted in between. The
2CYCE3 is the same as 2CYC, but by assuming that radar
reflectivity and radial wind observations are absent below
the 3◦ elevation angle. Experiments 1CYC and 3CYC are
similar to 2CYC, but with one and three assimilation cycles,
respectively. Similarly, in 1CYCE3 and 3CYCE3, radar data
are assumed to be absent below 3◦. Experiment 3CYC_2E3 has
three assimilation cycles, but the missing of low-elevation radar
data only occurs in the first two cycles. Full radar coverage is
assumed at the third cycle.

Figure 7 shows a vertical cross section penetrating the areas
with active convective cells embedded in the squall line
(X = 174 km) from the natural run at T = 9300 s. The heights
of the radar beams from two pseudo-radars with 3◦ elevation
angle are also plotted in Figure 7. The lowest radar beams reach
3250 and 4750 m AGL for radar 1 and radar 2, respectively.

Figure 8(a) reveals the line-averaged (defined as an average
of the available radar data along the squall line) rainwater
mixing ratio along a vertical cross section from the natural run
at T = 9300 s, while Figure 8(b) depicts the data availability
when low-elevation radar observation is missing. Compared
with Figure 8(a), it can be seen that in Figure 8(b), the rainwater
(also an indicator of the radar data) gradually decreases
downward from the convection core at Z = 5500 m, then
completely disappears below Z = 2500 m.

Figure 9 illustrates the line-averaged temperature perturbation
and vertical velocity at T = 10 800 s along a vertical cross
section from the natural run, and seven experiments. An
examination of Figure 9(a) for the natural run shows a wide-
spread warming area in the upper levels, induced by heating
from condensation during the long period of model simulation.
The temperature gradient along the horizontal direction is weak.
The updraft is >2.5 m s−1, located near the warm core at Z
= 6250 m. The evaporative cooling also produces a cold pool
with a depth of 1250 m and a width of 90 km along the surface.
Typical upward velocity is induced at the leading edge of the
cold pool at X 185 km. Downdrafts about −0.2 m s−1 are found
behind at X∼175 km.

In contrast, even with full radar coverage, 1CYC and 2CYC
(Figure 9(b) and (c)) show that the retrieved warm area turns
out to be much narrower, with a stronger horizontal temperature
gradient, leading to downward motions at mid-levels. The
retrieved cold pool is also weaker in strength. However, by
comparing the experiment 2CYC with 3CYC (Figure 9(c) and
(d)), it can be found that as the number of 4DVar cycles
increases, the warm area also spreads outward gradually. The
strength and width of the cold pool, and the pattern of the
mid-level downdrafts, all become more similar to those in
the natural run (Figure 9(a)).

When low-elevation observations are absent, Figure 9(e)
shows that both the upper-level warm zone and the near-surface
cold pool retrieved in 1CYCE3 are dramatically weaker than
in 1CYC. The up- and down-drafts at the leading edge of the
cold pool are nearly unrecognizable (Figure 9(e)). When more
assimilation cycles are involved, the intensity of the upper-
level warming zones in 2CYCE3 and 3CYCE3 (Figure 9(f)
and (g)) can be improved. However, the recovery of the near-
surface cold pool and downdrafts where radar data are absent
reveals a different scenario. In 2CYCE3 (Figure 9(f)), one more
assimilation cycle is indeed helpful in improving the cold pool
intensity. Nevertheless, when three cycles are applied, the cold
pool is retrieved incorrectly (Figure 9(g)) with much greater
depth and magnitude. This is confirmed by comparing the
RMSEs of the retrieved cold pool in these three experiments,
as shown in Figure 10. This discrepancy can be explained in
that when the rainwater information at lower atmosphere is not
assimilated into the model owing to the lack of low-elevation
radar data, the model mistakenly suppresses the development
of the convection, triggering a reduction of the latent heat
release, a decrease of the buoyancy and an over-enhancement
of the downdrafts in the mid to low levels (Figure 9(g)).
Consequently, the excess amount of rainfall from the upper
layers further intensifies the cold pool. However, when the
third cycle contains full radar data coverage (3CYC_2E3),
Figure 9(h) shows a noticeable improvement of the cold pool
structure.

