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ABSTRACT: This study demonstrates the potential value of forecasts to smallholder farmers in Zimbabwe, the majority
of whom often suffer severely from the impact of drought. Using crop simulation models to compare yield performances
of farmers with and without forecasts, results indicate that, for a drought year, farmers with forecasts (WF) record higher
yield gains (28%) compared to those without forecasts (WOF): in particular, farmers located in the most arid regions
(NR V) recorded the highest yield gains (42%). A similar trend is observed during a neutral/average year, as farmers WF
obtain predominantly higher yield gains (20%) than those WOF. However, during a good year, results show a different
pattern as no yield gains are observed. In fact, farmers WOF perform better, suggesting forecasts in this case may not
make much difference. Using gross margin analysis, results show farmers WF obtaining higher returns during a drought
(US$ 0.14 ha−1) and neutral year (US$ 0.43 ha−1) but again not for a good year as farmers WOF outperform those WF.
To summarize, forecasts can play an important role as loss-minimization instruments especially if the underlying year is
an El Niño (drought) year. In conclusion, to attain full economic value of forecasts, complementary policies (currently
missing) such as effective communication, improvement in forecast extension skills and promotion of farmer participatory
and outreach activities could prove vital in enhancing the value of forecasts to smallholder farmers in general.
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1. Background

Until recently, drought occurrence in southern Africa has been
observed to be closely correlated with El Niño events that occur
in the eastern tropical Pacific (Eastman and Anyamba, 1996;
Mason and Jury, 1997). When sea surface temperature (SST)
anomalies are high this causes warming of the ocean, resulting
in a huge mass of warm water in the central and eastern
tropical Pacific. This, in turn, affects atmospheric circulation,
disturbs the normal pattern of air pressure, tropical rainfall
and movement of the trade winds, leading to changes in
weather patterns around the globe (Ropelewski and Halpert,
1987; NOAA, 1997). El Niño-Southern Oscillation (ENSO)
events impose a strong influence on rainfall patterns and
distribution in southern Africa. Their impact is strongest during
the peak rainfall months of December to March (Mason and
Jury, 1997). ENSO events often culminate in severe droughts.
For instance, major droughts that affected the region (e.g.,
1982/1983, 1986/1987, 1991/1992 and 2006/2007) are closely
associated with El Niño episodes (WMO, 1995; Kogan, 1998).

In view of the increasingly better knowledge and understand-
ing of ENSO events, it is now possible to predict major El Niño
episodes at lead times of about 3–6 months (Mason, 1996).
Today, many national departments of meteorology in south-
ern Africa, under a collaborative regional climate forum called
SARCOF (Southern African Regional Climate Outlook Forum),
are collectively involved in monitoring ENSO events with the
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objective of providing seasonal forecast information to various
end-users (water planners, policymakers, farmers, food orga-
nizations) and, especially, smallholder farmers. The forecasts
denote rainfall probabilities presented in a three-pronged format
(normal, above-normal and below-normal) for any pending sea-
son. These forecasts are routinely broadcast via the radio, TV,
newspapers, farm bulletins and internet around early September,
1 month before the seasonal rain starts.

Although seasonal forecasts are being broadcast in Zim-
babwe and in other countries in southern Africa, it is not
yet well established how farmers, particularly smallholders,
use forecasts to improve farm management practices as well
as undertake strategic decisions to either avert/mitigate losses
or exploit favorable weather conditions to optimize returns. If
farmers can use forecasts to improve farm decisions, they not
only reduce their vulnerability to El Niño effects but also their
dependence on food aid, which often is subject to political abuse
and uncertainty.

Climate variability is the most dominant source of food inse-
curity in southern Africa. With the majority of smallholder
farmers dependent on rain-fed agriculture and vulnerable to cli-
mate variability, seasonal forecasts hold promise as a tool for
drought mitigation and/or risk management. Essentially, sea-
sonal forecasts offer farmers a realistic opportunity to manage
climatic variability. With advance information on predicted sea-
sonal outlook, smallholder farmers become better placed to
handle climatic anomalies in ways that can reduce vulnerabil-
ity to climate shocks. Specifically, smallholder farmers would
be able to use seasonal forecasts as a tool to avert otherwise
costly losses in the form of income, crop, animal and even
human losses.
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Useful lessons can be drawn from past experiences of
extreme drought events. For instance, the 1991/1992 extreme
drought event left more than 100 million people (mostly small-
holders) within the Southern African Development Commu-
nity (SADC) severely affected and more than US$ 580 million
worth of food aid had to be distributed under emergency mea-
sures to avoid massive hunger and starvation (SADC, 1993).
In the case of Zimbabwe, the losses were more catastrophic
as the smallholder farm sector lost more than 2 million head
of cattle, the main source of draft power and capital wealth:
crop yields dropped 54% below normal and the country had
to survive on more than 2 million tons of cereals received as
food aid (Makarau, 1992). To summarize, climate risks, espe-
cially drought, constitute a formidable barrier to investment and
the adoption of high yield (but risky) technologies that have
the potential to increase production and improve livelihoods of
smallholder farmers.

