METEOROLOGICAL APPLICATIONS

Meteorol. Appl. 22: 779-788 (2015)

Published online 29 October 2015 in Wiley Online Library
(wileyonlinelibrary.com) DOI: 10.1002/met.1523

Royal Meteorological Society

Field trial of an automated ground-based infrared cloud classification system

Emal Rumi,® David Kerr,”* Andrew Sandford,? Jeremy Coupland® and Mike Brettle?
& Campbell Scientific Ltd, Shepshed, UK
b Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, UK

ABSTRACT: Automated classification of cloud types using a ground-based infrared (IR) imager can provide invaluable
high-resolution and localized information for air traffic controllers. Observations can be made consistently, continuously
in real time and accurately during both day and night operation. Details of a field trial of an automated, ground-based
IR cloud classification system are presented. The system was designed at Campbell Scientific Ltd. in collaboration with
Loughborough University, UK. The main objective of the trial was to assess the performance of an automated IR camera
system with a lightning detector in classifying several types of clouds, specifically cumulonimbus and towering cumulus,
during continuous day and night operation. Results from the classification system were compared with those obtained from
Meteorological Aerodrome Reports (METAR) and with data generated by the UK Meteorological Office from their radar-
and sferics-automated cloud reports system. In comparisons with METAR data, a probability of detection of up to 82% was

achieved, together with a minimum probability of false detection of 18%.
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1. Introduction and background

Convective clouds such as towering cumulus (TCU) and cumu-
lonimbus (CB) clouds are associated with thunderstorms, turbu-
lence and atmospheric instability. Low-based clouds such as the
CB and TCU clouds can be dangerous to aircraft at landing and
take-off; therefore, meteorological monitoring and reporting is
vital for air traffic and civil aviation control and safety. The Mete-
orological Aerodrome Report (METAR) provides data on current
weather conditions in the vicinity of an airport or airfield. It con-
tains data about cloud amount, cloud base height, thunderstorms
and other weather information. The METAR reports, which do
not include cloud types apart from the CB and TCU when they are
present, are traditionally issued by human observers every half
an hour during day and night. This requires a human presence
for continuous visual inspection of the sky. This visual obser-
vation is expensive, time-limited, subjective and not reliable at
night. Some instruments have been introduced to automate cloud
base height (Costa-Surds et al., 2013) and cloud cover (Cazorla
et al., 2008) estimation throughout the last few decades. How-
ever, automatic cloud type recognition was first tested in France
and the Netherlands in 2006 at a few airports. Automated cloud
type recognition was introduced operationally in 2011 by the
Royal Netherlands Meteorological Institute (KNMI), based on
detecting the presence of TCU and CB clouds from lightning and
precipitation radar networks.

Cloud properties are extremely variable in time and space,
and there are six main features to be considered in describing
the visual appearance of clouds. These features are brightness,
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texture, size, shape, organization and shadow effects. Cloud
spectral properties may change but their texture properties are
unique to a given cloud type, according to Lamei et al. (1994)
and Pankiewicz (1995). Texture analysis of visible wavelength
images of clouds obtained from ground-based observations has
been demonstrated by different authors. Singh and Glennen
(2005) trained a classifier system to recognize cumulus, TCU
and CB clouds using five different feature extraction methods:
autocorrelation, co-occurrence matrices, edge frequency, Law’s
filters and primitive length. Their k-nearest neighbour (KNN) and
the neural network classifiers were trained using segmented visi-
ble cloud images to identify cloud types. The correct recognition
rate of the combined features in classifying the three types was
72.4%. Heinle et al. (2010) used visible wavelength whole-sky
images to classify cloud types based on the statistical prop-
erties of both greyscale texture and colour components of the
observable sky. They used a KNN type classifier to distinguish
between seven different sky conditions, including CB and nim-
bostratus clouds. On a test run of 275 random images, indepen-
dently classified by human observers, their classifier reached an
average probability of detection (POD) of 74.6%, and for the
CB/nimbostratus class alone, they achieved 85.7% POD.