In terms of the accuracy of the retrieved cold pool intensity,
when full radar coverage is possible, more assimilation cycles
produce better retrievals, as shown by comparing the RMSEs
of 1CYC, 2CYC and 3CYC. When low-elevation observations
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(a) (b)

(c) (d)

(g)

(e) (f)

(h)

Figure 9. Line-averaged temperature perturbation (coloured in ◦C) and vertical velocity (contours at 2.5, 1.5, 0.5, −0.2, −0.6 and −1.0 m s−1)
for (a) the natural run at T = 10 800 s, and experiments: (b) 1CYC, (c) 2CYC, (d) 3CYC, (e) 1CYCE3, (f) 2CYCE3, (g) 3CYCE3 and (h)

3CYC_2E3.
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Figure 10. The RMSEs for temperature perturbation (◦C) between the
natural run and different experimental analyses. The computation is
limited within the cold pool area where the reflectivity is larger than

0 dBZ and the height is below 3250 m.

are not available, more assimilation cycles do not always imply
better retrievals. Instead, two assimilation cycles appear to be
an optimal selection.

Regarding the rainfall prediction, under the condition of full
radar coverage, the forecast abilities of 1CYC, 2CYC and
3CYC do not differ from each other dramatically, although
3CYC does show slight improvement of the rainfall pre-
diction at a later stage (>75 min) of the model integration
(not shown). However, when low-elevation data coverage
is incomplete, Figure 11 indicates that experiment 2CYCE3
outperforms 1CYCE3 and 3CYCE3 after T = 2700 s. Experi-
ment 3CYC_2E3 offers additional improvement of the rainfall
forecast as long as one of the cycles contains low-elevation
observations.

5.3. Non-linear microphysical process and assimilation
strategy

The study by Fabry and Sun (2010, hereafter FS10) indicates
that the model non-linearity could force the minimization

0 1800 3600 5400 7200 9000 10800
0.0
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1CYCE3
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S

Forecast time (seconds)

Figure 11. As in Figure 4, but for 2CYC (thick solid line), 1CYCE3
(dash-dotted line), 2CYCE3 (thin solid line), 3CYCE3 (thin dashed

line) and 3CYC_2E3 (thick dashed line).

procedure towards a wrong direction. Because the 4DVar
algorithm seeks an optimal model initial condition, this implies
that more data assimilations could lead the model initial
condition to deviate from the true state. Furthermore, they also
demonstrate that the non-linearity induced by microphysical
parameters is greater than that from the wind velocities.
Thus, different assimilation strategies should be considered for
different model state variables. For highly non-linear variables,
a shorter assimilation cycle is suggested.

This section is devoted to test the above-mentioned argument.
As displayed in Figure 12, in all experiments, radial winds are
assimilated over the entire 20 min long 4DVar cycle using
radar data from five volume scans with a 5 min separation. In
L5V_5Z, L5V_3Z and L5V_3ZL, the radar reflectivity values
(a parameter directly linked to microphysical variables) from
all five volume scans, the first three and the last three scans are
assimilated into the model, respectively. Figure 13 exhibits the
variation of the rainwater term in the cost function (Equation 1)
based on radar 1 observations. The computation is conducted
after the radar data in volumes V2–V6 are sequentially
assimilated from time levels T2–T6. A smaller (larger) initial
value of the rainwater cost function implies a good (bad)

Background and first guess:

Initial sounding of natural run

9600s

V2 V4

10800s

V6

20-min 4DVar cycle 3-hr forecast

Natural run

L5V_5Z

L5V_3Z

L5V_3ZL

V3 V5

Figure 12. Illustration of VDRAS assimilation and forecast cycles for the experiments: L5V_5Z, L5V_3Z and L5V_3ZL. The 20 min long 4DVar
cycle starts from a simulation time of T = 9600 s for the natural run, corresponding to the assimilation time for the radar volume V2 in 2CYC

(Figure 6(a)). The dashed down-pointing arrows indicate assimilation of only the radial wind.
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Figure 13. Change of the rainwater term in the cost function shown
in Equation 1 with respect to the assimilated radar volumes/times
V1–V6/T1–T6 for radar 1 for experiments 2CYC (solid line), L5V_5Z
(dashed line), L5V_3Z ( ) and L5V_3ZL ( ). Solid circles ( )
and solid squares ( ) represent the un-assimilated volumes for L5V_3Z
and L5V_3ZL, respectively. T1–T6 stand for assimilation time from

T = 9300 to 10 800 s with a time interval of 300 s.
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Figure 14. Normalized total cost function values for the experiments
2CYC, L5V_5Z, L5V_3Z and L5V_3ZL.

minimization procedure, leading to a better (worse) fit of the
model and the observations. The cost function magnitude from
2CYC (Figure 6(a)) is also displayed in Figure 13 as a reference.

