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ABSTRACT: The advanced algorithm for the tracking of objects (AALTO) constructs tracks from objects, such as thunder-
storms or mesocyclones, detected by multiple weather radars at irregular time intervals. It is important to have high accuracy
in tracking thunderstorms to generate skilful forecasts and high-quality climatologies and, fundamentally, to ensure that any
derived product from tracks captures only that particular storm, and in its entirety. AALTO incorporates many of the best
practices of existing tracking algorithms and techniques employed by meteorologists in constructing tracks. AALTO differs
from existing algorithms designed to track meteorological phenomena that manifest in radar data in the following ways: (1)
AALTO is designed to track objects from multiple radars, enabling analysis over a larger domain than if a single radar was
used; (2) improved tracking is realized through improved initial motion estimates and directional thresholding and (3) AALTO
looks both at the track history and at the subsequent possible positions along a track when constructing the best possible tracks,
mimicking the approach that would be taken by a human meteorologist. Verification was done using metrics that were objec-
tively determined to distinguish between good and degraded tracks; a description of the approach to determine the appropriate
metrics is presented. An overview of the AALTO tracking procedure and an example case are presented in this study.
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1. Introduction

Automated tracking of meteorological phenomena such as
thunderstorms and mesocyclones is useful in many applica-
tions such as developing climatologies and nowcasting severe
weather. Although existing algorithms designed to detect thun-
derstorms, mesocyclones and tornado vortex signatures, such as
thunderstorm identification, tracking, analysis and nowcasting
(TITAN; Dixon and Wiener, 1993); storm cell identification
and tracking (SCIT; Johnson et al., 1998); the National Severe
Storms Laboratory (NSSL) Tornado vortex signature detection
algorithm (TDA; Mitchell et al., 1998); the NSSL mesocyclone
detection algorithm (MDA; Stumpf et al., 1998); w2segmotion
(Lakshmanan et al., 2007, 2009); Thunderstorm observation by
radar (ThOR; Barjenbruch and Houston, 2006; Barjenbruch,
2008; Lahowetz et al., 2010) and enhanced-TITAN (E-TITAN;
Han et al., 2009) include a tracking component, many recom-
mendations to improve tracking in legacy algorithms have been
proposed. For example, Johnson et al. (1998) propose that SCIT
should incorporate different estimates of initial storm motion
throughout the domain and impose limits upon the ability of
tracks to change direction. Moreover, many existing algorithms
(e.g., Johnson et al., 1998; Mitchell et al., 1998; Stumpf et al.,
1998) limit their tracking to within a single-radar domain rather
than a larger domain. This study describes a new algorithm, the
advanced algorithm for tracking objects (AALTO) that combines
many of the best features of existing tracking algorithms while
addressing many of the known limitations of legacy tracking
algorithms. The key features of AALTO include:
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• variable search radii for new objects along a track;
• directional thresholding, and
• ability to incorporate object detections from multiple radars

into tracks.

Verification of AALTO was done both by disabling various
components of the algorithm to show their impact and through a
direct comparison with SCIT. A variety of approaches has been
suggested to quantify the performance of tracking algorithms
including those proposed by Lakshmanan and Smith (2010)
and Reed and Trostel (2012). In this study, a novel approach
to identifying appropriate verification statistics is presented by
comparing quality tracks with those that have been system-
atically degraded, but still exhibit some skill, to demonstrate
that the proposed verification metrics can distinguish between
tracks of differing quality in a statistically significant manner
(Table 1). Tests of AALTO demonstrate that AALTO objectively
verifies well against current tracking algorithms such as SCIT.
Additionally, AALTO provides guidance to the user, which can
be used to improve tracking quality. Section 2 is an overview of
the tracking principles in AALTO, compared with established
algorithms. Section 3 describes the implementation of AALTO
and Section 4 presents a performance analysis focusing on the
sensitivity of track accuracy to the search area and a comparison
between AALTO and SCIT.

2. Algorithm design

AALTO was developed to incorporate practices from
radar-based tracking algorithms such as TITAN (Dixon
and Wiener, 1993), SCIT (Johnson et al., 1998), the NSSL
MDA (Stumpf et al., 1998), w2segmotion (Lakshmanan
et al., 2007, 2009), ThOR (Barjenbruch and Houston, 2006;
Barjenbruch, 2008; Lahowetz et al., 2010), E-TITAN (Han
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Table 1. Verification statistics for a variety of AALTO configurations using data from the 2 January 2006 event.

