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ABSTRACT: This study examines the landfalling tropical cyclones (TCs) over China using state-of-the-art data mining
methods (i.e. Finite Mixture Model (FMM) based cluster algorithm and the Classification and Regression Tree (CART)).
Using the 1951-2012 TC best track dataset released by the Shanghai Typhoon Institute of the Chinese Meteorological
Administration, the tracks of TCs landfalling over the Chinese coast were classified into three clusters through an FMM.
Several climate indices were analysed using the CART algorithm for the three clusters. The prediction model built by CART
for summer track frequency was based on a random sampling of the data for 46 years (about 75% of the total years) as the
training set with a training accuracy of 100% (Cluster-1), 89.96% (Cluster-2) and 100% (Cluster-3). Data for the remaining
16 years (about 25%) were used for testing with a prediction accuracy of 87.5% (Cluster-1), 62.5% (Cluster-2) and 68.75%
(Cluster-3). This study focuses on Cluster-1 of summer TCs landfalling over China for its high frequency, strong intensity,
severe impacts and long lifespan. Furthermore, it suggests that the FMM algorithm is effective for track classification of TCs
landing over China. In addition, the CART algorithm, which was used to build the prediction model of Cluster-1 for the
classification of track frequency, showed high accuracy and its results can be explained and understood easily. It provides a

novel framework for forecasting the frequency of TCs landfalling over China.
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1. Introduction

A tropical cyclone (TC) is one of the most destructive causes
of natural disasters (Zhu etal., 2012; Zhang etal., 2015). A
landfalling TC can bring devastating impacts, both social and
economic, to coastal and even inland areas (Zhu eral., 2012).
China has more TC landfalls than other countries. Every summer
(June, July and August; referred to as JJA), an average of six TCs
move across the Chinese coastline. Therefore, studies of summer
TCs landfalling over China have both theoretical and practical
significance in improving the accuracy of forecasting TCs.

The influence of a TC is associated almost entirely with its
track. TC activity is affected heavily by large-scale circulation,
as well as by sea surface temperature in local and remote areas
(Wang and Chan, 2002). Wang and Chan (2002) found that a TC
is more likely to recurve and could reach higher latitudes in El
Nifio years; the lifespan and intensity of a TC tends to be longer
and stronger in El Nifio years than in La Nifia years; but the total
frequency of TCs landfalling is not significantly related to the El
Nifio-Southern Oscillation (ENSO). Tao et al. (2013) pointed out
that the seasonal prediction was impeded by strong TCs, as well
as instability of the ENSO; He Pengcheng also discovered that
the Pacific Decadal Oscillation (PDO) modulates the influence
of the ENSO on TCs over the Western North Pacific (WNP) (He
and Jing, 2011). Liu and Chan suggested that the interdecadal
variation of TC track is possibly correlated with PDO (Liu and
Chan, 2008). Li etal. (2011) suggested that the frequency of
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the northward TCs in East Asia has an out-of-phase relationship
with the PDO. When the subtropical high becomes stronger or
extends westward, the TCs formed over the South China Sea and
the WNP are more likely to move northwestwards and recurve
(Ho etal., 2004; Goh and Chan, 2010) and to make landfall
over the Chinese coast. A pioneering study on the influence
of the quasi-biennial Oscillation (QBO) on TC frequency was
conducted by Gray (1984a, 1984b). Chan (1995) summarized
that, in non El Nifio years, the QBO played a major role in
modulating TC frequency over the WNP. The modulation of the
QBO on TC tracks was also identified by Ho etal. (2009). As
stated by Tao eral. (2012), weak TCs that form over the WNP
are affected mainly by the warming of the Indian Ocean and have
a negative correlation with the warming of the eastern Indian
Ocean (Zhan etal., 2011). The above factors can be taken as
potential predictors for TC frequency.

Along with the increasing availability of meteorological data,
data mining that uses an expert system to discover potential and
useful information has been applied widely (Han and Kamber,
2006). Several studies have applied this technology to the study
of meteorology, which routinely involves large volumes of data
(Han and Kamber, 2006; Shi et al., 2015). Camargo et al. (2007a)
employed the clustering method based on the Finite Mixture
Model (FMM) to classify TC tracks over the WNP by using a
quadratic polynomial regression function, in which the longitude
and latitude time sequences of track points were used as inde-
pendent variables (Camargo et al., 2007a, 2007b). Zheng et al.
(2013) also classified the TC tracks over the same ocean using
the k-mean clustering algorithm, which is not adaptive to track
length (Camargo etal., 2007a). Zhang etal. (2013a) classified
and predicted the changes of TCs (strengthened and weakened)
by using a decision tree algorithm. This algorithm also performed
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well when applied to TC landfalls and recurvature (Zhang et al.,
2013b, 2013c¢). As a consequence, the FMM algorithm was used
in the present paper to classify the tracks of TCs landfalling over
China during 1951-2012. Additionally, it was taken as a binary
classification with which to examine whether the TC frequency
in three clusters during summer was high or low, and whether the
algorithm of the Classification and Regression Tree (CART), pro-
posed by Breiman ez al. (1984), can be used to build the decision
tree. Finally, the prediction model was verified using an indepen-
dent test data set.

