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ABSTRACT: The artificial neural network (ANN), a data-driven approach, is a powerful tool for forecasting rainfall. However,
selecting the appropriate explanatory variables in order to develop ANN models for this purpose is a major challenge. Recent
studies in various fields have highlighted the usefulness of the mutual information (MI) technique in identifying explanatory
variables for application in non-linear problems, which, however, has largely been unexplored in forecasting rainfall. The
present study was carried out to fill this knowledge gap. Three ANN models were developed, with different explanatory
variables, to forecast the rainfall in Mumbai, India. Model A used temporal data of past rainfall events, Model B used selected
meteorological data apart from rainfall and Model C used those variables identified by the MI technique. When the results of
Model C were compared with those of Models A and B, a reduction of 5.79 and 4.11% in normalized mean square error,
respectively, 16.66 and 12.90% improvement in efficiency index, respectively, and 3.22 and 4.24% reduction in the root
mean square error, respectively, were observed. Thus, this study highlights the superiority of the MI technique in selecting
explanatory variables for ANN modelling, not only because of the enhanced performance of the model with respect to various

indicators but also because this performance has been achieved with a simple ANN architecture.
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1. Introduction

Rainfall forecasting is an integral component in the development
of all water-related disaster response mechanisms, and more so
for floods and droughts. While droughts are a creeping disaster
insofar that their effects are felt over a long period, floods are
usually more rapid in nature and can cause considerable destruc-
tion, especially in urban areas where the ground surface is largely
impervious. In the decade prior to 2011, flooding was the most
common type of disaster globally, responsible for almost half of
all the victims of natural disasters, and for economic losses of
nearly US $185 billion (EM-DAT, 2011). Apart from the eco-
nomic losses, both direct and indirect, floods also hamper daily
activities because of their tendency to disrupt traffic and trans-
portation systems. Because the population density in urban areas
is typically quite high, even a small flood can cause significant
damage. In order to mitigate/prevent flood hazards, it is important
to have an appropriate early flood warning system. Such a warn-
ing system typically has three components: forecasting, trans-
forming the forecast into a warning and transmitting the warning
to local decision makers, and converting the warning into reme-
dial action (United Nations Inter-Agency Secretariat of the Inter-
national Strategy for Disaster Reduction (UN/ISDR), 2004).
Forecasting rainfall is one of the most difficult, while at the
same time integral, processes of a flood warning system (French
et al., 1992; Hung et al., 2009). The difficulty arises because a
rainfall event depends on a large number of variables, including
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pressure, temperature, wind speed, wind direction and relative
humidity. Rain is the outcome of different types of physical
interactions among these variables. Approaches to forecasting
rainfall have evolved over time and can generally be classified
into two groups: ‘physical modelling” wherein the rainfall pro-
cess is studied in order to model the underlying physical laws
and ‘systems theoretical modelling’ that attempts to recognize
the rainfall patterns based on various features of the system
(Luk et al., 2000). While the former is considered cumbersome
because of the vast range of data and the sophisticated mathe-
matical tools that are required for calibration and computation
(Hong, 2008), the latter is increasingly becoming popular. One of
the most widely used tools for pattern recognition is the artificial
neural network (ANN), and in recent years, various studies have
proved the strength and suitability of the ANN in forecasting
rainfall (for example Nasseri et al., 2008; Hung et al., 2009;
Srivastava et al., 2010; Wu et al., 2010; Wu and Chau, 2013).
The ANN is capable of recognizing a relationship from a given
pattern, and because of this property, it is of immense use in
non-linear modelling, pattern recognition and classification prob-
lems. The ASCE (2000a) has published a comprehensive review
of various ANN applications in hydrology, and the study con-
cluded that the ANN has had a significant impact in solving a
variety of real-time problems. The application of ANN in var-
ious fields of hydrology such as rainfall-runoff modelling (e.g.
Adamowski et al., 2013), water quality modelling (e.g. Jiang
et al., 2013), groundwater studies (e.g. Mohanty et al., 2013),
sediment yield estimation (e.g. Mount and Abrahart, 2011),
reservoir operations (e.g. Sattari et al., 2012) and water demand
forecasting (e.g. Babel and Shinde, 2011) has been on the rise
in recent years. In one of the earliest studies on rainfall forecast-
ing, French et al. (1992) developed an ANN model to forecast the
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rainfall intensity field with a lead time of 1 h. The intensity field at
the current time step was used as an explanatory variable to fore-
cast the intensity field at the next time step. This study showed
that although the ANN models performed slightly better than the
persistence forecasting models for the training data set, the per-
formance with the testing data set was not satisfactory. Despite
this, other researchers continued to use the ANNs, with differ-
ent explanatory variables, to forecast complex rainfall processes.
Navone and Ceccatto (1994) developed an hybrid ANN model to
predict the summer monsoon rainfall in India using the relevant
parameters corresponding to (1) the life cycle of the Southern
Oscillation and (2) the seasonal transition of mid-tropospheric
circulation over India. The model provided 40% more accurate
results than the best linear statistical method, using the same
data. Further, this hybrid ANN model also outperformed a more
complex statistical model that used a larger number of predic-
tors. Moving away from the conventional norm, Luk ez al. (2000)
investigated the effect of spatial and temporal explanatory vari-
ables on ANN models that could forecast rainfall with a 15 min
lead time. Interestingly, the results of this study showed that there
only exists a certain optimal limit of temporal and spatial infor-
mation, which is useful in ANN modelling, and any additional
input beyond this limit only adds to noise in the network. This
assessment was validated by Lin and Chen (2005), who devel-
oped an ANN model for short-term typhoon forecasting; they
used typhoon characteristics with lags of 1, 2 and 3 h as input for
the model and observed that the model with the 2 h lag performed
best. This study reiterates the notion that the ability of ANN mod-
els to generalize is hampered if the temporal lag considered for
the modelling is too long.