Strength
error (kg m−2)

Straightness
error (km)

Median
duration (s)

Mean
duration (s)

Default 6.70 4.80 1249 2144
Degraded – prioritization 7.49 5.70 1520 2261
Degraded – motion history+ prioritization 7.67 6.24 1519 2266
No look ahead 6.72 4.81 1217 2131
Degraded – motion history+ prioritization+ no look ahead 7.70 6.78 1518 2314
40 min look ahead, e-fold 600 s 6.69 4.83 1216 2163
70 min look ahead, e-fold 900 s 6.64 4.90 1216 2175
No search angle 6.76 5.25 1519 2218
SCIT 6.34 4.84 912 1693

SCIT, storm cell identification and tracking.

et al., 2009), multiple hypothesis tracking (MHT; e.g., Lak-
shmanan and Smith, 2010; Scharenbrouch et al., 2010;
Root et al., 2011; Lakshmanan et al., 2013; Miller et al.,
2013) and satellite-based tracking algorithms (Zahraei
et al., 2012; Sieglaff et al., 2013). Each of these algorithms
adopts different approaches to forecasting object motion,
searching for new objects and identifying the best object to use
in continuing a track.

2.1. Object identification across multiple radars

Both SCIT and MDA are single-radar algorithms, not incorpo-
rating data from nearby radars that may overlap coverage. This
approach does not make the best use of data in areas with numer-
ous radars such as multiple WSR-88Ds and terminal Doppler
weather radars (TDWRs) and perhaps other radars such as the
UMass collaborative adaptive sensing of the atmosphere (CASA;
Junyent et al., 2010) radars. The single-radar limitations of SCIT
and MDA are often avoided by first creating a mosaic of the
product being analysed, such as radar reflectivity (the propor-
tion of energy backscattered by targets such as hydrometeors)
or radial velocity (the component of the mean motion of the tar-
gets towards or away from the radar), using an algorithm such
as w2merger (Lakshmanan et al., 2006). However, the identi-
fication of objects in mosaicked reflectivity or radial velocity
data requires new multi-radar algorithms that are likely based on
local maxima or minima (Lakshmanan et al., 2009), whereas the
present applications of AALTO have used objects identified by
legacy algorithms such as SCIT (Johnson et al., 1998) and MDA
(Stumpf et al., 1998).

AALTO adopts an alternate approach to avoid the single-radar
limitation: instead of merging the data used to identify objects,
the objects are identified independently by individual radars and
then synthesized into a single composite (Stumpf et al., 2003).
AALTO does not require the development of new multi-radar
algorithms, but tracks objects, represented by the latitude and
longitude of 3D centroids, identified by the existing single-radar
algorithms such as those used by the National Weather Ser-
vice in the United States for severe weather detection based on
WSR-88D data. There is a number of challenges to such an
approach including overlapping areas of radar coverage resulting
in multiple detections of the same object and the lack of synchro-
nization in radar scan times, resulting in portions of the domain
being updated at different times than other regions. The approach
used in AALTO to resolve these challenges will be discussed
below.

2.2. Tracking

The tracking logic in both MDA and SCIT is largely identical:
object motion is extrapolated, based on either a prior motion or a
first guess for new objects, and new objects to create or continue
a track are sought within a set radius from the forecast position.
The first guess of object motion for a new track depends on either
a forecast storm motion that is based on upper-air data or the
mean motion of all existing tracks within the domain. Implicitly,
this assumes that the mean motion of tracks should be similar
throughout the domain, and thus an average of existing tracks
should be representative enough to suffice as a first guess for new
tracks. This is acknowledged as a limitation of SCIT by Johnson
et al. (1998), and it could decrease the accuracy of tracking if
the assumption is violated. This limitation will be particularly
severe for domains covered by multiple radars. AALTO avoids
this limitation by using the storm motion estimate nearest to the
time and position of an object to produce the best initial estimate
of storm motion.

For established tracks, the existing algorithms rely on prior
object motion to extrapolate the position of an object and create
a forecast position. SCIT uses the previous 10 forecast positions
(Johnson et al., 1998), whereas MDA maintains a history of
the previous 30 min (Stumpf et al., 1998). AALTO defaults to
using the motion history over the previous 30 min of the track.
If the length of the time interval used to determine previous
object motion is too short, then object tracks are likely to be
overly influenced by erroneous variations in object velocity,
subsequently referred to in this paper as jitter. This jitter is a
consequence of the inability to determine the position of the
object exactly due to the radar beam width and height and the
difficulty in an algorithm assigning a point to an object with area
and mass. These issues tend to be exacerbated when multiple
radars are involved. However, if the history interval is too large,
it will restrict the ability of the algorithm to detect actual changes
in the bearing of the object. If the track is younger than 30 min, a
combination of the initial motion estimate and the prior motion
of the track is used.

