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ABSTRACT: Spatial techniques have been developed to quantify the performance of a system beyond the classical point-
to-point comparison with observations. Including spatial neighbourhood information in the verification process, the quality
of a forecast can be better characterized. Guidance for the interpretation of deterministic forecasts can also be delivered.
This paper investigates the application of spatial techniques to ensemble forecasts. The aim is to assess ensemble forecast
skills better and to provide improved guidance to the forecasters in the form of refined probabilistic products. Two spatial
techniques are applied to precipitation forecasts derived from an ensemble system at the convective scale (COSMO-DE-
EPS). The first technique is a smoothing method which enlarges the ensemble sample size by neighbouring forecasts. The
resulting forecasts are called fuzzy probabilistic forecasts. The second method is an upscaling procedure which modifies
the reference area of the probabilities. Fuzzy and upscaled probabilistic forecasts are assessed over a 3 month period
covering summer 2011. The impact of smoothing and upscaling is investigated for a range of neighbourhood sizes and
spatial scales respectively. Based on the verification results, recommendations are drawn how to use these techniques in

optimally presenting COSMO-DE-EPS probabilistic products to forecasters who issue weather warnings.
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1. Introduction service (DWD), an EPS based on the convection-permitting

In recent years, numerical weather prediction (NWP) models
have gone to smaller and smaller grid sizes. Within the last
Syears, the grid size of many limited-area models has become
fine enough to allow an explicit representation of convective
processes (Baldauf ef al., 2011, and references within). This
aims at an improved simulation of convection-related weather
such as strong wind gusts and heavy precipitation. These
improvements are highly relevant for the quality of severe
weather warnings.

However, apart from the obvious benefits, the smaller grid
size creates a challenge in terms of predictability. The ability
of a system to resolve small scales results in forecast errors
that grow rapidly (Lorenz, 1969). Convective processes are
non-linear and strongly affected by uncertainties. Therefore,
precipitation-related forecasts of convection-permitting models
should be produced and interpreted within a probabilistic
framework.

On the numerical weather prediction side, ensemble fore-
casting is today a standard strategy adopted to deal with
forecast uncertainties (Lewis, 2005). For limited-area models,
variations in boundary condition, initial condition, physics
parameterization and/or dynamics formulation aim to reflect
the uncertainties related to the forecasting process. Ensemble
forecasting derives a probabilistic view from a sample of
deterministic forecasts, thereby providing information about
the degree of predictability.

Many weather prediction centres are therefore developing
ensemble prediction systems (EPS) at the convective scale
(Clark et al., 2009; Vié et al., 2011). At the German weather
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model COSMO-DE has been operational since May 2012
(Gebhardt et al., 2011). This is one of the first operational
convection-permitting EPSs worldwide. Because it is a new
development and since the ensemble forecasts certainly do not
have perfect quality, it is now necessary to learn how to use
the forecasts optimally for weather warnings.

On the verification side, spatial verification methods have
been developed, to assess precipitation forecasts from high-
resolution models, accounting for limited predictability (Ebert,
2008). They put a grid point forecast into its spatial context. The
idea is to relax the necessity of exact matching between fore-
cast and observation. The uncertainty inherent to the forecast is
integrated a posteriori following approaches inspired by ‘fuzzy
logic’ (Zadeh, 1965). An event is seen as occurring somewhere
within an area rather than at an exact location or with a certain
probability of occurrence rather than in binary terms (yes or no).
Neighbourhood approaches, which compare statistical proper-
ties of forecast and observation fields within a spatial neigh-
bourhood (Gilleland et al., 2009), are explored in this paper.

The same spatial technique can be used in the context of
verifying a forecast and in the context of providing forecast
guidance to the forecaster. For example, comparing the frac-
tional occurrence of events within a spatial window, Roberts
and Lean (2008) define a new metric to assess the perfor-
mance of a deterministic forecast: the Fractions Skill Score.
Their approach derives a ‘scale of usefulness’ in order to avoid
a naive point-based interpretation of a deterministic precipita-
tion forecast (Roberts, 2008; Roberts and Lean, 2008). This
is a syncretic example of the duality of the spatial techniques
applications: forecast verification and forecast guidance.