Broadly speaking, as suggested by Bowden et al. (2005), the
inclusion of a larger number of explanatory variables in the ANN
models is disadvantageous because:

e the requirement of computational memory and computational
complexity increases;

e learning becomes more difficult with irrelevant explanatory
variables;

e irrelevant explanatory variables may result in poor accuracy
and mis-convergence;

e understanding complex models is more difficult than under-
standing simple models, especially when both offer compara-
ble results.

In light of the aforementioned points, the selection of the most
pertinent explanatory variables for the model development is cru-
cial. Unfortunately, there is no set methodology for selecting the
appropriate explanatory variables for the ANN models. Bowden
et al. (2005), after an extensive literature review, reported that
the methods for selecting the explanatory variables for the ANN
models in water resources applications can be broadly classified
into five groups:(1) methods that rely on the use of prior knowl-
edge of the system being modelled, (2) methods based on linear
cross-correlation, (3) methods that use a heuristic approach, (4)
methods that extract knowledge contained within trained ANNs
and (5) methods that use various combinations of the previ-
ous four approaches. In more recent studies (related to rainfall
forecasting), techniques such as principal component analysis
(Shukla et al., 2011), fuzzy ranking algorithms (Srivastava et al.,
2010) and linear correlation matrix (Wu et al., 2010) have been
used to identify the relevant explanatory variables.

The present study seeks to explore the use of the mutual
information (MI) technique for selecting the appropriate num-
ber and type of explanatory variables in order to forecast the
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rainfall. Literature on the use of this technique in hydrological
and environmental studies is very limited: for instance, Maier
et al. (2006) used the MI technique for clustering ecological data
to assess the health of Australian rivers and streams; Dhamge
et al. (2012) used this technique to develop ANN models for
predicting the runoff in a catchment in India. However, the MI
technique has been widely used for feature selection in a broad
range of other studies such as cartography (Kerroum et al., 2011),
tomographic colonography (Ong and Seghouane, 2011), electri-
cal systems (Devaraj and Roselyn, 2011) and spectrophotometry
(Rossi et al., 2006), among others. All these studies have reported
the success of the MI technique in identifying the explanatory
variables for non-linear problems. The main objectives of the cur-
rent study, hence, were to (1) evaluate the application of the MI
technique in identifying those explanatory variables needed to
develop an ANN model for forecasting the rainfall and (2) com-
pare the results of this model with other ANN models developed
with traditional explanatory variables as reported in the literature.
There have been no previous studies conducted on using the MI
technique for explanatory variable selection for forecasting rain-
fall.

For this study, three ANN models were developed with dif-
ferent sets of explanatory variables to forecast the rainfall at the
Santa Cruz weather station in Mumbai, India. The variables for
the first model were in the form of temporal data of past rainfall
events. Selected meteorological variables were used as explana-
tory variables for the second model, while the variables for the
third model were identified using the MI technique.

2. Mutual information (MI)

MI is defined as a measure that quantifies the stochastic depen-
dency between two random variables without making any
assumptions (e.g., linearity) about the nature of their rela-
tion (Steuer et al., 2002). In other words, MI evaluates the
dependencies between random variables.