To continue an object track forward in time, algorithms such
as SCIT search for the closest object within a specified radius of
the forecast position of the track. The search area is not further
restricted, though Johnson et al. (1998) recommend directional
thresholding, which is restricting the ability of a track to make
a large change in direction from the recent motion of the track.
Because AALTO is designed to track data at irregular intervals, a
single search radius is not appropriate. AALTO also implements
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a form of directional thresholding, based on the age and predicted
motion of a track.

AALTO calculates the search radius using (1) a linear rela-
tionship between search radius (r) and the time since the last
update to the track (Δt) that accounts for the sensitivity of opti-
mal search radius to data interval and (2) a prescribed minimum
search radius (rmin) that accounts for the effects of jitter on object
tracks:

r = rmin + Δtrinc (1)

The calculated search angle (a) is based on the forecast distance
(d) expected to be travelled by an object in the elapsed time since
the previous update to the track and the degree to which the
forecasted track motion is based on track history versus initial
motion estimates:

a =
⎧⎪⎨⎪⎩max

max
(
amax + i, 180

)
; d ≤ dmin(

amin + i +
(
amax − amin

)
e

dmin<d

f , 180

)
; d > dmin

(2)
where amin and amax are the minimum and maximum search
angles, respectively, and i is the angle expansion used to account
for uncertainty in track extrapolation. If the forecast distance
travelled is less than dmin, the maximum search angle, for a
given value of i is used. For d > dmin, the search angle decreases
exponentially to a value of amin + i, with an e-fold forecast
distance, denoted f. This approach to directional thresholding
allows for larger changes in direction if the effects of jitter are
bigger compared with the actual distance the track would have
moved since the last update. The angle expansion, i, is included
because estimates of track motion are least certain when they are
based fully on the initial estimate in the early stages of a track and
are most certain when fully transitioned to being based on track
history. As such, track motions that are based on initial estimates
are allowed an additional 15∘ change in direction, decreasing
linearly to zero when fully based on track history:

i =

{
0; t ≥ h
15(h−t)

h
; t < h

(3)

where h is the time when the track motions are based entirely on
track history. Figure 1 shows examples of the shape of possible
search areas.

Algorithms such as SCIT that establish coherence between
objects at only two successive times may perform worse than
tracking algorithms that consider additional times. A human
tracking objects manually would likely look at a few previous
volume scans and a few future volume scans to find the next
object on the track. While this approach is most appropriate when
operating on archived data, it could be used in nowcasting to
retroactively refine real-time tracks. This approach that considers
future positions of the object in addition to the past has been
adopted in some automated tracking algorithms including MHT
(e.g. Reid, 1979; Cox and Hingorani, 1996; Blackman, 2004;
Lakshmanan and Smith, 2010; Scharenbrouch et al., 2010; Root
et al., 2011; Lakshmanan et al., 2013; Miller et al., 2013) and
ThOR (Barjenbruch and Houston, 2006; Barjenbruch, 2008;
Lahowetz et al., 2010) and is employed in AALTO. Future
positions are examined by building a search tree in which each
node represents the position of an object along a candidate track,
which refers to a possible continuation of the existing track.

As in ThOR, AALTO develops all possible candidate tracks
and then traverses the tree to find the track with the lowest
mean position error, defined as the distance between the forecast

position and the actual position along the track. For higher-level
branches, all possible positions within an interval of time,
defaulting to 12 min, are considered in order to extend the
branch. Assuming a nominal 5–6 min time interval between
volumes, a 12 min window allows tracks to skip times without
nearby objects. This has been found to produce straighter candi-
date tracks, in which position errors at future times are primarily
due to changes in object displacement and not due to jitter. The
first-level branch that contains the selected candidate track is
chosen as the continuation of the track and is given a weight of
1. Each branch thereafter is exponentially weighted less, with
an e-folding time of 300 s. Building and searching the tree is an
exponentially complex problem, potentially increasing without
bound if the tree is allowed to grow unchecked. However, it is
unlikely that the highest branches (track segments connecting
objects at times well into the future) will have a significant
impact on which first-level branch to select. The influence of
higher-level branches scales inversely with level; it is unlikely
that a human meteorologist would give the same weight to a
tenth-level branch as the second-level branch. AALTO imple-
ments this by decreasing the weighting of the position errors
exponentially from higher-level branches. When the weight
drops below a user-specified threshold, defaulting to 0.05,
higher-level branches are no longer added to the search tree. The
combination of these default parameters causes AALTO to look
ahead ∼15 min, or three WSR-88D volume scans. Analysis of
test cases revealed that when either the lookahead was disabled
or the e-fold time was increased and minimum weight was
decreased, resulting in a deeper search, negligible changes in
track straightness were noted, with the apparent best values,
though without statistically significant differences, being for the
default parameters.