A reasonable number of airports nowadays are continuously
operational and some, such as East Midlands Airport (EMA) in
the United Kingdom, have substantial night time activity involv-
ing cargo aircraft. Human observation or visible wavelength
cameras cannot provide the required data during the hours of
darkness, so an automated, ground-based infrared (IR) cloud
classification system offers the advantage of real-time uninter-
rupted cloud monitoring to compensate for the lack of human
vision at night (Rumi et al., 2013). Liu et al. (2013) studied the
cloud cover and type based on measurement from a whole-sky
IR cloud measuring system (WSIRCMS) and ceilometer. The
CB cloud classification was excluded from their analysis, due to
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Figure 1. Visible and infrared cameras (a), P&T unit with cameras on 15 m mast, with lightning detector on second mast (b).

the system’s inability to identify CB clouds without atmospheric
electric field measurement. To the authors’ knowledge, there is
no ground-based IR system yet available that classifies CB and
TCU clouds in real time.

An experimental ground-based IR system using texture anal-
ysis was recently presented by the authors (Rumi et al., 2013).
Results from the supervised classification method gave a POD
of up to 90% with a probability of false alarm (POFA) as low as
16%. This study presents the extended field trial results using the
same system. The system was designed at Campbell Scientific
Ltd. (CSL) as a collaborative project with Loughborough Uni-
versity. The trial, located close to the EMA, ran for 1 year from
May 2013 to May 2014. The objective of the trial was to assess
the viability and performance of an automated IR camera system
with a lightning detector in classifying different types of clouds,
specifically CB and TCU, during both day and night.

2. Overview of trial apparatus

The trial system was set up at a location 5 km south of EMA at
co-ordinates 52.79231°N, 1.2718007°W. The system consisted
of both IR and visible wavelength cameras housed in a pan and
tilt (P&T) unit on a 15 m height mast as shown in Figure 1. A
NEC Thermo Tracer TS9230 IR camera was used for the main
imaging task. It had an uncooled micro-bolometer providing
a quarter-VGA (320 x 240 pixels) resolution calibrated thermal
image. The standard lens supplied provided a field of view (FOV)
of 21.7° horizontally by 16.4° vertically. In addition, an F610A
CCD IP ZAVIO camera was used to provide visible wavelength
images with a 704 X 576 pixel resolution. The CB clouds are
identified visually based on their shape, height, accompanying
lightning and sometimes acoustically, when thunder is heard. By
convention, a cloud is reported to be CB if it is accompanied
by lightning or thunder; therefore, a Strike Guard lightning
detector was mounted on a second mast about 2 m away from
the camera mast, as shown in Figure 1(b). The detector was fully
automated and monitored cloud-to-cloud and cloud-to-ground
lightning within an 8, 16 and 32 km radius. Information from the
lightning detector was used to confirm the existence of the CB
clouds when they were embedded within other clouds or at night.

The system set-up block diagram is shown in Figure 2. Camera
signal and power connections as well as P&T power and control
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were provided via an external connection box. Both IR and
visible cameras are IP devices and were connected to a LAN
network switch via Ethernet. The Strike Guard sensor data
were communicated via a lightning-proof fibre-optic cable. The
bi-directional fibre-optic link data were converted to RS232
serial and then to USB using the lightning-proof fibre-optic
converter, the sensor being connected to the computer via USB.
A secure metal container located in a nearby building housed
a five-way network switch, a computer, a MOXA Nport 5110
serial device server and a fibre to RS232 converter. An uninter-
ruptable power supply (UPS) was added to ensure continuity in
case of a power cut. The system was located about 2km from
the main CSL site; therefore, remote communication was estab-
lished using a cellular 3G mobile network. A remote access 3G
router was used to re-establish communication in the event that
data calls drop out. An antenna was attached to the router and
placed outside the metal container. The router was connected
to the computer via the Ethernet switch. The computer was
connected to the network switch and provided communication
to the system locally and remotely.

3. Details of trial procedure

The trial system was fully automated, scanning the sky three
times around ~360° every half an hour. The method used for
capturing images was similar to the way a human observer
inspects the sky, taking into account the limitations in the FOV
of the IR camera and the P&T operation. Normally, a manual
observation would be made every half an hour, repeated in
several directions to complete a 360° scan of the prevailing sky
conditions. A human observer would watch for lightning and
record any sounds of thunder. To increase the FOV without
reducing spatial resolution, a series of nine 320 x 240 images
with overlap were taken and then stitched together in the form
of a 3 x 3 rectangle, as shown in Figure 3. The adjacent edges
were realigned and merged to form a single panoramic sky image.
This method of operation and image capture was applied to
both the IR and the visible camera as they moved and captured
images simultaneously. Visible images were used for verification
and only IR images were processed for cloud classification.
Following the method described in Rumi et al. (2013), one image
was captured every 13 s, and a total of 15 stitched panoramic
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Figure 2. Trial system block diagram.

images were generated and classified every half an hour. Thus,
real-time data capture and classification was achieved day and
night.