Moreover, the generically similar technique (statistics within
a spatial window) can be applied in a different manner
leading to complementary information. Considering the near
neighbourhood forecasts as possible realizations of a local grid
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point forecast, Theis et al. (2005) derive a probabilistic forecast
guidance from a single forecast. The spatial technique aims here
at representing the spatial uncertainty at the grid-scale while the
Roberts and Lean (2008) approach estimates the smallest scale
at which the spatial variability can be considered as useful.
Scale of usefulness and grid point probabilistic forecasts derived
from spatial neighbourhoods are complementary guidances that
contribute to the forecast interpretation. However, Theis et al.
(2005) go one step further in terms of forecast guidance by
generating refined forecast products presented to the forecaster.
The present paper follows along this line and explores spatial
techniques in terms of verification and refined forecast products,
now with the focus on a convective-scale ensemble system.

Schwartz et al. (2010) have already taken the step to apply
the Theis et al. (2005) approach to ensemble forecasts. The
resulting probabilities correspond to a spatially smoothed ver-
sion of the raw probabilities which are directly derived from
the ensemble members at each grid point. This smoothing pro-
cedure can be seen as a computationally inexpensive method
to enlarge the ensemble sample size by including the spa-
tial neighbourhood forecasts of all members in the probability
computation (Ben Bouallegue et al., 2013). It has been shown
(Schwartz et al., 2010; Ben Bouallegue et al., 2013) that the
smoothing has a positive impact on the probabilistic forecast
skill, in particular in terms of reliability but also to some extent
in terms of resolution. However, the relationship between ben-
efits and size of the spatial neighbourhood as well as the limit
of the method still have to be explored.

Smoothing inevitably reduces the sharpness in the forecasts,
i.e. probabilities close to 0 or 100% will occur in fewer cases.
This may be the correct thing to do, because it corresponds to
the inherently low predictability. However, in many situations
the forecast needs to reach some level of certainty before it
may be used for a weather warning in practice. Therefore, this
paper investigates yet another spatial technique which we call
‘upscaling’.

‘Upscaling’ aims to alleviate the problem of low predictabil-
ity by changing the spatial scale of the forecast output. In
weather forecasting, a spatial scale and a time window are
often associated with the prediction, e.g. the probability that it
will rain anywhere within a specific region and anytime within
a specific time interval. This reference area and time must be
known in order to interpret the forecast correctly (cf Gigerenzer
et al., 2005). For example, Epstein (1966) described the rela-
tionship between point and area probabilities for idealized cases
and warned against confusion between these two kinds of fore-
cast. The reference area of an ensemble probabilistic forecast
can be modified through an upscaling procedure as described
for verification purposes by Marsigli et al. (2008). Choosing
the maximum value of each member within pre-defined spa-
tial windows, new probabilistic products can be derived and
interpreted as the probabilities that an event occurs anywhere
within the selected windows. The forecast is still produced by
the fine-scale model and still retains its benefits such as the
occurrence of heavy precipitation which may only be captured
by a convection-permitting model. However, the resulting fore-
cast is formulated for a larger area and time window than the
original grid size and the original time interval of the model
output. For example, one could look at the probability of heavy
precipitation anywhere within the region of Berlin and anytime
within the afternoon.

This paper explores how two spatial techniques can better
characterize the performance of an ensemble forecasting system
and how they can be used to provide guidelines for the
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generation of more skillful probabilistic products. The first
technique is the spatial neighbourhood and aims at improving
the probabilistic forecast at grid scale. The second technique is
the spatial upscaling procedure and aims at omitting the fine-
scale information when issuing a probabilistic forecast product.
The techniques are applied independently and are meant to
provide two separate types of products. These products may
then combine well to form a consolidated forecast guidance.

Smoothing and upscaling are applied here to precipitation
forecasts derived from the COSMO-DE-EPS, an ensemble pre-
diction system at the convective scale. Verification is performed
for a range of spatial parameters, i.e. neighbourhood envi-
ronment and window sizes, over a 3 month period covering
summer 2011.

The rest of this manuscript is organized as follows: Section 2
describes the convection permitting ensemble COSMO-DE-
EPS and the application of the two spatial techniques. Section 3
presents the dataset and verification methodology. Section4
shows and discusses the results. Section 5 concludes and gives
an outlook.

2. Ensemble and spatial techniques

2.1. COSMO-DE-EPS

An EPS at the convective scale has been developed at
DWD and has been operational since May2012 following
a pre-operational phase of one and a half years. Based on
the convection-permitting model COSMO-DE, a 2.8 km grid-
spacing configuration of the COSMO model (Steppeler et al.,
2003; Baldauf et al., 2011), COSMO-DE-EPS resembles the
basic ideas of a multi-model approach including variations of
lateral boundary conditions, model physics and initial con-
ditions. Details about the variations setup can be found in
Gebhardt er al. (2011) and Peralta et al. (2012). The ensem-
ble forecasts cover Germany and have lead times up to 21h.
The forecast update follows a cycle of 3h. The results within
this paper focus on the 0000 UTC run.