As in TITAN and MHT, AALTO performs global optimization
to minimize the cost at each time step. Cost is the distance
from the forecast position of the object to the actual position.
TITAN, MHT and AALTO seek to minimize the overall cost of
connecting all tracks to new objects at each time step, rather than
merely minimizing the cost for one track at a time. In AALTO,
all possible tracks at a given analysis time are considered and the
track with the closest forecast position to any available object is
given the first opportunity to select an object as a continuation
of the track, similar to that described by Lakshmanan and Smith
(2010), with object strength breaking any ties. Multiple options
were considered in prioritizing the tracks, including allowing
‘stronger’ tracks (e.g. higher vertically integrated liquid, higher
mesocyclone strength index, stronger gate-to-gate shear) to select
first, older tracks to select first, and randomizing the order in
which tracks are selected.

To evaluate the performance of these prioritization methods,
each method was applied to five cases using both SCIT and MDA
detections. To quantify the performance, a correct match was
defined as a track selecting an object such that no other tracks
had a forecast position closer to that object. Similarly, an incor-
rect match was defined as a track selecting an object that would
have been closer to the forecast position of a track selecting
later in the sequence. For both object types, the random prior-
itization resulted in ∼50% correct matches. Both the strength
and longevity prioritizations resulted in roughly 70% correct
matches. Prioritizing based on longevity appeared to introduce
a bias in track durations. The current optimized approach results
in at least 99% correct matches. The significance of prioritiza-
tion is underscored by the observation that nearly 30% of tracks
terminated when using strength-based prioritization because an
object that would have been within the search radius of the track
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Figure 1. The possible configurations for search areas. The grey area shows the actual search area. The left column shows a situation in which the
initial position is within the search area. The right column shows a situation in which the initial position is outside the search area. The top row shows
a situation in which there is no restriction on search angle. Progressively smaller search angles are shown towards the bottom. The search angle is

narrowed for faster moving objects for tracks that have been updated less recently.

had already been claimed by another track. Furthermore, the cur-
rent optimization approach produced a statistically significant
result of straighter tracks with fewer changes in direction than
those produced by randomized prioritization. The best tracking
performance was achieved when AALTO finds the track with
the minimum distance from its forecast position to any currently
detected objects and allows this track the next opportunity to
select from the pool of available objects.

3. Implementation

The overall processing by AALTO is shown in Figure 2. The
first step in the algorithm is to develop initial object motion esti-
mates. Flexibility is permitted in how these estimates are derived,
allowing for both gridded and irregularly spaced data sets. This
allows for versatility in estimating the motion of objects initially
while maintaining the best practice of using spatiotemporally
heterogeneous initial motion estimates. Next, AALTO ingests the

objects to be tracked. AALTO permits any number of fields to be
associated with each object, all of which are preserved through
the algorithm and written in the output. However, a few fields
are required in the input: latitude, longitude, a timestamp and
a strength parameter. For circulations, an appropriate strength
parameter might be shear or rotational velocity. For thunderstorm
objects, vertically integrated liquid (VIL) or maximum reflectiv-
ity could be appropriate. If the data set is comprised of data from
multiple radars, an identifier for the radar and the distance from
the radar are also required parameters, which are necessary for
filtering collisions, as defined below. Because radars are not syn-
chronized to scan at the same time, and volume coverage patterns
require different amounts of time to complete a volume scan,
objects in the database appear at irregular intervals. The objects
are matched with the nearest initial motion estimate in time and
space as they are ingested.

Multiple radars may scan the same object at precisely the same
time (to the granularity of a second), meaning that one object
would be counted two or more times at the same time step.

© 2015 Royal Meteorological Society Meteorol. Appl. 22: 694–704 (2015)
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Figure 2. The flowchart showing the general steps in the advanced algorithm for the tracking of objects (AALTO).

Multiple instances of the same object at the same time step could
adversely affect the results of the tracking. While this rarely
occurs, it was found in some of the data sets used to test AALTO.
Such an instance is referred to as a collision, which AALTO
detects and resolves once all the objects have been ingested. At
any particular time step, if two objects are detected by different
radars and are within a specified radius of each other, defaulting
to a distance of 5 km, it is considered to be a collision. Collisions
are resolved by retaining the object with the smallest distance to
its detecting radar. All objects colliding with this particular object
are deleted from the data set. This step is repeated for each time
step until all collisions have been resolved.