1.1. Study motivation

Southern Africa is one part of the world likely to suffer
disproportionately from the negative effects of climate change,
in particular from the associated risks of extreme drought and
flood events. The recently observed upsurge in extreme climate
events across southern Africa bears testimony to some of these
perceived impacts. Lobell et al. (2008) predict that southern
Africa could lose more than 30% of its staple, maize, by 2030
due to climate change.

Extreme drought or flood events not only add to stresses on
water resources, food insecurity and human health but are also
largely responsible for constraining economic development in
many countries across southern Africa. Indeed, most countries
in this region are regarded as extremely vulnerable to climate
change due to their over-dependency on rain-fed agriculture.
Vulnerability to catastrophic climate events is worsened by
the lack of coherent mitigation policies and concrete plans
of action to deal effectively with climate change risks. In
Zimbabwe, for instance, mitigation efforts have been largely
focused on disseminating seasonal climate forecasts to end-
users, especially smallholder farmers, but the impact of this
policy has been largely minimal as seasonal forecasts remain
widely un-adopted by smallholder farmers. In reality, however,
many smallholders continue to face serious household food
insecurity problems with a significant proportion being highly
dependent on food aid and/or food handouts.

A fundamental question one may ask is why seasonal fore-
casts are not adopted by smallholder farmers in Zimbabwe
(and equally by many other countries in southern Africa) where
many continue to face serious food shortages, hunger, malnutri-
tion and often life-threatening starvation. Plausible arguments
which have been advanced to explain this include: skepticism
of the forecasts due to past failures; ineffective communication;
inappropriate format; lack of forecast extension skills and fore-
cast education for smallholder farmers. In terms of skepticism,
forecasts tend to suffer a credibility problem that arises mainly
from the failure of past forecasts (Patt, 2001; Patt et al., 2005).
Forecasts are not being communicated effectively to potential
beneficiaries, especially smallholder farmers. Although fore-
casts are being disseminated in Zimbabwe, it is the art and
skill of their communication that is largely missing, such as
distilling, translating and transforming information to make it
more manageable, user-friendly, understandable and beneficial
to end-users. Seasonal forecasts are disseminated in probabil-
ity undertones that may be difficult for a layman farmer to

understand, and even if farmers do understand the probability
forecasts, they probably do not know how to apply them to
best advantage. With no forecast extension, farmers may lack
the knowledge of how to apply forecasts for maximum benefit.
Finally, smallholder farmers are faced with other more press-
ing constraints other than the availability or non-availability of
seasonal forecasts. As Blench (1999) argues, it is too naı̈ve
to expect a farmer to gamble all their resources on a single
best-bet strategy. Farm decision-making is an holistic approach
and, hence, farmers could be facing more binding constraints
than the mere non-availability of seasonal forecasts. Typically,
smallholder farmers may be more concerned with issues such
as when will the rainfall season start, what will the rainfall
seasonal distribution look like, what crop varieties should be
grown given the forecasts. These questions go beyond the
mere dissemination of forecast information and necessitate the
repackaging of seasonal forecasts to meet farmers’ needs and
expectations.

In sum, considerable effort has to be applied in developing
forecast extension skills and farmer education to demonstrate
the potential benefits to smallholder farmers. The creation of
climate education centres, in developing countries in general,
could mark a turning point in assisting smallholder farmers cope
with climate-related risks and disasters.

1.2. Objectives

As motivated above, seasonal forecasts have had very minimal
impact as they remain largely un-adopted by smallholder
farmers in Zimbabwe. This occurs despite many smallholders
facing serious food shortages, with a significant proportion
perennially dependent on food-handouts. While studies in
developed countries reveal that farmers benefit substantially
from using seasonal forecasts (Easterling and Mjelde, 1987;
Solow et al., 1998; Mjelde et al., 2000), the benefits of using
seasonal forecasts by smallholder farmers in Zimbabwe (as well
as other countries in southern Africa) is not yet well established
(Vogel, 2000; Patt and Gwata, 2002; Makaudze, 2009).

Thus, the focus of this paper is on the assessment of the
economic value of seasonal climate forecasts to smallholder
farmers in Zimbabwe which might provide useful insights to
policy-makers and facilitate more debate on seasonal forecasts
and their potential role as risk mitigation tools. Such debates
are more pertinent given the perceived climate change and its
impact on millions of poor smallholder farmers in Zimbabwe
and other countries in southern Africa.