A detailed description of the MI technique has been reported
by Rossi et al. (2006), parts of which are presented here to help
elaborate the science behind this technique. Consider a system
X with My possible states: that is, a measurement performed
on X will yield one of the possible values x1, x2..., xMx,
each with a corresponding probability p(x;). The average amount
of information gained from a measurement that defines one
particular value x; is given by the entropy H(X) of the system.
Hence, entropy is a measure of the uncertainty of any random
variable, required on an average to describe the random variable
(Cover and Thomas, 1991):

M

X

HX)==)p(x)logp(x) M

i=1
The joint entropy H(X, Y) of two discrete systems, X and Y, is
defined analogously as:
MX MY
HX.Y) ==Y p(x.y)logp (x.y) 2)
i=1 J=1

Here, p(x;.y;) denotes the joint probability that X is in state x;
and Y is in state - The number of possible states, My and My,
may be different.

Mutual information I(X, Y) between systems X and Y is
defined as:

IX,Y)=HX)+HY)-HX,Y),>0 3)
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Figure 1. Pictorial representation of mutual information.

After combining Equations (1)—(3)

My M
3 P\Xp Y
IX,7)= )Y p(x,y)log [M] )

i=1 j=1 p(x)p (yj)

Figure 1 provides a pictorial representation of the MI tech-
nique. It is apparent that the MI technique measures the
information about Y shared with X (common information). In
Equation (4), three probability distributions are used to describe
the relationship between an input variable X and an output
variable Y; both p(x;) and p(y;) are univariate probability distri-
butions developed for each value separately, and p(x;,y;) is the
joint probability distribution when both values are considered
simultaneously. An accurate determination of these probability
distributions is very important for the precise computation of
the ML In practical setups, the underlying distribution p of the
variables is unknown. Therefore, entropy H cannot be computed
directly; rather, it requires estimation. In this study, entropy was
estimated using an empirical approach. For further details of
this computation, and for a more comprehensive understanding
of the MI technique, readers are referred to Cover and Thomas
(1991).

3. Study area and data collection

Located on the west coast of India, Mumbeai is the capital of the
nation’s second most populous state, Maharashtra. It is also one
of the most populous cities in the world, with a population of
~12.94 million (Government of Maharashtra, 2013). Mumbai is
also the commercial and entertainment centre of India and makes
a large contribution to India’s economy. It has a typical monsoon
climate and experiences hot, rainy and cold weather seasons.
The city of Mumbai has two weather stations that are located
in Santa Cruz and Colaba areas. The trend of average monthly
rainfall, as recorded at the Santa Cruz weather station, is shown
in Figure 2. The average annual rainfall is 2146.6 mm; however,
virtually, all the rainfall occurs in the months between June and
September, which renders the city susceptible to flooding during
these months. In addition, unprecedented changes in rainfall pat-
terns, rapid urbanization and inadequate city management and
planning have further increased the city’s vulnerability to floods.
Each year, the southwest monsoon brings high intensity pre-
cipitation over Mumbai, and this coupled with a poor drainage
network leads to frequent flooding in various areas of the city. For
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Figure 2. Average monthly rainfall at Santa Cruz weather station,
Mumbai.

instance, on 26 July 2005, unusually heavy rains battered subur-
ban Mumbai, causing one of the worst floods (940 mm in 24 h) in
the history of the state (Government of Maharashtra, 2005). Such
instances prove that there is a dire need for an early flood warning
system for the city, and such a system requires reliable forecasts
of rainfall.

Although the ANN is a data-driven approach, variables that
have some theoretical relation to the desired output are more
useful in the model development than any random input. As
discussed previously, earlier rainfall forecasting studies that
used the ANN used a variety of explanatory variables as the
model input. Input variables included historical rainfall data,
cloud images and meteorological variables such as humidity and
wind speed. Accordingly, for the present study, five explana-
tory variables were considered: rainfall (R); atmospheric pres-
sure (P); dry bulb temperature (7); relative humidity (RH) and
wind speed (W). Data were collected from both the Santa Cruz
(sc) and the Colaba () weather stations (operated by the
Indian Meteorological Department) located in Mumbai’s sub-
urban regions, as shown in Figure 3. For the ease of under-
standing, from here onwards, these stations will be subscripted
when a particular meteorological variable at any station is
being described. For example, rainfall at the Santa Cruz and
Colaba stations will be represented as Rg- and R, respec-
tively. The duration of data collection was from 1998 to 2006,
but only selected data (described in the next section of the
paper) were used in the model development, so as to reduce the
computation time.