At any particular time step, all active tracks are examined,
beginning with the closest match to available objects and iterating
through the remaining tracks. Active tracks are all tracks that
have been updated within a specified amount of time, defaulting
to 12 min (slightly longer than two typical WSR-88D volume
scans). The track motion is estimated by a weighted combination
of prior motion along the track and the initial motion estimates
provided to AALTO, producing a forecast location for the object
being tracked. The region around the forecast position is searched
for objects that are candidates to continue the track. This region is
restricted based on the proximity to the forecast position and the
change in bearing between the estimated motion and the actual
motion from the last track position to the candidate track. To
account for the possibility that an object identification algorithm
misses an object at a given time or calculates an object centroid
that is removed from the correct track, AALTO considers all
possible object positions within 12 min from the time of the latest
position on the candidate track.

If more than one candidate object is found within the search
area, additional processing is done to determine which object
is most suitable for the continuation of the track. Each of the
tracks to candidate objects is treated as a first-level branch. From
these branches, the procedure is repeated recursively, adding
higher-level branches for the duration the track would remain
active. Tracks are added until the exponentially decaying branch
weight passes below a threshold value, as described in the previ-
ous section. The exponentially decaying branch weights are used
to calculate the weighted average error, as defined by the distance
between the forecast position and the position of each object,
for each candidate path. The first-level branch associated with
the candidate path with the minimum weighted error is selected
to continue the track, but the rest of the candidate path is dis-
carded. An illustration of the concept of a search tree is shown in
Figure 3.

Any objects that have not been added to existing tracks at the
end of a time step are used as the first position in new tracks. The
process is repeated for each time step until the end of available
data. The user has the option of choosing whether to retain
objects that were never connected in tracks, the default behaviour
or to omit them from the output.

4. Performance analysis

4.1. Sensitivity to search area

The performance of AALTO is examined by first assessing the
sensitivity of track accuracy to the search area. These results
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Figure 3. The approach of building trees to find the best path is shown. Although the middle object at time 2 is closer to the forecast position for
that time, the bottom object is chosen because it reduces the forecast error at later times and results in an overall smaller error.

offer general guidance for good tracking practices. Figures 4
and 5 show the distribution of distances from the forecast position
for the 2854 SCIT detections from a single radar during a
thunderstorm event in the central United States (Figure 6(a)).
Figure 4 shows a clear separation between the distribution of the
closest (most accurate) objects and other objects. Specifically,
the first (closest) object is typically within a few kilometres of
the forecast position, peaking in the 1–2 km bin and decreasing
significantly afterwards. However, the second object peaks in the
12–13 km bin, with few objects closer than 7 or 8 km. This result
supports the AALTO logic incorporating a variable search radius
to continue tracks. Figure 5 shows that the distance from the
forecast position to the closest (most accurate) object increases
with time since the last update to the track (Δt). If the track
has been updated within 5 min most of the closest objects are
within a few kilometres of the forecast position, but the distance
is much larger for an interval of 10 min. Thus, as reflected in the
expression for search radius (1) used in AALTO, it is necessary
to increase the radius with time since the last update to the track.
Root et al. (2009) first identified a limitation of SCIT that if an
object is not detected at an intermediate position along a track, it
will incorrectly split the track into two tracks. Allowing a variable
amount of time between detections along a track to address
this known limitation of SCIT requires the implementation of a
variable search area.

A variable search angle is also necessary, in order to imple-
ment directional thresholding properly, as suggested initially by
Johnson et al. (1998). Assuming that the error in detecting the
precise position of an object is randomly distributed within a set
distance, perhaps a few kilometres, the influence of that error on

Figure 4. Distances and angles from the forecast position to objects from
the 2 January 2006 event, using storm cell identification and tracking
(SCIT) identifications. Distances are binned into increments of 1 km and

angles are grouped by 5∘ increments.

the apparent direction of the object decreases as the object trav-
els farther. It is likely that a small search angle, such as around
a 45∘ directional change, will encompass most objects after a
track has not been updated for a few minutes. However, this sug-
gests that there ought to be a dependence on time or distance
travelled in determining the search angle. Figure 7 shows the
distribution of the closest detections relative to search angle for
several typical distances and illustrates a decrease in the search
angle needed to encompass a given percentage of detections as
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Figure 5. Distances from the forecast position to objects from the
2 January 2006 event, using SCIT identifications, depending on the time
since the last update to the track. Distances are binned into increments

of 1 km.

the forecast distance increases. This supports relating the search
angle to the distance travelled by the object since its last position
on the track.

Figure 8 shows an example of how the track age affects the
search angle from the thunderstorm event used above, by plotting
the age of the track versus the percentage of the closest objects
within the angle. Newer tracks require larger search angles to
incorporate the closest object. This justifies the inclusion of (3),
which increases the search angle for newly identified tracks.