The behaviour of the cost function exhibited by L5V_3Z
indicates that by assimilating the radar reflectivity only at the
first three time levels (representing an earlier stage or ‘linear
regime’ in FS10), a small initial value is obtained, meaning
that the minimization procedure is properly executed. When
reflectivity is assimilated in all five time levels (T2–T6), the
initial value of the cost function from L5V_5Z becomes larger,
indicating that the model non-linearity has begun to drive
the model away from the true initial state. The worst case
occurs when the reflectivity is assimilated only at the last
three time levels (representing a later stage or ‘contradictory
regime’ in FS10); the cost function from L5V_3ZL reaches the
largest initial value. This suggests that because of the non-
linearity, the minimization algorithm has driven the model
towards a wrong direction, and is unable to find an optimal
initial condition that could minimize the misfit between the
following model simulations and the observations within the
assimilation window. Finally, instead of using a single long
assimilation cycle, experiment 2CYC uses two short cycles, in
which both radial wind and reflectivity are assimilated. The
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Figure 15. As in Figure 4, but for 2CYC (thick solid line), L5V_5Z
(thin solid line), L5V_3Z (dashed line), and L5V_3Z (dotted line).

(a)

(b)

Figure 16. The composite maximum radar reflectivity (grey shading in
dBZ with 10 dBZ interval) on 14 June 2008 for IOP #8 at (a) 1202
and (b) 1402 UTC. The solid line represents the coast line of Taiwan.

short assimilation cycle helps to keep the model trajectory in
the nearly linear regime, thus the initial magnitude of the cost
function in 2CYC is substantially smaller than that from all
other experiments, as depicted in Figure 13.

Experiments were conducted (not shown) in which reflec-
tivity are assimilated at all five volumes, but radial wind is
assimilated at selected time steps (e.g. first three or last three
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Figure 17. Illustration of assimilation and forecast cycles for the experiments R2CYC, RL5V_5Z and RL5V_3Z. The numbers at the top of the
diagram indicate the starting and finishing times (UTC) of each 4DVAR cycle. RCKT and RCCG stand for the two radars, respectively.

Figure 18. Locations of data collected from different sources for
SoWMEX IOP #8. The small dots indicate selected data points from
the ECMWF reanalysis, triangles stand for radars, crosses represent
surface mesonet stations, and solid circles denote radiosondes. This is

also the experimental domain for the VDRAS.

volumes only). It is found that the non-linearity phenomenon as
shown in Figure 13 does not appear. Assimilating radial wind
into the model at different stages through 4DVar technique still
gives a similar ‘optimal’ initial condition. This result implies
that the non-linearity induced by reflectivity dominates that
from radial wind, and is consistent with the finding by FS10.

This section focuses on the minimization of the total cost
function and compares the QPF scores produced by all experi-
ments. Figure 14 shows that the best minimization is achieved
by 2CYC. Owing to the non-linearity, using a single long
assimilation cycle gives inferior minimization, resulting in

larger cost function values in experiments L5V_5Z, L5V_3Z
and L5V_3ZL. Nevertheless, L5V_3Z produces a slightly bet-
ter result, because the reflectivity is assimilated only at an early
stage when the model is still in its linear regime. As expected,
Figure 15 indicates that when two short cycles are employed,
2CYC gives the best QPF score, followed by L5V_3Z. These
experimental results clearly point out that when designing
a proper assimilation algorithm, the non-linearities and their
different growing speeds inherited in various model state vari-
ables have to be considered separately.

6. Microphysical non-linearity and assimilation
strategy – a real case study of 2008 SoWMEX IOP #8

6.1. A brief introduction of 2008 SoWMEX IOP #8

To further investigate the influence of the model non-linearity
under a realistic framework, a real case from SoWMEX IOP #8,
a field experiment conducted in 2008 in Taiwan, was selected.
This particular IOP stands for a pre-frontal squall line, whose
influence on the precipitation in Taiwan lasts for about 2 days.
Thus, the entire observation period started at 0000 UTC 14
June, and ended at 0000 UTC 16 June. Figure 16 illustrates the
distributions of the composite maximum radar reflectivity on 14
June at 1202 and 1402 UTC, observed by two CWB operational
S-band Doppler radars (RCCG and RCKT; see Figure 18 for
their geographic locations). The convection systems, elongated
in an NE–SW direction and moving towards the east and
southeast, produced heavy precipitation over southern Taiwan.