In recent years, climate models have frequently been used to
predict TC landfalls. Compared with previous climate models,
the present study aimed to build a novel model to predict TC
frequency over China by using the data mining approach together
with already known variables of TC frequency over the WNP.
The new research may enhance the understanding, prediction and
management of TC landfalls over China.

The remainder of this study is organized as follows. Section 2
presents data and methodology. Section 3 discusses the exper-
imental results based on the FMM and CART, followed by
Section 4 that reaches conclusions.

2. Data and methodology

2.1. Data source

The influence of TCs over China prevails from June to November,
and the summer (JJA) is the season with the highest frequency of
tropical cyclones making landfall over China. TC data were col-
lected for this study from the best track dataset for 1951-2012,
compiled by the Shanghai Typhoon Institute of the Chinese
Meteorological Administration, including the latitude and longi-
tude and the maximum sustained wind (MSW) observed at a 6 h
intervals. Samples used for the study were TCs landfalling over
China from June to November, with a life longer than one day and
with MSW >17.2ms~!. Here, the observation at which TC inten-
sity first reaches 17.2ms™! is defined as the location of TC gen-
esis. The data also include indices of the ENSO, PDO and QBO
collected from the National Oceanic and Atmospheric Adminis-
tration and climate indices from the Northern Hemisphere sum-
mer in the 74 circulation indices of the National Climate Center
(see Table 2). The summer values of the indices mentioned above
were attained by calculating the average value of those indices
during June—August.

2.2.  Methodology

2.2.1. Finite mixture model

In previous studies, TC tracks over China have been classi-
fied empirically into three major clusters: the westward-moving
TCs, the northwestward-moving TCs and the recurving TCs (Zhu
etal.,2000). However, such an empirical and shape-based classi-
fication fails to describe clearly the exact membership of each TC
track. Gaftney et al. (2007) designed a CCToolbox of MATLAB
that contains the FMM algorithm (download: http://www.datalab
.uci.edu/resources/CCT) and applied it to classify TC tracks over
the WNP. This algorithm employs mixed polynomial regression
models (i.e. curves) to fit the geographical ‘shape’ of TC tracks
and models a TC’s longitudinal and latitudinal positions ver-
sus time (Gaffney et al., 2007). Camargo et al. (2007a, 2007b)
and Zhang et al. (2013d) applied this algorithm recently to clas-
sify TC tracks under different conditions and achieved desirable
results. (For further details about this clustering method, see the
study by Gaftney et al. (2007).)
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2.2.2.  The CART algorithm

The CART is a predictive classification algorithm based on a
machine learning method that is commonly used in data mining,
and also a statistical approach of nonparametric binary tree that
is applicable to the classification of both discrete and continuous
variables. This algorithm generates a classification tree if the
target is a discrete variable and generates a regression tree if the
target is a continuous variable. The classification tree generated
by CART was used in this study. In the process of building the
classification tree, the attributes of the minimum Gini co-efficient
were taken as the testing attributes. A smaller Gini means a
smaller sampling heterogeneity, which, in turn, means a better
segmentation quality.

Data calculated by CART were arranged in an ascending order
and divided into two groups according to the medium value
between two adjacent values. The Gini co-efficient was then
used to calculate the heterogeneity of output variables of the two
sample groups:

K
Gy=1- p (il )
J=1

where ¢ represents the node, K represents the cluster of the
output variable and p(jlf) represents the probability that the output
variable has value j for node . When all nodes fall into a single
cluster, the heterogeneity of output variables is the smallest and
the Gini co-efficient is 0. When the nodes fall equally into all
clusters, the heterogeneity is the largest and the Gini co-efficient
also reaches its maximum: 1 — 1/k.

In the CART algorithm, the decrease of the heterogeneity can
be described by the decrease of the Gini co-efficient:

%”G (1) 2
where G(), G(t,) and G(t,) represent the Gini co-efficients of the
ungrouped output variable, the right subtree and the left subtree,
respectively; N, N, and N, stand for their respective sample sizes.

The segmentation point where the heterogeneity decreases the
most can be obtained through repeated calculations, the best
segmentation point corresponding to the largest AG(?).

The values of climate indices (e.g. ENSO, PDO, QBO etc.) are
continuous; each value can be divided into split points, which are
the mean of two consecutive values. In the present study, ¢ is the
number of samples (62 years) and j stands for the number of years
in which the TC frequency is high or not, in the case of different
split points for the climate indices.

In this study, the excellent data mining software of SPSS
Clementine 12.0 was used to build the CART decision tree
model.