The (pre-)operational version of COSMO-DE-EPS comprises
20 members. Probabilities are generated by applying a frequen-
tist approach: all members are considered as equally prob-
able and then contribute to the probability calculation with
equal weights. An example of a probabilistic forecast derived
from COSMO-DE-EPS is provided in Figure 1. It shows the
probability of precipitation exceeding 10 mm (6h)~!, valid on
22 June2011 at 1800 UTC. The probabilistic forecasts based
on a sample size of 20 members and with a spatial scale cor-
responding to the model grid size (2.8 km) are called hereafter
‘original’ probabilistic forecasts.

2.2.  Smoothing

The smoothing procedure followed here is an application of
the neighbourhood method (Theis et al., 2005). It consists of
considering spatial neighbourhood forecasts as possible real-
izations of a forecast at a particular grid point. Schwartz et al.
(2010) have shown that neighbourhood ensemble-based proba-
bilities can be defined as the mean probabilities within a given
environment around each grid point. From the ensemble fore-
cast perspective, the neighbourhood method can be considered
as a way to increase the sample size of the ensemble at low
computational cost (Ben Bouallegue et al., 2013).

In this study the spatial environment is defined as circular
and it is characterized by a size parameter called radius of
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Figure 1. Example of 22 June 2011 valid at 1800 UTC for a threshold of 10mm (6h)~!. (a) COSMO-DE-EPS probabilistic forecast, (b) fuzzy
probabilistic forecast for a radius of influence of 10 grid points (28 km), (c) upscaled probabilistic forecast for windows of 10 by 10 grid points
(28 by 28 km).

influence. An example of neighbourhood ensemble-based
probabilistic forecast considering a radius of influence of 10
grid points (28km) is shown in Figure 1(b). This forecast is
a smoothed version of the original field (Figure 1(a)). Both
of them have the same spatial reference (2.8 km) and it can
be noted that all the information needed to construct the
smoothed field is already contained in the original one. The
neighbourhood ensemble-based probabilistic forecasts are
hereafter called ‘fuzzy’ probabilistic forecasts.

2.3. Upscaling

The upscaling approach followed here consists of changing the
reference area of a probabilistic forecast in terms of spatial
scale. Practically, an event defined as ‘precipitation exceeding
(below) a certain threshold” is considered, the maximum
(minimum) precipitation value of each ensemble member within
predefined windows is taken as the precipitation sample field at
the new spatial scale. New probability fields are then calculated
from those values following a frequentist approach similar
to that for the original probabilistic forecasts. The derived
probabilities can be interpreted as referring to an event that
occurs anywhere within the selected windows.

An example of upscaling is provided in Figure 1(c) for win-
dows of 10 by 10 grid points (28 by 28 km). The COSMO-DE
domain is divided into squared windows. The scale of validity
of the probabilistic forecast after upscaling is 28 km, while it
is 2.8km for the original probabilistic forecast (Figure 1(a)).
In contrast to the smoothing procedure which can be applied
directly to a probability field (by taking the average probability
over a given region, Section2.2), the upscaling procedure
cannot infer the resulting probabilities directly from the grid
point probabilistic forecasts. The probability that an event will
occur anywhere within a given region is not just a function of
the probabilities that the event will occur in its sub-regions.
The upscaling procedure really has to draw the information
from the single ensemble members (not shown), because
the spatial coherence within the precipitation field plays an
additional role. The probabilistic forecasts at the new selected
scale are hereafter called ‘upscaled’ probabilistic forecasts.

Note that the choice of the squares for the upscaled product
allows the probabilities to be plotted on a coarse grid (squares)
which directly marks the reference areas of the probabilities
without any spatial overlap (Figure 1(c)). This kind of visual-
ization has shown to be a good method in practice, because it
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reminds the forecasters that these are ‘area’ probabilities instead
of ‘grid point’ probabilities. For the smoothing approach, such a
‘reminder’ is not necessary, because the resulting probabilities
still refer to the model grid points anyway. For the smoothing,
circles are used instead of squares, because the resulting fields
look better, without any artificial edges in the probability field.