It should be pointed out that the other limitations discussed
in Sections 5.1 and 5.2, such as an imperfect background field
and the absence of low-level radar observations, are also present
in this real case study. Thus, this section stands for an overall
verification of the conclusions obtained from the OSSEs.
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Figure 19. (a) ETSs and (b) RMSEs of the forecast 2 h rainfall
accumulations over the island of Taiwan from the experiments R2CYC,

RL5V_5Z and RL5V_3Z at different precipitation thresholds.

6.2. Experimental designs and results

Experiments R2CYC, RL5V_5Z and RL5V_3Z are equivalent
to their OSSE counterparts 2CYC, L5V_5Z and L5V_3Z,
respectively. As shown in Figure 17, the assimilation period for
R2CYC includes two 16 min 4DVar cycles, with a short 6 min
forecast period inserted in between. Experiments RL5V_5Z and
RL5V_3Z contain a single 31 min 4DVar cycle. Five radar data
volumes including radial winds and reflectivity are assimilated
in RL5V_5Z. Experiment RL5V_3Z is similar to RL5V_5Z,
but the reflectivity is assimilated only at the first three time
levels. The assimilation for all experiments ends at 1202 UTC,
followed by a 2 h forecast.

Figure 18 illustrates the locations of two CWB S-band
Doppler radars (RCCG and RCKT), nine surface stations and
two radiosonde stations. The re-analysis data from the Euro-
pean Centre for Medium-Range Weather Forecasts (ECMWF)
are also adopted to fill in the data-void region over the ocean.
Except for the radar measurements, the other in situ observa-
tions and the ECMWF reanalysis data are combined to establish
a mesoscale background field using the Barnes interpolation
scheme discussed in Section 5.1. Radar data are carefully cor-
rected (i.e. velocity unfolding, ground clutter removal) before
being ingested into VDRAS, which has a domain size of
528 × 432 × 15 km3, with the horizontal (vertical) grid space
set to 2.0 km (500 m). It should be pointed out that owing to
the PPI scanning strategy of the radars and blockage of com-
plex topography (with a peak height reaching almost 4000 m),

the lack of low-level radar observations is a frequent problem
in Taiwan. The deployment of low-power/short-range radars to
fill in data-void region should be a future consideration.

By comparing the ETSs and RMSEs under different rainfall
thresholds (8, 10, 12 mm (2 h)−1), Figure 19 illustrates that the
QPF ability of R2CYC is indeed superior to that of RL5V_3Z.
As expected, RL5V_5Z has the lowest scores, apparently due
to the assimilation of the reflectivity over a single long cycle.
The finding from this set of experiments is in agreement with
the conclusions obtained from OSSEs presented in previous
sections.

7. Summary and conclusions

In this study, a series of OSSEs and a real case experiment are
conducted to investigate the influence of background error, the
lack of low-elevation radar observation and microphysical non-
linearity on the application of Doppler radar data assimilation
technique to QPF. The major conclusions are summarized as
follows.

1. When a mesoscale model output, which inevitably contains
incorrect information, is used as the background field for
the data assimilation system, a smoothing procedure is
suggested to remove the fine structure embedded in the
model-simulated convective systems. This procedure can
help to suppress the growth of spurious precipitations, and
improve the model’s QPF ability.

2. Lack of low-elevation radar observations for a weather
system has a negative impact on the retrieval of the near-
surface cold pool. When low-elevation data are missing,
the number of assimilation cycles needs to be carefully
selected. It is found that the increase of the assimilation
cycles does not necessarily improve the cold pool retrieval.
The OSSE tests in this study suggest that two assimilation
cycles are optimal for the recovery of low-level cold pool,
and produce a better rainfall forecast.

3. Both OSSEs and the real case experiment reveal that the
non-linearity developed from the microphysical variables
could worsen the data assimilation and minimization pro-
cedure and prevent the algorithm from finding the optimal
model initial state. Thus, the radar reflectivity should be
assimilated only within a short cycle and at the early stage
of the model integration. The strategy of using multiple
short cycles enables the minimization algorithm to proceed
towards the right direction and to approach the correct ini-
tial condition. As a result, a model with better QPF ability
can be achieved.
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