The structure of the remainder of the paper deals with the
methodology used for assessing the economic value of seasonal
forecasts, a discussion of the data sources, a presentation of the
simulation results derived from DSSAT v4 programme (Jones
et al., 2004) and a final conclusion.

2. Methodology

In view of the discussion above, the key objective of the
study is to assess the economic value of seasonal forecasts
to smallholder farmers in Zimbabwe. Forecast information is
useful when it helps the decision-maker change course, from
a less informed to a more informed position. In the context
of a farmer, a change of course could mean altering manage-
ment decisions such as changing fertilizer amounts, cultivar
type, planting date and plant population, among other issues.
However, to do this the presumption is that new information
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incorporated into the agent’s decision-making function must
alter management decisions. In other words, management deci-
sions become altered only as a function of new information
received. Thus, a decision process is characterized by the new
information about a stochastic event and how this interacts with
those variables under the decision-maker’s control.

There is a growing body of literature on the economic val-
uation of seasonal forecasts, starting from theoretical under-
pinnings of decision-making under uncertainty to the valuation
of forecasts on the basis of ex ante approaches (Mjelde and
Dixon, 1993; Meza et al., 2003; Hansen et al., 2006). Ex ante
approaches value seasonal forecasts using predictive models
that simulate a stochastic event (e.g. rainfall) and numerous
examples are found in literature (Mjelde et al., 2000; Reyes
et al., 2009; Hansen et al., 2010). Although in general, ex ante
approaches are informative, they can only offer a limited valua-
tion of what the forecast information is plausibly worth, because
they are largely normative (Msangi et al., 2006).

To construct the valuation model, one can start by discussing
the household decision-making theory using the framework
suggested by Rubas et al. (2006), who cast a decision-maker
using forecasts to influence farm decisions with the aim of
maximizing the underlying utility objective. Decision theory
assumes that preferences among risky alternatives can be
described by the maximization of a utility function. To present
the model mathematically, assume the farmer’s problem is to
maximize expected utility by choosing from a decision set using
only prior knowledge. Mathematically this can be generalized
as:

u(H) = max
D

Ec[u(D, c)h(c)] (1)

where max is the maximization operator, u(H) is the maximum
expected utility using climatological information; Ec represents
expectation operator for the range of climate conditions of
interest, c; h(c) represents the historical probability density
function of climate conditions; u denotes the utility function
and D the decision set. Embedded within this equation are
all other aspects that affect the decision process, such as risk
aversion, institutional factors and others.

When climate forecasts (Fi) become available, the proba-
bility density function of climate conditions is represented by
g(c|Fi). The decision maker’s maximization problem becomes:

ui(Fi) = max
D

E(c|Fi )[u(D, c)g(c|Fi)] (2)

where i represents the forecasts and Fi represents one of the
many possible forecasts. Expected utility covering the entire
forecast system, F , can be written as:

u(F ) = max
D

E[ui(Fi)Z(Fi)] (3)

where Z(Fi) is the probability density function associated with
the probability of each forecast.

Therefore, the value of the forecast system is:

V = u(F ) − u(H) (4)

where V represents the difference between the expected utility
with the use of seasonal forecasts versus the expected utility
using only prior knowledge. If V is in utility terms, the
difference in utility can be converted into monetary units using
certainty equivalence dollars (Mjelde and Dixon, 1993). If risk
neutrality is assumed, V could be interpreted in monetary units.
With the above approach, one is able to assess the value of using
climate forecasts.

Figure 1 illustrates a dateline of activities showing fore-
cast signals and the decision-making processes of a typical
smallholder farmer in Zimbabwe. The activity sequence is as
follows: (1) the rainfall season starts at the end of October,
peaks to maximum during January and February before it grad-
ually declines during March and ends in April; (2) by the end
of August the national department of meteorology broadcasts
forecasts for a pending season predicting rainfall outlook; upon
receiving the forecasts, a farmer makes crucial farm decisions
such as the size of land to cultivate, the selection of crop cul-
tivars, the fertilizer quantities to purchase, crop rotation and so
on; (3) forecasts are issued covering two growth stages: stage 1
refers to the first 3 months during the growing season (October-
November-December (OND)), a period which relates to early
germination and initial crop growth, and stage 2 refers to the
subsequent months of January-February-March (JFM), the most
critical phase in the crop growth cycle covering crop flower-
ing, pollination, grain-filling, maturation and resultant yield.
Further, because forecasts are offered in two stages (OND and
JFM) this provides the farmer with the flexibility to modify
actions, and (4) harvest time (April to May) ends with the real-
ization of the final seasonal output.