3. Dataset and verification measures

3.1. Dataset

The COSMO-DE-EPS forecasts are assessed over a period of
3 months (June, July, August) which covers summer2011.
Precipitation accumulated over 6h is investigated and verified
against gauge adjusted radar precipitation estimates. This
observational dataset combines hourly values point-measured
at the precipitation stations with the areal precipitation data of
16 weather radars (Weigl and Winterrath, 2009). Verification
of original and fuzzy forecasts is performed at the model grid
scale. When upscaled probabilistic forecasts are assessed, the
upscaling procedure is also applied to the observations: the
maximum value of the observation field within the predefined
windows is taken as the observation field at the new scale.
This requires a sufficiently dense observation network, which
motivates the choice to verify the forecasts against radar-type
observations rather than rain gauges.

3.2. Verification measures

The effect of the spatial techniques is measured by standard
tools of probabilistic verification (Wilks, 2006). In the frame-
work of probabilistic verification, the two main attributes that
contribute to the quality of a forecast are reliability and res-
olution. The reliability of a forecast assesses the agreement
between the forecast probability and the mean observed fre-
quency (conditional on the forecast probability), while the reso-
lution describes the ability of the forecast to distinguish between
event and non-event. More attention is given to resolution than
to reliability, because resolution is a more fundamental prop-
erty. Toth et al. (2003) state that ‘the intrinsic value of forecast
systems lies not in their reliability [...] but in the resolution
[...]. Reliability can still attain a substantial improvement
through post-processing techniques using training data from
past forecasts and observations (Gneiting et al., 2007).

Meteorol. Appl. 21: 922-929 (2014)
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In this study, several quality measures are applied. The
decomposition of the Brier Score provides the reliability
and resolution. The reliability diagram directly shows the
agreement between forecast probability and relative frequency
of the observed event. The relative operating characteristic
(ROC) is used to evaluate the resolution of forecasts at
different scales. The ROC curve plots hit rate versus false
alarm rate using a set of increasing probability thresholds. The
ROC area, the area under the ROC curve, is calculated using
a trapezoidal approximation. A probabilistic forecast with a
ROC area greater than 0.7 is generally considered ‘useful’
while a ROC area greater than 0.8 indicates a ‘good’ prediction
(Mullen and Buizza, 2002).

A third attribute, the sharpness, is also computed (following
Mason, 2004). Sharpness is a property of the forecast only and
measures the ability of a system to provide forecasts far from
the climatological frequencies.

Reliability and resolution gains as well as sharpness loss
(Ben Bouallegue et al., 2013) are computed to compare the new
products to a reference forecast. It is important to note that the
probabilistic forecasts are always compared at the same scale
since the BS decomposition is only meaningful if all samples
share the same climatology (Hamill and Juras, 2006).

Reliability diagram, Brier Score decomposition and ROC
area estimation require a discretization of the issued proba-
bility forecasts. A fixed number of probability categories is
considered here (11 bins) and they are defined as P < 0.05,
0.05<P <0.15, ..., 0.85<P <0.95, P>0.95. This binned
approach alleviates the sensitivity of the scores to the ensemble
size (Buizza et al., 1999).

4. Results and discussion

4.1. Fuzzy probabilistic forecasts

The smoothing has substantial impact on reliability and sharp-
ness. This is demonstrated in Figure 2 which shows reliability
diagrams for two precipitation thresholds (1 mm (6h)~! and
10mm (6 h)~!). The original probabilistic forecast is compared
to fuzzy probabilistic forecasts considering two smoothing

(a)
100 T T T T T /':

107

108 \ y
.

10°

10*
1

Observed Relative Frequency (%)

0 20 40 60 80 100
Forecast Probability (%)

925

intensities (radii of 30 and 60 grid points). For a threshold of
I mm (6h)~!, nearly perfect reliability (reliability curve near
the diagonal) is reached when applying smoothing with a size
parameter of 30 grid points. A loss of sharpness is simulta-
neously perceived, in that fewer probabilistic forecasts fall in
high probability categories and more in categories near the cli-
matological frequency. An increase of the radius of influence
to 60 grid points decreases further the sharpness and rotates
the reliability curve anti-clockwise around the climatological
frequency. This indicates a tendency to move from underdisper-
sion towards overdispersion. For a threshold of 10mm (6h)~!,
the smoothing has a positive impact on the reliability for both
radii (30 or 60 grid points) but the loss in sharpness is much
more pronounced for a radius of 60 grid points.

So far, these results reflect the typical trade-off between
improved reliability and decreased sharpness. Figure 3 further
elucidates this trade-off, showing reliability gain and sharpness
loss for two thresholds (1 mm (6h)~! and 10mm (6h)~1), as
a function of the radius of influence. The gain in reliability
increases rapidly with the radius of influence and reaches its
maximum at around 40 grid points for both thresholds while
the sharpness loss increases linearly with the radius of influence.