The objective of the system was to classify the CB and TCU
clouds as they appeared in real time. A supervised classification
method was selected and therefore a large amount of training
data needed to be captured, inspected by an experienced observer
and separated into eight classes (CB, CL1, CLS, HC, MX, OTH,
OVC and TCU) as defined in Table 1. Ground truth data were
generated from inspection of the visible camera images and
accompanying local METAR reports. A total of 420 images were
used to create the training data set, which was used at the start of
the trial in May 2013.

A further training data set was created in June 2013 after
manual analysis of the initial trial data. This training data set
contained a total of 455 observations of the eight cloud types.
This data set was used from 21 June 2013 onwards. Subsequent
tests on classification results showed some increase in false
alarms during OVC conditions using this set. A decision was
therefore made to increase the number of OVC samples to create
a better balance with the number of CBi. On 17 October 2013, a
new training data set was introduced with 500 observations, and
this was used until the end of the trial in April 2014.

The classification process is summarized in Figure 3, where
a total of 45 image features were extracted for each observation
in the training data set. The features used were a combination
of measures relating to image texture, including grey-level
co-occurrence matrix (GLCM) statistics, Fourier Transform
(FFT) power spectrum properties and energy outputs from Laws
and Gabor digital filter banks. Features were normalized by
dividing by their sample standard deviations and were then
grouped within a training set according to the cloud class, deter-
mined independently by trained observers. In order to improve
discrimination between the CB cloud and all other seven cloud
types, the number of features used by the classifier was reduced
to 27 by selecting those with the highest Fisher’s discriminant
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ratio (FDR). A weighted k=20 nearest neighbours (KNN)
method was used to classify subsequent test images, the weights
being applied to each nearest neighbour ‘vote’ in the training set
space to take account of unequal numbers of observations of each
of the eight classes. Detailed descriptions of the features used
and their extraction methods can be found in Rumi et al. (2013).

During the course of the trial, automated METAR data were
available every half an hour. In order to compare the IR trial data
with the local METAR data from the EMA, capture times had to
be synchronized as far as possible. The IR system was designed
to generate cloud types automatically at every 20 and 50 min past
the hour reflecting the timing used to generate the METAR data.

The system scanned the sky three times in every half-hourly
interval to generate five panoramic image sets during each scan.
The complete classification process is shown in Figure 4. Each
panoramic image was classified into one of the eight cloud types
immediately after it was generated. Images containing the Sun
or Moon were treated with a special algorithm to remove any
localized thermal influence, as described in Rumi et al. (2013).
It took about 2 min to capture nine images, stitch, enhance and
classify the resulting panoramic image. Each scan took about
10 min. At the end of every 10 min, the lightning detector data
were read. Using the lightning detector data together with the
cloud classifications from the five panoramic images, a decision
was produced following the heuristic rules one to five defined
below.

Heuristic rule set applied to each scan (every 10 min):

1. If any strike recorded by lightning detector within the last
10 min, then report cloud type as CB.

2. If one or more CBi classified in any one scan, then report
cloud type as CB.

3. If one or more CBi and one or more TCUs classified in any
one scan, then report cloud type as CB.

4. If two or more TCUs classified in any one scan, then report
cloud type as TCU.

Meteorol. Appl. 22: 779-788 (2015)
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Figure 3. Classification methodology.

Table 1. Cloud classes.