Seasonal climate forecasts have been broadcast/disseminated
in Zimbabwe (and likewise most countries in southern Africa)
since the 1997/1998 season. As discussed earlier, the forecasts
are routinely broadcast during August via several communica-
tion channels (radio, TV, print media, internet). As shown in
Table 1, the forecasts are issued as a three-pronged probabil-
ity format that underlies the likelihood of the season being an
above normal (good), below normal (bad) and a near-normal
(neutral) year. (Above-normal rainfall is defined as the wettest
33.3% of recorded rainfall amounts in each zone, normal is
defined as the middle 33.3% of the amounts and below normal
rainfall is the driest 33.3% of recorded rainfall amounts.)

September October November December January

Rain season starts
Farm season begins

Growing season
Adaptive action

Terminal value
Harvest output

Forecasts

Farm
Decision

Forecast signals
issued

February March

Stage 1
(OND)

Stage 2
(JFM)

Land preparation
Input decisions
Input purchases

Figure 1. Dateline of forecasts, growing season and realized output.
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Table 1. Seasonal forecasts issued by Drought Monitoring Centre for growing season 1997/1998 to 2011/2012.

Season ENSO signal Rainfall forecast probability

Oct-Nov-Dec Jan-Feb-Mar

Above N Normal Below N Above N Normal Below N

1997–1998 El Niño 0.20 0.40 0.40 0.13 0.35 0.53
1998–1999a – – – – – – –
1999–2000 La Niña 0.37 0.40 0.23 0.40 0.37 0.23
2000–2001 La Niña 0.45 0.33 0.25 0.35 0.45 0.20
2001–2002 Neutral 0.35 0.425 0.23 0.30 0.50 0.20
2002–2003 El Niño 0.30 0.40 0.30 0.25 0.40 0.35
2003–2004 Neutral 0.33 0.43 0.25 0.28 0.40 0.33
2004–2005 La Niña 0.30 0.40 0.30 0.25 0.40 0.35
2005–2006 Neutral 0.40 0.35 0.25 0.35 0.40 0.25
2006–2007 El Niño 0.25 0.40 0.35 0.30 0.40 0.30
2007–2008 La Niña 0.35 0.40 0.25 0.38 0.38 0.25
2008–2009 Neutral 0.30 0.40 0.30 0.30 0.40 0.30
2009–2010 El Niño 0.30 0.40 0.30 0.30 0.40 0.30
2010–2011 La Niña 0.35 0.40 0.25 0.35 0.40 0.25
2011–2012 El Niño 0.25 0.40 0.35 0.40 0.35 0.25

a Missing information. Source: Adapted from SARCOF statistics.

3. Data sources and assumptions

The study used two types of data: technical crop input and
daily weather data. Technical crop input data (shown in
Tables S1–S3) were obtained from two sources: the depart-
ments of Research and Specialist Services (R and SS) and
Agricultural Technical and Extension Services (AGRITEX).
Because of the diverse agro-ecological, soil and climatic condi-
tions prevailing across Zimbabwe’s landscape, the departments
of R and SS and AGRITEX have developed detailed crop
input management handbooks that provide extensive technical
details which document suitable cultivars, appropriate fertiliz-
ers/herbicides/chemical application rates, ideal planting dates,
proper plant space and plant population (see Tables S1–S3).
The data illustrates the recommended input levels across differ-
ent agro-ecological regions that allow the attainment of feasible
optimal yields, under ideal climatic conditions. This is referred
to as ‘traditional farm management’ practice throughout this
paper.

The second type of data includes the daily weather data on
rainfall, temperature (minimum and maximum), solar radiation
and evapotranspiration, obtained from the national department
of meteorology. The data are obtained for three typical seasons
that represent a drought/bad (El Niño), a good (La Niña)
and an average (neutral) season. In this regard, three specific
seasons (1991/1992, 2003/2004 and 2004/2005) are selected
that typically exemplify a bad, good and average season,
respectively. The data are obtained for four weather stations
(Harare, Masvingo, Mutoko and Bulawayo) each being a
representative of agro-ecological region II, III, IV and V,
respectively. (Zimbabwe is divided into five agro-ecological
or natural regions (NR) numbered I to V and which indicate
potential in terms of soil fertility, rainfall, soil-water balance
and moisture, which decreases as one ascends to higher regions
from NR I to NR V) Due to data constraints, analysis is limited
only to maize, the main staple.

The DSSAT v4 programme was used to run the various maize
simulations based on different weather conditions and man-
agement practices. A key feature of DSSAT is the ‘cropping
system model’ (CSM) that simulates crop growth and develop-
ment over time for individual crops based on phenology, daily

growth, plant nitrogen and carbon demand and senescence. The
DSSAT-CSM model requires three key inputs: weather input,
management input and soil input.