4.2. Comparison to SCIT tracks

In this section, AALTO thunderstorm tracks (processed using
SCIT detections) are compared against SCIT tracks to quan-
tify the differences in tracking and the differences in various
AALTO settings. As noted by Lakshmanan and Smith (2010),
construction of a truth data set is both difficult and subjective,
especially when there are large numbers of objects. For that rea-
son, it is best to determine a few criteria that describe the statistics
of tracks produced by a good algorithm, and then perform an
inter-comparison. Appropriately chosen metrics not only verify
the skill of the algorithm but also identify the sources of errors
and assist in improving the accuracy of tracking and prediction.
Additionally, in a warning decision context, a forecaster may
be presented with predictions from multiple algorithms. Objec-
tive real-time verification provides guidance as to which fore-
cast products to use, hence the need to determine which met-
rics are most useful in evaluating algorithm performance. The
metrics used are based loosely on those of Lakshmanan and
Smith (2010).

One metric is the average duration of tracks. To some extent,
longer tracks are better, but if tracks are too long, they likely con-
tain multiple actual tracks that have been incorrectly merged into
a single track. Thus, while longevity is potentially informative,
it is generally not the best parameter. Similarly, it is not certain
whether it is preferable for an algorithm to produce more tracks
or fewer tracks.

Another potential metric is the stability of a strength parameter,
such as VIL for thunderstorms. It is likely that, from one volume
scan to the next, the strength parameter is likely to be relatively
similar for a given track. For this work, this metric is calculated

using VIL at each point along a given track as the difference
between the actual VIL and the local mean VIL calculated using
the VIL values at positions just before and just after the particular
track position. The maximum error is reported for each track,
unless the track only has two positions, and the mean value
for all tracks is reported as the strength error. This method
differs from the standard deviation proposed by Lakshmanan
and Smith (2010) because of the suggestion of Reed and Trostel
(2012) that it should not have a strong dependence on track
duration.

Track straightness is another desirable characteristic of good
tracks. While tracks may have small wobbles over short time
durations and may curve at long durations, they are likely to be
relatively straight at intermediate time intervals. For example,
it might be reasonable to expect thunderstorms to travel in a
mostly straight path for a 30 min interval. Thus, a line between
positions that are 30 min apart can be used as a predictor of
position within that interval, and deviations from the prediction
are a measure of error. For this work, the metric used is the
maximum change in position error between the forecast position
and actual position at any time during 30 min intervals along
a track. The maximum value for each track within the moving
window is recorded for the track, and the mean of all tracks is
reported as the straightness error.

Even though these metrics are somewhat intuitive, it is still
desirable to demonstrate their usefulness and determine which
is most important. The degradation of tracks should balance two
competing, but important, principles: (1) there must be evidence
that the measures should actually degrade tracking performance
and should never improve tracking but (2) should still produce
tracks that exhibit a reasonable degree of tracking skill. If the
tracks are degraded too little, then no appropriate verification
metrics will be identified. However, if the tracks are degraded too
much, then any metric will appear to have value in demonstrat-
ing tracking skill. For this verification process, AALTO tracks
were intentionally degraded by using random prioritization and
increasing the motion history from 30 min to one day, caus-
ing AALTO to almost exclusively use the initial motion esti-
mate, in this case based on the RUC model (Benjamin et al.,
2004) storm motion vectors. Both prior art and tests of AALTO
demonstrate the need for global optimization in order to maxi-
mize tracking performance. However, despite the many known
issues with SCIT, which lacks global optimization, the tracks
produced do exhibit a useful degree of skill. The RUC storm
motion parameter estimates the motion of right-moving super-
cells. It does not take into account the actual motion of storms as
observed by radar, and is related to the motion of non-supercell
storms, but offset in its direction. Although the RUC storm
motion parameter offers some skill in forecasting storm motion,
it is less than optimal in most situations. Both of the methods
used to degrade the tracks meet the above criteria to clearly
decrease the tracking performance, while still exhibiting enough
skill to identify the best parameters for measuring tracking
performance.

The proposed verification statistics were calculated for both
the default and the degraded tracks, and compared between the
two using a two-tailed t-test for statistical significance (Table 1).
The choice of an event also potentially has an impact on the
parameters that will be selected. Based on the above criteria,
many of the tracks from both the good and the degraded sets will
overlap. The event that is chosen should generate enough tracks
such that a sufficiently large number of tracks differ between
the two data sets. However, the event should be small enough
such that small differences in the verification parameters are not
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Figure 6. AALTO tracks from the 2 January 2006 thunderstorm event. (a) Default settings and (b) degraded tracks.