Class number and name Symbol Definition

1 Cumulonimbus CB Tall vertical extent of cloud with formation of ice crystals at the top. Can form an anvil shape
2 Small cumulus CL1 Represents small clouds known as cumulus humilis, camulus fractus or cumulus mediocris

3 Clear sky CLS Clear sky with no cloud

4 High cloud HC Includes cirrus, cirrocumulus, cirrostratus and contrails

5 Mixed clouds MX Mixed layers and types of clouds, with no CB or TCU present

6 Others OTH Any other unidentifiable cloud type, not covered by the other seven classes

7 Overcast ovC Cloud cover complete due to one or more layers with no gaps. No CB or TCU present

8 Towering cumulous TCU Cumulus cloud of strong vertical development, also known as cumulus congestus

CB, cumulonimbus; TCU, towering cumulus.

5. Otherwise report (non-significant cloud) NSC.

This process was repeated three times and the three decisions
were combined to generate one class type for the specific half
an hour, for comparison with the equivalent METAR report
from the EMA. The three scan decisions have one of three
possible outcomes: CB, TCU or NSC. A score of 3, 6 or 9
was applied to the three scans, respectively, so that the most
recent image had the highest weighting. The final decision for
the half-hour period was obtained from these by a majority vote.
In the event of a tie, priority was given to a CB and then to a
TCU condition.

4. Results from IR system

The field trial ran for 1 year, and the system was automated
to generate a cloud type for every half an hour, potentially
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providing 17520 observations in total. Due to problems with
mechanical limitations of the P&T unit and software limitations
in handling the large number of data files, in some cases, the
system became out of sync with the METAR data from the
EMA. It was important for comparison purposes to synchronize
the cloud classification results exactly with the METAR reports;
therefore, some of the IR system data had to be rejected. This left
13 197 usable classification samples, or just over 75% of the total
annual data. Figure 5 shows the total number of samples available
per month. Data from June, July and October were limited due
to the technical issues mentioned above. The total number of
CB/TCU events reported by the EMA during that period was
217, out of which, there were 26 TCUs. The Strike Guard
system detected lightning and/or thunder alarms, most of which
coincided in time with CB reports from the EMA. However,
19 alarms appeared at a time when no CB/TCU events were
reported by human observation at the EMA. This represented
about 10% of the total reported CB by the EMA for the whole

Meteorol. Appl. 22: 779-788 (2015)



Trial of an infrared cloud classification system

10 min

10 min

783

10 min

5 sets

5 sets

5 sets

— 1 |
Lightning

strikes -
I Decision output 1

cloud type

Decision output 2
cloud type

Decision output 3
cloud type

Each decision includes
number of strikes

One cloud type every half-an-hour

Figure 4. Automated cloud classification process.

Monthly field trial data May 2013 to April 2014

1600

Total number of samples

Figure 5. Total number of samples per month.

year. These additional CBi were added to the METAR reports
to create a ground truth of observed convective clouds and as
a result, the total number of CB/TCU events during the trial
period was considered to be 236, as shown in Figure 6. The CB
events were reported every month apart from June, because the
IR system was unfortunately not operational during the few times
in that month when the CBi were present. More CBi than TCUs
were reported overall, the TCUs being reported in 6 out of the
12 months, and the CBi being reported in every month of the
trial period. Most convective clouds appeared during the summer
months as expected, based on previous observation records at the
EMA for the East Midlands region.

A typical meteorological practice for evaluating cloud classi-
fication calculates the POD and the probability of false detec-
tion (POFD) for the classifier outcomes, following, for example,

© 2015 Royal Meteorological Society

Barnes et al. (2009), where:

POD = true positives (TP) / (true positives (TP)
+false negatives (FN)), and
POFD = false positives (FP) / (true negatives (TN)
+false positives (FP))

Since the main interest was in the presence of CB and TCU cloud
types, the POD and POFD were assessed for two cases in this
study: one case was for evaluating the CB cloud classification and
the other was for evaluating the combined classification of the
CB and TCU clouds. The contingency construction for the field
trial result for the whole year was based on using the EMA and
Strike Guard reports as the ground truth; the results are shown

Meteorol. Appl. 22: 779-788 (2015)
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Figure 6. Total number of observed cumulonimbus (CB) and towering cumulus (TCU) by the East Midlands Airport (EMA) and Strike Guard per
month.

Table 2. Contingency table for CB and CB/TCU field trial results for 1 year.