‘Weather input’ is essential for generating daily data for
weather variables (e.g., maximum and minimum temperatures,
solar radiation, precipitation, relative humidity, wind speed).
‘Soil input’ consists of three components: soil dynamics, which
computes soil characteristics, soil water, which computes soil
water processes including infiltration, runoff and water-table
depth, and soil nitrogen and carbon which computes soil
nitrogen and carbon processes, including organic and inorganic
fertilizers. ‘Management input’ characterizes when to plant,
harvest, apply inorganic fertilizers, apply crop residue and
organic materials, and to irrigate.

Seasonal forecasts are incorporated in the DSSAT pro-
gramme via the ‘management input’ options. Because man-
agement input offers a user the flexibility to alter management
practices, this provides an ideal option to explore the potential
impact of seasonal forecasts on yield outcomes. In this case,
three management practices are analysed based on forecasts pre-
dictions: change planting date; change crop variety and change
fertilizer amounts. For instance, if forecasts predict a below-
normal (or bad) season, farmers with forecasts (WF) can alter
management practices by planting early, growing short-season
and drought-resistant varieties, applying minimal amounts of
fertilizers, and so on. In contrast, farmers without forecasts
(WOF) rely on traditional management practices and in addi-
tion, drawing from own knowledge and experience. Comparing
yield performances between farmers WF and WOF, obtainable
under different management practices that characterize different
weather conditions, the paper establishes the potential economic
value of seasonal forecasts from the smallholder farmers’ per-
spective.

To keep the analysis tractable, some simplifying assumptions
are necessary. First, farmers WF are using the forecast informa-
tion for farm management decisions that optimize net returns
(yield per hectare, t ha−1, or net gross margin, US$ ha−1).
Second, farmers WOF rely on historical traditional knowl-
edge and experience to formulate management decisions that
maximize net returns (yield per hectare, t ha−1, or net gross
margin, US$ ha−1). Traditional management practices include
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detailed technical information provided by agronomic experts
(as discussed earlier). Third, for both categories of farmers (WF
and WOF), no herbicides, insecticides or other chemicals are
applied in the production process. Fourth, no labour costs are
considered. Fifth, a farmer’s risk behaviour is embedded in
the decision-making process. Sixth, assuming profit motive,
each farmer (whether WF or WOF) pursues an input strat-
egy that seeks to maximize the final outcome, referred to as
optimal input strategy throughout the paper. Alternatively, a
farmer can pursue an input strategy where no inputs (fertiliz-
ers/chemicals/insecticides) are applied, referred to as zero-input
strategy. Finally, all simulations are performed under the pre-
sumption that forecast information is perfect.

4. Discussion of results

This section presents the main results of the study. The
results show how maize yield changes in response to varying
farm management practices based on with and without fore-
casts assumptions (discussed earlier). The simulations are run
based on three farm management practices: change planting
dates, change crop cultivars and change fertilizer application
rates. The simulations are repeated for different seasons that
exemplify a bad (El Niño), good (La Niña) and an average
(neutral) year.

The first results illustrate simulated maize yields obtained
under weather conditions that characterize a drought year
(1991/1992) and are based on altering three management
practices (change planting dates, cultivar choice and fertilizer
application rates) showcasing both WF and WOF farmers.
The second and third cases are replicates of the first but
performed under weather conditions that underlie a neutral
(2003/2004) and good (2004/2005) season, respectively. In
each case, observed changes in maize yields are recorded
for the selected representative districts (Harare, Masvingo,
Mutoko and Bulawayo) drawn from NRs II, III, IV and V
respectively. Using this approach, three performance indicators

(yield gains/losses; net gross margin; return per dollar invested)
that underpin the economic value of seasonal forecasts are
derived and compared across regions/districts between WF and
WOF farmers.

4.1. First simulation results based on a drought year
(1991/1992)

The first round of results (Table 2) show maize yields
gains/losses across different agro-ecological regions for a
selected typical drought season, 1991/1992. Starting with wet
agro-ecological NR II (Harare district), results indicate that
under an optimal input management strategy, by planting early
farmers WF realize higher yields of 3.03 and 2.26 t ha−1 on
medium and long season maize varieties, respectively, which
translate to 13 and 7% higher yield performance than farmers
WOF but, in contrast, if a farmer WF responds by planting
late, s/he realizes lower yield levels of 0.94 and 2.05 t ha−1

on long- and medium-season varieties, respectively, compared
to farmers WOF, who are realizing higher yield levels (1.33
and 2.69 t ha−1) for the same varieties. The results suggest that
forecast information yields no additional value if it involves
late planting, especially in the wet regions NR II. The result
is sensible given the long- and medium-season varieties would
require longer days-to-maturity (145–170 days) which may not
be possible given late planting.