Figure 7. The relationship between the search angle and the proportion
of detections of the closest object encompassed within the search area for
the 2 January 2006 event. The lines represent different forecast distances.
Although some points were outside the 4–8 km range, there were not
enough detections for this case at those ranges to accurately represent

the distribution, so they were omitted.

statistically significant purely due to the size of the data set.
In practice, a data set with a few hundred tracks is likely an
appropriate choice.

The same thunderstorm event used previously (Figure 6) was
examined using the verification metrics on all tracks to determine
if any of the metrics showed statistically significant differences.
There were 328 tracks using the default AALTO settings and
332 tracks using the degraded settings. Although there are sub-
tle differences between the tracks, the AALTO tracks from the
default settings and those that were intentionally degraded visu-
ally appear very similar, such that even the degraded tracks would
appear, without careful inspection, to be good tracks. Although
the tracks generally appear similar (Figure 6), small differences
in track straightness can be noticed upon careful inspection.
However, in the absence of verification statistics and a set of
tracks to compare against, it is unlikely that the degraded tracks
would readily be identified as inferior, supporting the use of
statistics to distinguish between good tracks and those that have

been degraded. Track duration did not appear to be a useful met-
ric, as intentionally degraded tracks actually were longer than
those that were presumed better, and that performed better in
other metrics, yielding a p-value of 0.479. Although there are dif-
ferences in track strength errors, they were marginally significant
for this data set, with a p-value of 0.034. The track straightness
errors were, however, statistically significant, with a p-value of
0.0000121, and seemed to provide the best discriminator between
good tracks and poor tracks.

It is apparent from the statistics that both prioritization and the
impacts of using prior motion to forecast future track positions
are important in the tracking. Looking ahead to future track
positions generally seems to have little impact when the other
tracking optimizations are applied. However, when the degraded
tracks are compared against the same settings but without looking
ahead to future positions, there is a clear difference in track
straightness. This suggests that looking ahead may have value to
improving the otherwise poor tracking. Thus, the idea of building
candidate tracks likely has some merit in improving tracking
performance, but is not particularly evident when the tracking
algorithm is otherwise well designed and configured. Evidence
from testing AALTO strongly suggests that the closest object
to the forecast position within the search area is nearly always
the correct object. This is based on the frequency at which the
first-level branch closest to the forecast position is not the branch
that is selected after building the candidate tracks. At most,
this occurs around 10% of the time, but is generally closer to
2–5%. It is difficult to envision that a process occurring quite
infrequently could have a significant impact on the verification
statistics, which likely explains this result.

Although SCIT tracks provide similar levels of straightness and
strength errors, this comes at the expense of much shorter tracks.
Both the mean and the median length of the SCIT tracks are much
shorter than those of the AALTO tracks. However, the longer
AALTO tracks do not seem to significantly degrade the quality
of the tracks based on the straightness and strength errors. For
this reason, it seems that SCIT is prematurely terminating many
tracks that ought to continue. This assertion is supported through
visualization of AALTO and SCIT tracks (Figure 9). There are
likely two reasons for this: (1) SCIT is configured to terminate
a track if a storm is not identified at a particular time, even if
it appears both at the previous and the next time (Root et al.,
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Figure 8. A heat map showing the percentage of objects as a function of track age in seconds and search angle, demonstrating the need to expand
the search angle for newer tracks.

2009), and (2) SCIT does not prioritize the order in which tracks
are allowed to select from the pool of available objects. As such,
the SCIT tracks are track segments that have similar statistics
to the AALTO tracks, but are not the full tracks. There were
328 AALTO tracks, leaving 112 SCIT detections as not being
part of any track. In contrast, SCIT produced 346 tracks, with
315 detections being not part of any track, meaning that roughly
7% of the total SCIT detections were excluded from tracks by
SCIT but not by AALTO. Because the verification statistics for
the AALTO tracks are at least on par with the SCIT statistics, it
is likely that the 203 detections excluded from tracks by SCIT
actually do belong in tracks.

5. Discussion

AALTO is similar to w2segmotion, E-TITAN and MHT and
implements many enhancements over operational tracking algo-
rithms. These enhancements include the ability to incorporate
detections of the same object from multiple radars into one track
and an approach to minimize errors associated with the order
in which existing tracks are processed. Furthermore, a robust
approach to tracking verification is presented here that does not
require the tedious and subjective manual generation of tracks.
Although AALTO is designed to track meteorological objects
well, the development of AALTO revealed a general insight
into the characteristics of tracking algorithms most likely to sig-
nificantly impact algorithm performance. It is likely that the
parameters chosen by default for AALTO are valid for similar
storm-scale meteorological phenomena, such as mesocyclones,
and thus AALTO is expected to perform well in these situations.