Classified as Event observed

Classified as

Event observed

CB No CB Marginal total CB/TCU No CB/TCU Marginal total
CB 153 2555 2708 CB/TCU 178 3008 3186
No CB 57 10432 10489 No CB/TCU 58 9953 10011
Marginal total 210 12987 13197 Marginal total 236 12961 13197

CB, cumulonimbus; TCU, towering cumulus.

in Table 2. The contingency table for CB/TCU and CB for every
month is shown in Tables 3a and 3b.

5. Data analysis and comparison with METAR and Met
Office data

From Tables 3a and 3b, the overall yearly POD rate achieved
was 75% for CB/TCU and 73% for the CB category. The overall
POFD was 23% for CB/TCU and 20% for the CB category. In
general, the automated IR system recorded more CB/TCU than
human observers, which caused a relatively high number of false
positives. There could be several reasons for this.

e On some occasions, human observers reported a thunderstorm
(TS or VCTS) but failed to include CB in the METAR reports.

e During the trial period, there were occasions where Strike
Guard reported lightning but there were no CB, TS or VCTS
reports in the METAR. These observations were recorded
during daylight, and it is more difficult to see lightning during
the day. The CBi at these times may have been embedded
in other clouds and observers inside of the traffic control
tower may not have heard any thunder. It should be noted that
Strike Guard is an extremely reliable commercial instrument.
To prevent false alarms, the device requires an optical signal
to coincide with a changing magnetic field signal before
reporting lightning.

e Some apparent false positives were reported at night by the IR
system, but the EMA reported heavy rain and no convective
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clouds. It is difficult for human observers to detect CB at night,
especially if there is no thunder or lightning present.

e The TS will only be reported as present weather in the METAR
if a thunderstorm occurred during the 10 min period up to the
METAR time, in line with recommendations. The automated
IR system, however, reported a CB whenever a thunderstorm
alarm was captured during the 30 min of the report.

e The METAR reports TS/VCTS and therefore a CB, for up to
8 km from the Aerodrome Reference Point (ARP); however,
the automated IR system would report TS at 8, 16 and 32 km
distance from the location of the Strike Guard sensor.

e On a few occasions, hail and thunder were observed at the
location of the trial and the automated IR system reported a
CB; however, there were no convective clouds reported in the
METAR data.

According to Bluestein (1993), CB clouds most often develop
from large cumulus clouds, and TCU clouds are generally at an
intermediate stage between cumulus of strong vertical develop-
ment and a CB. Although the TCU clouds are short lived com-
pared with CB clouds, it was still surprising to see the METAR
reports of TCU as low as 26 compared to 191 CB reports during
the trial period. It was evident, during both the proof of concept of
the IR system and during the trial, that human reporting of TCU
was generally at a lower rate than automated reporting and that
this contributed to the high number of false positives encountered
in the trial. There were 462 false positives due to the TCU reports
in the CB/TCU category as can be seen in Table 3a. Reporting

Meteorol. Appl. 22: 779-788 (2015)
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Table 3a. Contingency table for CB/TCU field trial results per month.

Month TP TN FN FP Monthly observation POD (%) POFD (%)
Total
May 41 1118 10 241 1410 80 18
June 0 486 0 95 581 N/A 16
July 73 209 9 123 414 89 37
August 26 685 8 548 1267 76 44
September 11 927 3 259 1200 79 22
October 7 678 8 230 923 47 25
November 3 1001 3 242 1249 50 19
December 4 894 6 278 1182 40 24
January 4 952 1 196 1153 80 17
February 2 898 8 214 1122 20 19
March 5 1093 2 329 1429 71 23
April 2 1012 0 253 1267 100 20
Entire year of trial 178 9953 58 3008 13197 75 23

CB, cumulonimbus; FN, false negatives; FP, false positives; POD, probability of detection; POFD, probability of false detection; TCU, towering cumulus; TN, true

negatives; TP, true positives.

Table 3b. Contingency table for CB field trial results per month.

Month TP N FN FP Monthly observation POD (%) POFD (%)
total
May 35 1173 12 190 1410 74 14
June 0 521 0 60 581 N/A 10
July 64 270 7 73 414 90 21
August 21 822 8 416 1267 72 34
September 8 962 2 228 1200 80 19
October 7 707 8 201 923 47 22
November 3 1012 3 231 1249 50 19
December 4 895 6 277 1182 40 24
January 4 965 1 183 1153 80 16
February 2 919 8 193 1122 20 17
March 3 1129 2 295 1429 60 21
April 2 1057 0 208 1267 100 16
Entire year of trial 153 10432 57 2555 13197 73 20

CB, cumulonimbus; FN, false negatives; FP, false positives; POD, probability of detection; POFD, probability of false detection; TN, true negatives; TP, true positives.