Under the zero-input management strategy, results show that
by planting early, farmers WF do realize higher yield gains
on both long (0.03) and medium-season (0.14) varieties than
WOF counterparts. However, similar to the observation above
there are no yield gains if farmers WF plant late compared to
farmers WOF.

With respect to semi-arid agro-ecological NR III (Masvingo
district), results indicate that under optimal input strategy, WF
farmers obtain higher yields by either planting early or late
compared to their WOF counterparts. By planting early, WF
farmers obtain higher yields of 13 and 29% on short- and
medium-season varieties, respectively. On the other hand, by

Table 2. Observed changes in maize yield for farmers WF and WOF under three management strategies during a typical drought season
(1991/1992).

Season District � Management strategies Yield gain/loss

� Fertilizer � Maize �Planting date % �
application variety

With forecasts (t ha−1) Without forecasts (t ha−1)

1991/1992 Early planting Late planting Traditional planting Early Late

NR II (Harare) Optimal-input Long 2.26 0.94 1.33 0.70 −0.29
Medium 3.03 2.05 2.69 0.13 −0.24

Zero-input Long 1.09 0.71 1.06 0.03 −0.33
Medium 1.32 0.97 1.16 0.14 −0.16

NR III (Masvingo)
Optimal-input Medium 1.83 1.90 1.42 0.29 0.34

Short 1.59 1.41 1.37 0.16 0.03
Zero-input Medium 0.74 0.55 0.55 0.35 0.00

Short 0.45 0.35 0.37 0.22 −0.05
NR IV (Mutoko)

Optimal-input Medium 2.53 2.42 2.72 −0.07 −0.11
Short 1.65 1.62 1.10 0.50 0.47

Zero-input Medium 0.90 0.77 0.73 0.23 0.05
Short 0.52 0.52 0.46 0.13 0.13

NR V (Bulawayo)
Optimal-input Short 1.78 1.76 1.59 0.12 0.11
Zero-input Short 0.28 0.12 0.15 0.87 −0.20
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planting late WF farmers obtain higher yield gains of 3 and
34% on short- and medium-season varieties, respectively. This
practice of planting early and/or late can be viewed as a risk
spreading or diversification strategy by farmers WF who may
choose to stagger planting dates so as overcome early or mid-
season dry-spell risks. It is important to emphasize that for
farmers WF all these decisions are being influenced and guided
by forecast signals. Under the zero input strategy, results show
yield gains for early planting on both medium- (35%) and short-
season (22%) varieties. However, there are no yield gains for
late planting. Figure 2 provides an overview of these results.

The results for the driest and most arid agro-ecological
regions, NR IV and V, show WF farmers recording yield gains
by either planting early or late and mostly for the short-season
varieties. In particular, the highest yield gain (87%) is recorded
in NR V under the zero-input strategy. This big difference in
yield gains emphasizes the potentially important role forecasts
could play as drought mitigation tools especially in arid regions,
where most farmers are located and suffer severely due to
drought impact.

4.2. Second simulation results based on neutral (average)
year (2003/2004)

The second run of simulations replicates the first case (discussed
above) but under different weather conditions that characterize a
neutral/average year (2003/2004). Figure 3 presents a graphical
view of the results. Looking at wet region, NR II, farmers
WF realize significant yield gains on both long- and medium-
season varieties by either planting early or late compared to a
counterpart WOF. The highest yield gain (115%) is recorded
on long-season varieties when farmers plant late under the
optimal input strategy. Under the zero-input strategy, yield
gains are realized on long-season varieties for both early and
late planting, unlike for the medium-season varieties.

The results for NR III show no yield gains (under the optimal
input strategy) whether by planting early or late, but modest
yield gains are observed under the zero-input case during
both early and late planting. The results for NR IV show no
yield gains accruing to WF farmers either by planting early
or late under both the optimal and the zero-input management
strategies. In the case of the driest NR, V, short-season varieties

Figure 2. Observed maize yield gain/loss by natural regions (NR II–V) for long (LS), medium (MS) and short (SS) season varieties under
optimal-input and zero-input strategies in 1991–1992 (drought/El Niño season).
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Figure 3. Observed maize yield gain/loss by natural regions (NR II–V) for long (LS), medium (MS) and short (SS) season varieties under
optimal- input and zero-input strategies in 2003–2004 (average season).

show positive yield gains mostly under the zero-input strategy
for both early and late planting (see also Table S4).