Figure 3 also shows the gain in resolution which deserves
our special attention (Section3.2). Resolution improves by
the neighbourhood method but the maximum gain is much
smaller (less than 20%). Apparently, the COSMO-DE-EPS
probabilistic forecast slightly benefits from the uncertainty
information which is mimicked by the spatial variability within
the individual ensemble members. In other words, COSMO-
DE-EPS is improved by adding some ‘uncertainty in location’.

Furthermore, Figure3 shows that the maximum resolution
gain is reached for smaller size parameters than for the reliabil-
ity gain. This raises the question of an optimal size parameter.
An optimal choice of the smoothing intensity certainly depends
on the user’s individual ability to tolerate a lack in reliabil-
ity, sharpness or resolution. Further guidance from verification
results is provided by Figure4. It compares the performance
of the ensemble system (COSMO-DE-EPS) to the performance
of the deterministic one (COSMO-DE) after applying the same
smoothing to both issued forecasts. Probabilities derived from
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Figure 2. Reliability diagrams for thresholds of (a) 1 mm (6h)~! and (b) 10mm (6 h)~'. The black lines represent the original COSMO-DE-EPS

reliability curves. The dark grey and light grey lines correspond to fuzzy probabilistic forecasts derived by smoothing considering radii of

influence of 30 grid points (84 km) and 60 grid points (168 km) respectively. The inset plots show the frequency of usage of each probability
category where the vertical lines represent the climatological frequency.
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Figure 3. Reliability gain (dashed lines), resolution gain (dotted lines) and sharpness loss (full lines) as a function of the radius of influence,
size parameter of the smoothing procedure (expressed in grid points and km) for thresholds of (a) 1 mm [6 h]~' and (b) 10 mm [6 h]~'. The
reference forecast is the original COSMO-DE-EPS forecast.
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Figure 4. Brier Skill Score as a function of the radius of influence, size

parameter of the smoothing procedure. The ensemble COSMO-DE-

EPS forecasts are compared to the deterministic COSMO-DE forecasts

when the neighbourhood method is applied simultaneously to both of

them. The circles refer to a threshold of 1 mm (6h)~" and the triangles
to a threshold of 10mm (6h)~!.

a sample based on ensemble members and neighbourhood fore-
casts are compared to probabilities derived from a sample
based on neighbourhood forecasts only. Figure4 shows Brier
Skill Scores of the fuzzy probabilistic forecasts considering the
‘fuzzy deterministic’ forecasts as reference.

The results show that the Brier Skill Score deteriorates
with increasing smoothing intensity. The smoothing leads to a
decreased benefit of the ensemble relative to the single forecast.
The results imply that the application of the neighbourhood
to the single forecast already explains a great fraction of the
uncertainty which is represented in the smoothed probabilities
of the ensemble.

For the higher precipitation threshold, the Brier Skill Score
becomes zero at a radius of around 40 grid points (Figure4).
At this point the fuzzy probabilistic forecasts have the same
quality as the ‘fuzzy deterministic’ forecasts. The smoothing
intensity starts to dominate and conceal the quality of the
uncertainty information coming from the ensemble. This is
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not desirable, because the smoothing is only meant as an add-
on to the ensemble technique and not as a replacement. It is
noted that ‘the benefit of the ensemble system is lost” when a
forecast of similar quality can be achieved by simply applying
the neighbourhood method to a single forecast. Similarly to the
result in resolution gain (Figure 3), the results in Brier Skill
Score (Figure4) indicate that a size of 40 grid points would be
too large and recommend a choice which is more moderate.

4.2. Upscaled probabilistic forecasts

Figures5 and 6 show the impact of the upscaling on the
ensemble probabilistic forecasts in terms of resolution (cf
Section 3.2). Figure5 shows ROC curves for two thresholds
(Imm (6h)~! and 10mm (6h)~") at three different window
sizes (2.8, 28, 56 km). The corresponding ROC areas are also
noted. For a threshold of 1 mm (6h)~!, the upscaling has low
impact: false alarm rate and hit rate increase with the window
size in such a way that the ROC areas are similar for all cases.
For a threshold of 10mm (6h)~!, the ROC area increases
from 0.81 at 2.8km to 0.88 at 56km. This is a substantial
improvement, so the increase of the probabilistic forecast
scale of interpretation leads to a much better differentiation
between event and non-event. These results indicate that
especially forecasts of large precipitation thresholds benefit
from upscaling.