TCU clouds is more uncertain and subjective, and it is in general
not possible to identify a TCU cloud that is obscured by another
cloud mass. It was also confirmed that at some airports including
the EMA, if a TCU has a base higher than 5000 feet (1524 m), it
will not be reported in the METAR.

The numbers of false negatives for the CB/TCU and CB-only
categories were 58 and 57, respectively. This indicates that
almost all false negatives were CBi. After inspection of the
visible images, it was clear that in some situations, the CB clouds
were far-off and captured near the horizon, and were visible only
in the lower part of the image. The high resolution and relatively
small FOV of the IR panoramic image did not contain the CB
cloud, and therefore it was not reported. Increasing the FOV of
the camera would allow the capture of far-off convective clouds
as well as allow capture of a complete extent of the TCU clouds,
thus reducing the rates of false negatives.

To assess the performance of the CB and TCU classifica-
tion better, it was necessary to compare the results with other
ground-based classifications systems that are used for AUTO
METAR generation. It is difficult to find one system that oper-
ates in the same way, i.e. as a ground-based IR system. At the
KNMI, the automated observation system of present weather
and CB/TCU information has been derived from lightning and
precipitation radar reflectivity data since 2006, and recently
improved by using METEOSAT satellite data. A POD of 65.2%

© 2015 Royal Meteorological Society

and a POFA of 35.4% were reported for CB/TCU cloud detec-
tion by Carbajal et al. (2009). Although not yet achieved to the
authors’ knowledge, it has been suggested by the KNMI that,
for air traffic control, the desired POD is greater than 80% and
the POFA is <20%. To evaluate the present results, their receiver
operating characteristic (ROC) was compared with these KNMI
requirements. The ROC describes the relationship between the
false positive rate (FPR) and the true positive rate (TPR) (Metz,
1978). The POD is equivalent to sensitivity and is the same as
the TPR; however, the FPR is equal to (1 — specificity), where:

Specificity = TN/ (TN + FP), and
Sensitivity = TP/ (TP + FN)

A graphical representation of the yearly field trial result was
compared with the KNMI requirements and is shown for both
CB/TCU and CB cases in Figure 7. The upper-left area denoted
by the dotted lines represents the ideal operating points as defined
by the KNMI. The CB and CB/TCU results from the IR trial fall
just outside this area, with the CB class operating point lying on
the POFD 20% boundary.

A similar system to the KNMI system was trialled for 6 months
in the United Kingdom between June and November 2010 by the
Met Office and the National Air Traffic Services (NATS). The
NATS data were based on a test at 24 airports, where 58 918

Meteorol. Appl. 22: 779-788 (2015)
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Figure 7. Receiver operating characteristic (ROC) curve for infrared (IR) trial and Met Office trial compared.

samples were gathered and analysed. The trial results showed
a POD of 57.8% for the CB/TCU and only 36% for the CB;
however, small false-positive rates of 9% for the CB/TCU cases
and 3% for the CB category were reported by Hord (2011).
An improved version of this system became operational in the
United Kingdom before the time of the current trial. This gave
the opportunity to compare the IR system with another automated
system at the exact location of the current trial. However, this
system cannot be considered as a ground truth, based on the
system UK trial results mentioned above. Therefore, data from
the IR- and radar-automated systems had to be evaluated using
the EMA METAR as the ground truth. Data were available from
the Met Office for the trial site from 22 July until 22 August
2013. From the data in Table 3a, the total number of TP+ FN
of convective clouds reported in July and August was 116,
of which 103 occurred during the period under consideration.
This made the selected sample very useful and representative
for CB/TCU classification analysis. After removing the missing
data from the METAR, Met Office and IR trial for this period,
the total number of data samples available to be analysed was
1417, containing 414 samples from July and 1003 samples
from August.