4.3. Third simulation results based on good year (2004/2005)

The third run of simulation results are based on weather
conditions that characterize a good rainfall season with results
shown in Figure 4. As expected, most regions (except arid
NR V) record high yields per hectare due to favourable weather
conditions. However, results show farmers WF failing to
outperform counterparts WOF as there are no yield gains across
most regions. For instance, the long-season varieties show no
yield gains by either planting early or late in NR II under the
optimal input strategy. It is only the medium-season varieties
that record significant yield gains.

The pattern is also true for NR III where (except for
the medium-season variety) the short-season variety fails to
dominate under both optimal- and zero- input strategies for WF
farmers. These observations are the same for NR IV (except for
the zero-input strategy) as there are no significant yield gains
for WF farmer. Likewise, a similar pattern is observed in arid
NR V, where results indicate no yield gains for either early or
late planting under both the optimal- and zero-input strategies
(see also Table S5).

In sum, the simulation results discussed above indicate the
following. For a good rainfall season, regardless of whether
pursuing an optimal- or zero- input strategy, farmers WF across
most regions record no significant yield gains compared to
counterparts WOF. The opposite is true during a bad rainfall
season, as farmers WF obtain higher yield gains, especially
following early planting. For a neutral/average season, while
most regions record no significant gains, it is in NR II where
higher yield gains are recorded.

4.4. Value assessment of seasonal forecasts

Based on the simulation results above, the final section presents
an assessment of the economic value of seasonal climate fore-
casts to smallholder farmers. For this purpose, two indicators
are derived and used to gauge the economic value of forecasts:
net yield gain/loss based on WF/WOF, and gross margin net
return per dollar invested (US$ ha−1).

4.4.1. Value assessment using net yield gains/losses

Using WF/WOF results based on the optimal- and zero-input
management strategies discussed above, net yield gain/loss
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Figure 4. Observed maize yield gain/loss by natural regions (NR II–V) for long (LS)-, medium (MS)- and short (SS)-season varieties under
optimal-input and zero-input strategies in 2004–2005 (La Niña/good season).

across growing seasons (bad, good and average) and agro-
ecological regions (NR II–V) are computed and summarized in
Table 3. From the results, the following observations are made.
The highest overall net yield gain (28%) is recorded during
the drought year (1991/1992); this is followed by yield gain
of 20% during an average/neutral year (2003/2004); no yield
gains (−31%) are recorded during a good year (2004/2005). In
addition, the following observations can be made: for a drought
year, NR V records the highest yield gain (49%); while for a
good year, there are no yield gains observed across most regions
except in NR II where high yield gains are recorded (26 and
71%) for both early and late planting.

The results underscore some important implications. Sea-
sonal forecasts are potentially of great value for farmers located
in the most arid regions (NR V) particularly during a drought
(El Niño) year. Except for NR II, all regions record negative
yield gains during a good year (La Niña), implying that fore-
casts may not make much difference given a good year. It
is only in wetter NR II that forecasts matter most during a
good year. This is sensible, as farmers in better agro-ecological
regions would exploit the available forecast information to
optimize returns for a predicted good year. When aggregated

across all seasons and regions, farmers WF are better off over-
all, as they realize a net yield gain of 17.7% compared to
farmers WOF.

4.4.2. Value assessment using net margin return (US$ ha−1 )

The second approach to valuing seasonal forecasts involves
using gross margin analysis. The detailed gross margin values
(US$ ha−1) based on simulated maize yields for the bad, good
and neutral seasons are shown in Table S6. A summary of
the net return gross margin values are shown in Table 4. The
results indicate that for a drought year (1991/1992), WF farmers
growing medium-season varieties realize the highest overall
net return of US$ 0.52 ha−1 compared to WOF counterparts
who realize US$ 0.26 ha−1, but this is not the case with long-
season varieties as both WF and WOF farmers incur losses
of US$ 0.10 ha−1 and US$ 0.46 ha−1, respectively. This result
indicates that although both categories of farmers suffer losses
due to drought, it is those WOF who suffer most. In particular,
farmers WOF located in higher agriculturally potential regions
(NR II), growing long-season varieties, are the worst affected.

For short-season varieties, on the other hand, farmers WF
realize modest net returns of US$ 0.04 ha−1 compared to losses
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Table 3. WF/WOF proportionate maize yield changes by natural region
(NR) for the selected seasons.