Figure 6 further elucidates the impact of the window size
and concentrates on higher precipitation thresholds. ROC areas
as a function of the upscaling window are shown for two
precipitation thresholds (10mm (6h)~! and 20mm (6h)~!).
These thresholds are part of the warning criteria used by
forecasters at DWD. For both thresholds, Figure 6 shows that
the ROC areas increase linearly with the window size up to 25
by 25 grid points (70 km). For larger window sizes, a limit is
reached. Forecasts at larger scales have no better performance
in terms of resolution. For the higher threshold (20 mm (6 h)~!),
the ROC area exceeds 0.8 for window sizes greater than 15 by
15 grid points (42km). In other words, the prediction system
is able to show ‘good’ performance (cf Section3.2) when the
information is related to events occurring within squared boxes
of length equal or greater than 42 km.

Meteorol. Appl. 21: 922-929 (2014)
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Figure 5. ROC curves and area for thresholds of (a) 1 mm (6h)~!' and (b) 10mm (6h)~!. In black, the results for the raw COSMO-DE-EPS. In
dark grey and light grey, the results of the upscaled probabilistic forecasts considering squared windows of 10 by 10 grid points (28 by 28 km)
and 20 by 20 grid points (56 by 56 km), respectively.
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Figure 6. ROC area as a function of the window size used for the
uspcaling process. The triangles refer to a threshold of 10 mm (6h)~!
and the squares to a threshold of 20mm (6h)~!.

Apparently, forecast quality benefits from shifting the focus
away from the specific location towards a somewhat broader
region. This, of course, comes at the cost of omitting fine-scale
information. So the optimal choice of a window size would not
only depend on verification results, but also on the user’s need
for high-resolution information which is only retained using a
fairly small window size.

Similarly to the smoothing procedure (Section4.1), also the
upscaling is meant as an add-on to the ensemble technique
which should not conceal the quality of the ensemble. So
in analogy to Figure4, it is checked whether the ensemble
still outperforms the deterministic forecast after applying
upscaling to both forecasts. Figure 7 shows Brier Skill Score
of the upscaled ensemble forecast using upscaled deterministic
forecasts as reference. Results for three thresholds (1 mm
(6h)~', 10mm (6h)~!, 20mm (6h)~!) are plotted as a
function of the upscaling window size. For all investigated
scales, the upscaled probabilistic forecast performs better

© 2013 Royal Meteorological Society
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Figure 7. Brier Skill Score (BSS) as a function of the uspcaling
window size. BSS compares the ensemble COSMO-DE-EPS forecast
to the deterministic COSMO-DE forecast. The upscaling is applied
simultaneously to both of them as well as to the observation field. The
circles refer to a threshold of 1 mm (6h)~!, the triangles to a threshold
of 10mm (6h)~! and the squares to a threshold of 20mm (6h)~!.

than the upscaled deterministic forecast. The benefit of the
ensemble technique is not affected by changing the reference
area; it is still present even after the exclusion of small-scale
variability in the forecast. So COSMO-DE-EPS clearly has
value beyond representing ‘uncertainty in location’.

Note that Figure7 compares the ensemble to a single
forecast while Figure4 compares two probabilistic forecasts.
The single deterministic forecast only produces probabilities
of 0 and 100% without the chance to include any kind of
uncertainty range, not even a very simple one. So it is very
likely that the ensemble shows a benefit compared to the
deterministic in Figure7. However, such a comparison is
still relevant, because models do become operational even
before implementing any post-treatments for their probabilistic
interpretation. Therefore, the comparison does look at forecast
guidance which is provided to forecasters in practice.

Meteorol. Appl. 21: 922-929 (2014)



928

4.3. Implications for probabilistic products

The verification results show how the spatial techniques affect
the quality of probabilities derived from COSMO-DE-EPS.
Based on these findings, we make recommendations how to
use these techniques in optimally presenting COSMO-DE-
EPS probabilistic products to forecasters who issue weather
warnings.

The smoothing technique and the upscaling technique pro-
vide two separate types of products (‘fuzzy’ and ‘upscaled’
probabilities) which may be used simultaneously. Note again
that the fuzzy probabilities refer to the event at the grid point
while the upscaled probabilities refer to the event anywhere
within a larger region (cf Section 2).