Data from the Met Office-automated cloud reports and the
automated IR system were compared with METAR data, assum-
ing the human observer METAR to be the ground truth, and
the results are shown in Table 4. A POD of 82% was achieved
with the automated IR system and a POD of 78% with the Met
Office-automated system. The IR trial system demonstrated a
much better true-positive rate and an equivalent false-negative
rate to the Met Office-automated system. The automated IR sys-
tem showed a high value of false-positive rate with a POFD of
25% for the CB/TCU case and a more acceptable 18% for the
CB case. The graphical representation of these results is shown
on the ROC plot for both CB/TCU and CB in Figure 8, where it
can be seen that both systems have performed very closely to the
KNMI criteria.

© 2015 Royal Meteorological Society

There were more than double the number of CBi and TCUs
reported by both automated systems compared to the number
reported by human observation at the EMA, which is in line with
the IR yearly results reported here. Both systems reported TS at
times when there were no TS or CB reports in the METAR.

6. Conclusions

A field trial of an experimental automatic ground-based infrared
(IR) cloud classification system has been conducted and pre-
sented. The results demonstrate the feasibility of classifying
cumulonimbus (CB) and towering cumulus (TCU) clouds along
with other sky conditions using high-resolution IR images. A
CB/TCU probability of detection (POD) of 75% was achieved
for the whole year, with a maximum of 82% over one summer
month. Results were based on using human observations as the
ground truth, but human observation is often unreliable and can-
not be considered as 100% accurate. By using lightning detection
in both IR- and Met Office-automated systems, it was clear that
at least 10% of the CBi accompanied by lightning and/or thunder
were missed by human observation. It is very possible, therefore,
that many more convective clouds were either embedded or not
seen during the night time, and were not reported. This likely
explains the high number of false positives reported by both auto-
mated systems. In general, comparison of any automated cloud
recognition system with that of human observers may never show
PODs much higher than those achieved in the current trial, due to
lack of consistency and variations in experience and objectivity
of the observer.

Both automated systems worked more reliably at night than
human observers. However, the Met Office system relies on a
large network of radars and lightning detectors, which is expen-
sive to install, operate and maintain. It can cover a very large area
on a national scale, but it is sensitive to precipitation and it does
not perform well during snow and hailstones according to Hord
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Table 4. MET Office data and IR system data comparison results using METAR as ground truth and with old training data

22 July-22 August CB/TCU TP TN FN FP Total POD (%) POFD (%)
July 71 272 11 60 414 87 18
August 24 699 10 270 1003 71 28

IR trial 95 971 21 330 1417 82 25
MET Radar 80 1126 23 188 1417 78 14
July 22—-August 22 CB only

July 63 299 8 44 414 89 13
August 15 775 14 199 1003 52 20

IR trial 78 1074 22 243 1417 78 18
MET radar 69 1218 22 108 1417 76 8

CB, cumulonimbus; FN, false negatives; FP, false positives; IR, infrared; METAR, Meteorological Aerodrome Reports; POD, probability of detection; POFD, probability

of false detection; TN, true negatives; TP, true positives.

IR field trial results July 22 to August 22 2013
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Figure 8. Receiver operating characteristic (ROC) curve representing a comparison of Met Office Radar—automated system and automated IR trial
system for 1 month of data from 22 July to 22 August 2013.

(2011). In contrast, the IR system worked well during snow, rain
and hail and was easy to install, run and maintain. However,
it covers a much smaller area than the Met Office-automated
system, although it does provide local results out to a range that
is more in tune with the requirements of airport operators. In all
the analyses, the automated IR system performed at a similar
level to that of the Met Office-automated system with regard
to true positives, and slightly worse for false positives. Results
showed comparable performance with Met Office-automated
reports, but there is still room for improvement in order to get the
system to operate at a more advantageous point in the receiver
operating characteristic space.

Further developmental work could thus include reducing the
number of texture features, because a precise selection of the
most influential measures would enhance the classifier perfor-
mance still further. Increasing the field of view of the IR camera
by replacing its lens would help to provide the larger panoramic
images needed to gather more complete CB cloud data. Calcula-
tion of elevation temperature would also help in separating high
clouds from low clouds, and measuring cloud base height would
enable the introduction of accurate automated cloud cover esti-
mation from the IR images. Finally, more reliable hardware and

© 2015 Royal Meteorological Society

software would help to improve the performance of the system
overall.
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