4. Model development

4.1. Selection of explanatory variables

Three data sets were prepared to develop three different ANN
models: Models A, B and C. The explanatory variables used for
each of the three models, and the rationale for selecting these
variables, are listed below:

e Explanatory variables for Model A: Model A was developed
to check the memory characteristics of the rainfall time series
recorded at the Santa Cruz weather station. This is in line with
the study by Luk et al. (2000), which investigated the effect
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Figure 3. Location of weather stations in Mumbai.

of temporal inputs and concluded that there exists an optimum
limit of temporal variables that is useful in modelling. Rainfall
depth for the current time step (¢) and five previous time steps
(t-1, -2, t-3, t-4 and 1-5) were taken as input for the model to
forecast the rainfall recorded at the next time step (4 1; 1 h
lead time).

e Explanatory variables for Model B: In line with Hung et al.
(2009), who used meteorological variables (temperature, rela-
tive humidity, wind speed, atmospheric pressure) and rainfall
data to forecast rainfall in Bangkok, Model B was developed
using rainfall and other meteorological variables (T, P, RH and
W) as explanatory variables. These variables were observed
at the Santa Cruz weather station. The purpose of selecting
these variables was to determine the influence of the prevailing
weather conditions on forecasting rainfall. The current time
step (7) was used for all the explanatory variables to forecast
the rainfall for the next time step (r+ 1).

e Explanatory variables for Model C: Model C was developed
with those variables that were identified using the MI tech-
nique, based on three key hypotheses:

(i) rainfall at the next time step is influenced by rainfall
at the current and previous time steps recorded at the
station/location under consideration;

(ii) rainfall at the next time step is also influenced by weather
conditions at the current and previous time steps observed
at the station/location under consideration;

(iii) rainfall at the next time step is also influenced by rainfall
as well as weather conditions at the current and previous
time steps recorded at the surrounding locations.

In order to incorporate these conditions in Model C, all the
five variables (R, P, T, W and RH) from both Santa Cruz and
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Colaba weather stations, at the current and five previous time
steps (5 variables X 2 stations X 6 time steps =60 variables),
were considered as the potential explanatory variables. The MI
technique was used to select the more pertinent variables from
this set of 60 potential variables. The MI between the poten-
tial explanatory variables and the model output (rainfall at the
next time step, ¢+ 1) was determined using the equations previ-
ously presented in Section 2. After calculating the MI score, the
minimum redundancy and maximum relevance (MRMR) algo-
rithm, as described by Parviz et al. (2008), was used to identify
the six most influential explanatory variables. Only six variables
were chosen so as to have a simple ANN structure, and so that
comparisons could be made with Models A and B, which have
six and five explanatory variables, respectively. The MRMR is
a scheme in variable selection that helps to select those vari-
ables that have the strongest correlation with the classification
variable.

Table 1 presents the six explanatory variables that have the
highest MI with the output Rg-(#+ 1), and the corresponding
MRMR scores. It can be seen that the variable T'sc(f) has the
highest MI (0.215) with the output, and a high MRMR score
(0.0858), as well. Similarly, based on the magnitudes of the
MI and the MRMR scores, variables Ry (1), Rgc(f), Ry (t-4),
W (2-3) and Rgy(t-1) were also made a part of the input data
set used to develop Model C. It is interesting to note that the
selected variables are a good mix: they are from both stations
and with different lags. Thereby, they facilitate the testing of the
hypothesis formulated for this category of models.

A majority of the studies related to rainfall forecasting using
the ANN have used an event-based forecasting approach (Luk
et al., 2000; Lin and Chen, 2005; Nasseri et al., 2008). In such
studies, rainfall events exceeding only a certain duration and
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Table 1. Explanatory variables for Model C based on MI and MRMR
scores.

Model output Explanatory MI MRMR
variable score
Ryc(t+1) T..(1) 0.215 -
Re (1) 0.110 0.086
Ry (1) 0.159 0.035
Ry (1-4) 0.066 0.034
Wer(t-3) 0.055 0.026
Ry (2-1) 0.105 0.017

CL, Colaba weather station; MI, mutual information; MRMR, minimum redun-
dancy and maximum relevance; R, rainfall; SC, Santa Cruz weather station; 7', dry
bulb temperature; W, wind speed; 7, time step.