When producing grid point probabilities, spatial smoothing
of the ‘original’ probabilities (cf Section2.1) is recommended,
because verification shows a gain in resolution. According to
the maximum gain in resolution (Figure 3), a moderate radius
of influence is recommended. In practice, the smoothing could
be realized either as an automatic procedure or subjectively by
the forecaster’s eye, since the fuzzy probabilities can be directly
inferred from the field of original probabilities (cf Section 2).
The subjective approach would leave it to the forecaster to
insert the ‘uncertainty in location’, so they have the chance
to recognize fine-scale features associated with orography and
to exclude them from smoothing.

As another probabilistic product, we strongly recommend
upscaled probabilities, because verification shows a substan-
tial quality gain (Figure7) especially for higher precipitation
thresholds which are relevant for weather warnings. This is
further supported by our experience that many DWD forecast-
ers explicitly favour the upscaled probabilities when issuing
warnings.

For upscaling, the optimal choice of a window size is
a trade-off between good verification results and the fore-
caster’s need for high-resolution information (cf Section4.2).
The latter may be tied to the warning strategy of the
weather service, such as the required size of alert areas.
Depending on the forecaster’s needs, providing several types
of probabilistic products simultaneously is recommended,
for example the fuzzy grid point probabilities as guid-
ance for local information and the upscaled probabilities as
guidance for alert areas.

5. Conclusion and outlook

Two spatial techniques are applied to precipitation forecasts
derived from the short-range convection-permitting ensemble
system COSMO-DE-EPS. Smoothing and upscaling are used
to generate two new probabilistic products, fuzzy and upscaled
probabilistic forecasts, respectively. Verification results over the
summer period 2011, for a range of spatial parameters, help
to better characterize the performance of the system and to
draw a guideline for the generation of more skillful probabilistic
products.

The smoothing consists of increasing the ensemble sample
size by spatial neighbourhood forecasts and aims at improv-
ing the probabilistic forecast at grid-scale. The derived fuzzy
probabilistic forecasts benefit from a better uncertainty repre-
sentation. Smoothing improves the reliability of the forecast
but, as a counterpart, implies a loss of sharpness. An optimal
radius of influence in terms of reliability gain exists. However,
this optimal solution leads to an important loss of sharpness
and the resulting forecast is similar in quality to a smoothed
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deterministic forecast. Since the maximum gain in terms of
resolution is reached for a smaller radius of influence, the use
of a moderate size parameter is recommended.

The upscaling of ensemble forecasts delivers probabilistic
forecasts at selected scales. An upscaled probability is inter-
preted as the probability that an event occurs anywhere within
a given region which is larger than the grid size of the forecast
model. The ensemble forecast resolution, its ability to discrim-
inate between event and non-event, is substantially improved
by increasing the interpretation scale up to a certain limit. The
upscaling procedure does not harm the benefits of the ensemble
compared to the deterministic forecast. Therefore, upscaling is
recommended, because it improves the quality of the probabilis-
tic precipitation forecasts in terms of resolution, especially for
higher precipitation thresholds. Of course, the benefit comes
with the cost of omitting the information about the specific
location of an event.

As an outlook, the findings in this paper could be extended.
It would be interesting to combine the spatial techniques
with additional efforts to improve the probability forecasts.
For example, a statistical postprocessing scheme (e.g. Ben
Bouallegue, 2013) could be implemented for operational cal-
ibration of the probabilities. The spatial techniques could be
combined with such a post-processing scheme and then the
benefit of the spatial techniques could be explored again.

References

Baldauf M, Seifert A, Forstner J, Majewski D, Raschendorfer M,
Reinhardt T. 2011. Operational convective-scale numerical weather
prediction with the COSMO model: description and sensitivities.
Mon. Weather Rev. 139: 3887-3905.

Ben Bouallegue Z. 2013. Calibrated short-range ensemble precipitation
forecasts using extended logistic regression with interaction terms.
Weather Forecast. 28: 515-524.

Ben Bouallegue Z, Theis SE, Gebhardt C. 2013. Enhancing COSMO-
DE ensemble forecasts by inexpensive techniques. Meteorol. Z. 22:
49-59.

Buizza R, Hollingsworth A, Lalaurette F, Ghelli A. 1999. Probabilistic
predictions of precipitation using the ECMWF ensemble prediction
system. Weather Forecast. 14: 168—189.

Clark AJ, Gallus WA, Xue M, Kong F. 2009. A comparison of
precipitation forecast skill between small convection-allowing and
large convection-parameterizing ensembles. Weather Forecast. 24:
1121-1140.

Ebert EE. 2008. Fuzzy verification of high-resolution gridded forecasts:
a review and proposed framework. Meteorol. Appl. 15: 51-64.