The potential applications of AALTO to build a mesovortex
climatology using MDA output across multiple radars and incor-
porating AALTO as part of an algorithm to identify, track and
classify storms are included in a forthcoming paper. The latter
application could be used both in real-time on radar data and to

track and classify storms in the output of high-resolution models
and ensemble forecasts. The inclusion of AALTO in such an
algorithm would likely involve modifying AALTO to operate on
2D or 3D representations of storms rather than simply using cen-
troids. Depending on the size of the domain, it may be necessary
to modify the approach to building trees to reduce the complexity
of the algorithm. Approaches to improve AALTO in this way are
discussed later in this section.

It is clear that prioritizing the order in which tracks select
from the available objects is important to producing good tracks,
given the verification statistics and additional evidence from
AALTO output. It appears that the best approach is to give
priority to the track with the closest forecast position to any
of the available objects (Lakshmanan and Smith, 2010). It is
also clear that merely examining a set of tracks visually is
insufficient to determine if the tracks are good. Even comparing
the default parameters from AALTO with intentionally degraded
tracks requires careful inspection to identify the differences
between the two sets of tracks. Objective verification of the
tracks, however, yields clear results as to which sets of tracks are
better. This underscores the need for a robust verification scheme
and offers some insight as to how to construct it. Verification
metrics should be based upon reasonable assumptions about the
expected behaviour of tracks, such as their expected straightness
and the predictability of certain attributes such as strength.
However, this is still insufficient to establish whether the metrics
are actually useful. Tracks to be verified should be compared
against an additional set of tracks that are known to be poor, such
as intentionally degrading the performance of the algorithm.
Degrading the tracking should be done based on factors that
are supported by other data, such as the impacts of using the
initial motion estimate or tracking prioritization. Comparing the
verification statistics of the degraded tracks against the default
settings demonstrates both the validity of the chosen metrics and
the assumptions made in the tracking process.
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Figure 9. A comparison of SCIT (black) and AALTO (red) tracks from the 2 January 2006 case.

One interesting finding in the verification was that the strength
parameter was not as useful as expected in discerning between
good and poor tracks. It has been suggested that, in addition to
a cost function based on the distance from a forecast position,
a strength parameter might be useful in matching objects to
existing tracks within a tracking algorithm, such as that done by
Lack et al. (2010). If strength is of limited utility in discerning
between good tracks and bad tracks, incorporating strength into
a cost function may not significantly improve tracking.

Another important finding was the impact of looking ahead
to future track positions. Although it appeared unlikely to have
a significant impact based on how infrequently it affected the
choice of a first-level branch, this is further supported by the
verification statistics. Although it seems that looking ahead
about 15 min, or approximately three levels, does result in a
small improvement in tracking performance, it is much smaller
than other enhancements in AALTO. In the data set used for
testing, 15 min is approximately three volume scans, or a tree
depth of three levels.

AALTO employs a similar approach to MHT, but does not
include pruning. Many implementations of MHT use pruning to
reduce the number of branches, allowing MHT to search future
positions at greater depth without requiring excessive comput-
ing resources (Reid, 1979). The reasoning behind pruning is that
it is not necessary to search all the possible candidate tracks,
but only those likely to influence the choice of which first-level
branch to follow. Although pruning is not currently implemented
in AALTO, doing so would allow searching candidate tracks at
greater depth. There are two primary considerations to imple-
ment pruning in AALTO: how deep is it actually necessary to
search and how to determine which branches can be eliminated.
Determining an appropriate search depth could be done by exam-
ining the differences between the cost for first-level branches

and terminating the branches when changes in the cost function
become too small to influence the selection of a first-level branch.
Pruning could be implemented by not building branches that
are much worse than other established branches from the same
node.

Finally, this study presents a discussion of how to choose
appropriate verification statistics to measure the goodness of a
tracking algorithm. Prior work has focused on which attributes
should be qualitatively associated with good tracks and design-
ing appropriate verification metrics to quantify these princi-
ples, including track duration, straightness and continuity of a
strength parameter such as VIL. This study proposes systemati-
cally degrading good tracks as they are poorer, while still retain-
ing some skill. The metrics are then applied to both the good
and degraded tracks and are evaluated for statistical significance.
Those metrics that demonstrate a statistically significant differ-
ence between the good and the degraded tracks are deemed to
be most useful verification of tracking algorithms. In this study,
track straightness was found to be the best parameter, while track
strength continuity was not statistically significant enough, and
track duration was not significant at all. This approach provides
an objective means of determining which verification metrics are
most useful to evaluate the skill of a tracking algorithm.
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