Season WF yield gain/loss Overall

NR Early planting Late planting Net

1991/1992 II 0.25 −0.26 −0.01 –
III 0.25 0.08 0.33 –
IV 0.20 0.14 0.34 –
V 0.49 −0.05 0.41 0.28

2003/2004 II 0.28 0.43 0.71 –
III −0.03 0.02 −0.01 –
IV −0.06 0.05 −0.01 –
V 0.00 0.10 0.10 0.20

2004/2005 II 0.04 0.22 0.26 –
III −0.16 −0.05 −0.21 –
IV −0.06 −0.02 −0.08 –
V −0.58 −0.63 −1.21 −0.31

to farmers WOF (US$ 0.25 ha−1). When aggregated across all
varieties, results show farmers WF realizing overall net returns
of US$ 0.14 ha−1, unlike their WOF counterparts who incur
negative returns (US$ 0.15 ha−1). A rather important message
the results imply is that farmers with forecasts will have the
ability to undertake strategic decisions to help avert otherwise
severe losses, particularly during extreme drought years.

For a neutral year (2003/2004), results show both WF and
WOF farmers recording mostly positive net returns. However,
farmers WF are predominantly realizing higher overall net
returns for all varieties. In particular, the medium-season vari-
eties record the highest net returns (US$ 0.94 ha−1), followed
by short-season varieties (US$ 0.28 ha−1), with the long-season
varieties recording the lowest net returns (US$ 0.08 ha−1).
Similar to the observations above, farmers WOF growing long-
season varieties (those in NR II) experience the heaviest losses,
of US$ 0.46 ha−1. Overall net results indicate farmers WF real-
ize three times more returns (US$ 0.45 ha−1) than farmers WOF
(US$ 0.15 ha−1).

Results for a good year (2004/2005) show a different picture
compared to the drought and neutral seasons discussed above.
In this case, farmers WOF realize higher returns on all varieties
(except medium) and across most regions. Specifically, short-

and long-season varieties record higher net returns of US$ 0.62
and 0.55 ha−1 respectively. Overall results indicate farmers
WOF realize higher net returns of US$ 0.85 ha−1 compared
to their WF counterparts (US$ 0.75 ha−1). Because farmers
WOF outperform their counterparts WF, the result suggests that
forecasts may not make much difference during a good year.

5. Conclusions

This study demonstrates the potential value of seasonal fore-
casts to smallholder farmers in Zimbabwe, the majority of
whom endure heavy losses due to adverse weather, particularly
drought. Some important insights can be drawn from the study.
First, if the underlying season is a bad one (implying an El Niño
year), forecasts play an important role as ‘loss-mitigation’
instruments. As the results indicate, by changing planting dates
(early/late), applying appropriate fertilizer rates (optimal/zero)
and using suitable maize cultivars (short-, medium- and long-
season varieties) farmers with seasonal forecasts (WF) are able
to reduce and/or minimize yield losses across most regions. In
particular, losses could be severe for farmers in the better agro-
ecological region (NR II), who are bound to invest substantial
amounts of money in inputs (seeds, fertilizers, chemicals).

Second, forecasts are likely to promote ‘strategic-behaviour’
which could prove vital for reducing vulnerability of small-
holder farmers to catastrophic drought events. As implied by
the results, this is particularly true in arid regions NR IV–V,
where, by engaging in zero-input strategy and growing short-
season varieties, farmers WF are able to realize positive yield
gains despite an extreme drought season.

Third, if, on the other hand, the underlying season is a
good year, no yield gains are observed across most regions
(except NR II), suggesting that forecasts may not make much
difference.

In conclusion, to attain full economic value of forecasts,
complementary policies (currently missing) such as effective
communication, improvement in forecast extension skills, fore-
cast education and promotion of farmer participatory and out-
reach activities, could prove vital in enhancing the value of
forecasts to smallholder farmers in Zimbabwe and many other
African countries.

Table 4. Comparison of net return values ($ ha−1) by natural region (II–V) for selected growing seasons between WF/WOF.

Season Variety Net return ($ ha−1) Overall

V IV III II

WF WOF WF WOF WF WOF WF WOF WF WOF

1991/1992 SS 0.21 0.09 −0.01 −0.08 −0.15 −0.26 – – 0.04 −0.25
MS – – 0.34 0.43 −0.07 −0.29 0.25 0.12 0.52 0.26
LS – – – – – – −0.10 −0.46 −0.10 −0.46

Net 0.14 −0.15
2003/2004 SS 0.14 0.03 0.04 0.07 0.10 0.14 – – 0.28 0.24

MS – – 0.49 0.27 0.71 0.81 −0.26 −0.48 0.94 0.69
LS – – – – – – 0.08 −0.47 0.08 −0.47

Net 0.43 0.15
2004/2005 SS −0.19 0.13 −0.09 0.14 0.16 0.35 – – −0.12 0.62

MS – – 0.44 0.46 0.75 0.58 0.80 0.34 1.99 1.38
LS – – – – – – 0.44 0.55 0.44 0.55

Net 0.77 0.85
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