Table 2. Explanatory and desired output variables for Models A, B

and C.
Model Explanatory variables Output variables
A Rsc (1), Rsc(t-1), Ryc(1-2), Rge(t+1)
Ry (1-3), Ry (t-4), Ry (2-5)
B Ry (1), Tsc (1), Psc(D), Rec(t+1)
Wo(0), RHy (1)
C Tsc(D, Rse (), Rge(1-1), Rgc(t+1)

Rey (1), Wep (D), Ry (1-4)

CL, Colaba weather station; P, pressure; R, rainfall; RH, relative humidity; SC,
Santa Cruz weather station; 7', dry bulb temperature; ¢, time step; W, wind speed.

intensity were selected for modelling. In most cases, non-rainy
days were not considered for the development of the model.
However, in a recent study, Hung et al. (2009) used continuous
time series input data, consisting of dry and wet periods, to
forecast rainfall in Bangkok, and found that the ANN model
was able to learn from continuous data. Because this approach is
useful in real-time forecasting, where both dry and wet periods
are likely to occur, continuous time series data were used to
develop the ANN models in the present study as well. Given that
the study area (Mumbai) receives most of its rainfall between
June and September, and that forecasting is more crucial for this
period, continuous data from June to September were used. The
explanatory variables used for Models A, B and C are presented
in Table 2.

4.2.  ANN models

A comprehensive description of the ANN, its structures and
terminologies used in the model development can be found
in Appendix S1 of the Supporting information (adapted from
ASCE, 2000b). The ANN is an information processing system
designed to mimic certain aspects of the human brain, i.e. learn-
ing to recognize patterns and trends. It typically consists of a
number of Processing Elements (PE), also called neurons, which
are arranged in three types of layers: an input layer, one or
more hidden layers and an output layer. The structure of the
ANN is called the neural network architecture, which depends
upon a number of factors as described in the Appendix S1.
Among the most common of these are the multilayered per-
ceptron (MLP) and generalized feed-forward (GFF) networks,
which have been used in this study. Furthermore, two non-linear
transfer (activation) functions, the hyperbolic tangent and the sig-
moid, were used to convert input to output mathematically. The
hyperbolic tangent is a modified form of the sigmoid function and
normalizes the data between the range of —1 and +1, while the
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sigmoid function scales the output data between 0 and +1. The
NeuroSolutions (2008) software (developed by NeuroDimension
Inc., Gainesville, FL) was used to develop the ANN models in
this study.

The normalized mean square error (NMSE), the
Nash—Sutcliffe Model Efficiency Co-efficient or the efficiency
index (EI), and the root mean square error (RMSE) were used to
evaluate the model performances. The NMSE is an estimator of
the overall deviations between predicted (P) and measured (M)
values, as described in Equation (5):

1 (Pi - Mi)2
NMSE = - e 5)
”Z,: PM

The normalization by the product PM (averages of P and M,
respectively) in Equation (5) ensures that the NMSE is not biased
towards models that over- or under-predict. A value of NMSE
equal to zero indicates the most perfect fit between the modelled
and observed data, while NMSE equal to infinity indicates the
poorest fit. The EI and the RMSE are commonly used indices
and are often used in various kinds of studies.

5. Results and discussion

Three ANN models, A, B and C, were developed using the
variables presented in Table 2, and by following the procedure
described earlier. Details about the models (network, transfer
function, number of PEs in each layer) are presented in the
first four columns of Table 3, while the performance evaluation
indicators (NMSE, EI and RMSE) for the models are presented
in the last three columns.

The best-fit architecture for Model A used the MLP network
with the sigmoid transfer function. It has 18 hidden PEs, arranged
in two hidden layers. The NMSE, the EI and the RMSE for this
model are 0.69, 30% and 2.79 mm, respectively. This model was
developed using only temporal lags of rainfall at the Santa Cruz
weather station. The best-fit architecture of Model B, developed
using the meteorological data of the Santa Cruz weather station,
used the GFF network and the hyperbolic tangent transfer func-
tion. The forecasting results improved with the inclusion of the
meteorological variables, the NMSE reduced from 0.69 to 0.68,
and there was a slight improvement in the EI from 30% to 31%.
However, the RMSE of Model B increased by 0.03 mm when
compared to that of Model A. The best-fit architecture of Model
C, developed using the MI-based explanatory variables, used the
GFF network and the hyperbolic tangent function with 19 hid-
den PEs arranged in two layers. Compared to Models A and B,
this model had the lowest NMSE (0.65) and RMSE (2.70 mm),
while at the same time, it exhibited the highest EI (35%). Over-
all, there is a 5.79 and 4.41% reduction in error in NMSE when
the results of Model C are compared with those of Models A and
B, respectively. Similarly there is a 16.66 and 12.90% improve-
ment in the EI, respectively, and a 3.22 and 4.24% reduction in
RMSE, respectively. Figure 4(a) and (b) shows the observed and
forecasted trend of rainfall of Model C, over a 24 h period, for
both the training and testing data sets.