Epstein ES. 1966. Point and area precipitation probabilities. Mon.
Weather Rev. 94: 595-598.

Gebhardt C, Theis SE, Paulat M, Ben Bouallegue Z. 2011. Uncer-
tainties in COSMO-DE precipitation forecasts introduced by model
perturbations and variation of lateral boundaries. Atmos. Res. 100:
168—-177.

Gigerenzer G, Hertwig R, Van Den Broek E, Fasolo B, Katsikopoulos
KV. 2005. A 30% chance of rain tomorrow: how does the public
understand probabilistic weather forecasts? Risk Anal. 25: 623-629.

Gilleland E, Ahijevych D, Brown BG, Casati B, Ebert EE. 2009.
Intercomparison of spatial forecast verification methods. Weather
Forecast. 24: 1416-1430.

Gneiting T, Balabdaoui F, Raftery AE. 2007. Probabilistic forecasts,
calibration and sharpness. J. R. Stat. Soc. 69B: 243-268.

Hamill TM, Juras J. 2006. Measuring forecast skill: is it real skill or is
it the varying climatology? Q. J. R. Meteorol. Soc. 132: 2905-2923.

Lewis JM. 2005. Roots of ensemble forecasting. Mon. Weather Rev.
133: 1865-1885.

Lorenz EN. 1969. The predictability of a flow which possesses many
scales of motion. Tellus 21: 289-307.

Marsigli C, Montani A, Paccangnella T. 2008. A spatial verification
method applied to the evaluation of high-resolution ensemble fore-
casts. Meteorol. Appl. 15: 125-143.

Meteorol. Appl. 21: 922-929 (2014)



Spatial techniques applied to precipitation ensemble forecasts

Mason SJ. 2004. On using “Climatology” as a reference strategy in the
brier and ranked probability skill scores. Mon. Weather Rev. 132:
1891-1895.

Mullen SL, Buizza R. 2002. The impact of horizontal resolution
and ensemble size on probabilistic forecasts of precipitation by
the ECMWF ensemble prediction system. Weather Forecast. 17:
173-191.

Peralta C, Ben Bouallegue Z, Theis SE, Gebhardt C. 2012. Accounting
for initial condition uncertainties in COSMO-DE-EPS. J. Geophys.
Res. 117: DO7108.

Roberts NM. 2008. Assessing the spatial and temporal variation in the
skill of precipitation forecasts from an NWP model. Meteorol. Appl.
15: 163-169.

Roberts NM, Lean HW. 2008. Scale-selective verification of rainfall
accumulations from high-resolution forecasts of convective events.
Mon. Weather Rev. 136: 78-97.

Schwartz CS, Kain JS, Weiss SJ, Xue M, Bright DR, Kong F, Thomas
KW, Levit JJ, Coniglio MC, Wandishin MS. 2010. Toward improved
convection-allowing ensembles: model physics sensitivities and
optimizing probabilistic guidance with small ensemble membership.
Weather Forecast. 25: 263-280.

© 2013 Royal Meteorological Society

929

Steppeler J, Doms G, Schittler U, Bitzer HW, Gassmann A,
Damrath U, Gregoric G. 2003. Meso-gamma scale forecasts
using the nonhydrostatic model LM. Meteorol. Atmos. Phys. 82:
75-90.

Theis SE, Hense A, Damrath U. 2005. Probabilistic precipitation fore-
casts from a deterministic model: a pragmatic approach. Meteorol.
Appl. 12: 257-268.

Toth Z, Talagrand O, Candille G, Zhu Y. 2003. Probability and
ensemble forecasts. In Forecast Verification: A Practitioner’s Guide
in Atmospheric Science, Jolliffe IT, Stephenson DB (eds). John Wiley
& Sons, Ltd.: Chichester; 137-164.

Vié B, Nuissier O, Ducrocq V. 2011. Cloud-resolving ensemble
simulations of Mediterranean heavy precipitating events: uncertainty
on initial conditions and lateral boundary conditions. Mon. Weather
Rev. 139: 403-423.

Weigl E, Winterrath T. 2009. Radargestiitzte niederschlagsanal-
yse und -vorhersage (RADOLAN, RADVOROP). Promet 35:
78-86.

Wilks DS. 2006. Statistical Methods in the Atmospheric Sciences, 2nd
edn. Academic Press: Burlington, MA; 627.

Zadeh L. 1965. Fuzzy sets. Inform. Control 8: 338—-353.

Meteorol. Appl. 21: 922-929 (2014)