The results of the modelling suggest that the rainfall time
series for Mumbai has short-term memory characteristics, which
means that rainfall at 7 + 1 has very little or no significant relation
with the rainfall recorded at ¢, #-1, -2, -3, t-4 and #-5. The
inclusion of five lags of rainfall may have been the source of
unnecessary noise, which resulted in relatively poorer forecasts,
as indicated by the performance of Model A. These findings are
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Table 3. Performance Indicator of Models A, B and C for 1 h lead time forecasts.

Model Network Transfer function Structure NMSE EI (%) RMSE (mm)
A MLP Sigmoid 6-12-6-1 0.69 30 2.79
B GFF Hyperbolic tangent 5-15-10-1 0.68 31 2.82
C GFF Hyperbolic tangent 6-14-5-1 0.65 35 2.70

EI, efficiency index; GFF: generalized feed-forward network; MLP, multilayered perceptron; NMSE, normalized mean square error; RMSE, root mean square index.
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Figure 4. (a,b) Observed versus modelled rainfall with Model C during
training and testing activities, respectively.

in good agreement with those of Luk et al. (2000), who found
that increasing the number of lags of historic data reduces the
forecasting accuracy.

As was expected, the performance improved when meteoro-
logical variables, T, P, RH and W, were used (in Model B). This
finding is in agreement with studies reported by Lin and Chen
(2005) and Hung et al. (2009). While the former study found that
typhoon rainfall forecasting results improve when other typhoon
characteristics are also used as input for the ANN model, the
latter study improved the forecasting accuracies by using mete-
orological variables along with rainfall time series as explana-
tory data.

Among the three models, Model C, which was developed
using the explanatory variables selected by the MI technique,
provided the best results. This indicates the superiority of this
technique in ANN modelling to forecast rainfall. The greatest
advantage of this technique is that a wider range of potential
explanatory variables can be considered for selection, arange that
will ultimately be downsized to a smaller number for inclusion
in the model development. Hence, there is more versatility in
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selection, without increasing the complexity of the model itself.
Furthermore, as can be gleaned from Figure 4(a) and (b), not
only is the model able to replicate the trend of observed rainfall
well, it can also forecast both ‘rain’ and ‘no rain’ events. It
is also important to note that compared to Models A and B,
better results were achieved with Model C, which uses a simpler
ANN structure. For example, there are fewer PEs in the hidden
layers of Model C than in those of Model B. Also, although
Model C has the best performance, it does not necessarily use
more explanatory variables (the number of explanatory variables
used in each model is almost similar: 6, 5 and 6 in A, B and
C, respectively). Hence, it can be averred that the explanatory
variables selected by the MI technique form a more efficient
model. A more efficient model ensures reduced requirement of
computational efforts in terms of lesser time, and it also requires
fewer computational system hardware.

6. Conclusions

This study was carried out to examine the effectiveness of the
mutual information (MI) technique to select the explanatory vari-
ables for artificial neural network (ANN) modelling in rainfall
forecasting. The results of the ANN model, which used the
explanatory variables selected by the MI technique (Model C),
were compared with the results of the models that used histori-
cal lags of rainfall data (Model A) and selected meteorological
data (Model B) as explanatory variables. A reduction of 5.79 and
4.34% in the normalized mean square error was observed when
the results of Model C were compared with those of Models A
and B, respectively. Similarly, there was a 16.66 and 13.33%
improvement in the efficiency index, respectively, and a 3.22 and
4.25% reduction in the root mean square error, respectively, when
Model C was compared to Models A and B. This study highlights
the superiority of the MI technique in selecting the explanatory
variables for ANN modelling, not just because of better perfor-
mance with respect to various indicators but also because this
performance is achieved with a simple ANN architecture. The
MI measures the general dependence of random variables with-
out making any assumptions about their relationships, making
this technique an effective tool for selecting explanatory vari-
ables that can be used for forecasting the complex and non-linear
processes of rainfall with better accuracy, as compared with other
variables selection techniques.

Supporting information
The following material is available as part of the online article:

Appendix S1. Artificial Neural Networks and ANN model devel-
opment.
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