AG(H) =G (1) — %G(tr) -

3. Cluster analysis and statistics of landfalling TC tracks

In China, TC tracks are classified empirically into three clusters
(Zhu et al., 2000). This approach was also used in the present
paper for comparative analysis of TC tracks. The FMM algorithm
was used to cluster the TC tracks landfalling in China during
1951-2012 based on the similarity of their shapes, lengths and
locations, as shown in Figure 1.

Figure 1(a) shows the distribution of all TC tracks over China
during 1951-2012; the three clusters (Cluster-1, Cluster-2 and
Cluster-3) are shown in Figures 1(b), (c) and (d), respectively.
The black bold curves in Figures 1(b)—(d) represent the mean
curves of the clusters. As can be seen from Figure 1, Cluster-1
tracks have both the longest and the widest influence, covering
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Figure 1. Classification of TC tracks in 1951-2012 over China based on the FMM algorithm. (a) The distribution of all TC tracks over China during
1951-2012; (b) Cluster-1, (c) Cluster-2 and (d) Cluster-3 TC tracks. The black bold curves in Figures 1(b)—(d) represent the average paths.

Table 1. Statistics for summer location, intensity, frequency and lifespan
for each TC track class.

1A Cluster-1 Cluster-2 Cluster-3
Mean initial longitude 128.94 116.00 126.68
Mean initial latitude 24.61 19.27 17.45
Mean intensity (ms~') 51.30 38.35 56.42
Mean lifespan (6 hours) 30.09 18.90 33.01
Frequency 149 169 108
Annual frequency 2.40 2.73 1.74
Frequency ratio (%) 35 40 25

the Yangtze River delta, the Pearl River delta and the Beijing—
Tianjin—Hebei Region in China and even parts of the Korean
Peninsula and Japan.

Statistics of the formation location, average intensity, average
lifespan and frequency of the three clusters of the summer TC
tracks are presented in Table 1.

As revealed by the statistics, the TC tracks of Cluster-1 form
more eastward and northward and they have stronger intensity
and longer lifespan than Cluster-2; the frequency of Cluster-1
is higher than that of Cluster-3 but lower than that of Cluster-2,
accounting for about 35% of the total TC frequency.

Table 2 lists the analytical correlation between the TC track fre-
quency and several climate indices. The frequency of Cluster-1
tracks is significantly correlated with Nifol + 2, Nifio3, PDO,
Area Indexes of Subtropical High (AISH), the Eurasian Merid-
ional Circulation Index (EMCI), the Western Pacific Subtropical
High Ridge Line (WPSHRL), the Area Index for the Subtropical
High over the West Pacific (AISHWP), the Strength Index of the
Subtropical High in the Western Pacific (SISHWP) and the Asian
Meridional Circulation Index (AMCI), whereas the frequencies
of the other two clusters are not significantly correlated with the
climate indices. Thus, the frequency of Cluster-1 tracks can be
predicted with greater accuracy than the frequencies of Cluster-2
and -3 tracks using the indices of ENSO and PDO and the other
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climate signals, providing good foundations for the prediction
model.

4. The CART-based prediction model for TC frequency

The CART algorithm was also used to classify the frequen-
cies of TCs in Cluster-1, Cluster-2 and Cluster-3. The TC sam-
ples recorded in 46 years out of the 62 years (about 75%) from
1951 to 2012 for the three clusters landfalling over China were
selected randomly as the training set for the model; those sam-
ples recorded in the remaining 16 years (about 25%) were taken
as the test set to verify the effectiveness of the model. The CART
algorithm is a machine learning method and has the ability to
filter data through the heterogeneity of attributes and output vari-
ables. The indices of ENSO, PDO and QBO and some other
climate indices (referred to as 74 circulation indices) in the sum-
mer were taken as the learning attributes of the model, to deter-
mine ‘whether the object variable (namely the frequency) is high
or not’. If the frequency of Cluster-1 and Cluster-2 TC tracks
in summer is >3, then the answer is ‘Yes’ (high frequency); if
<3, then the answer is ‘No’ (low frequency). If the frequency of
Cluster-3 TC tracks in summer is >2, then the answer is ‘Yes’
(high frequency); if <2, then the answer is ‘No’ (low frequency).
Of the total 62 years, there were 27 years of Cluster-1, 31 years of
Cluster-2 and 34 years of Cluster-3 during which the frequencies
of TC tracks were high; frequencies during the remaining years
were low. After multiple modelling on the random data, the deci-
sion tree of which test set had the highest accuracy was taken as
the optimal decision tree model.

By using CART, the decision tree of Cluster-1 involved Nifio3,
the India-Burma Trough (IBT), QBO, PDO and Nifio4; the final
decision tree was built as shown in Figure 2. The decision tree
of Cluster-2 involved the Index of Asia Polar Vortex Intensity
(IAPVI), QBO, EMCI and AISH; the final decision tree was built
as shown in Figure 3. The decision tree of Cluster-3 involved
EMCIL, IBT, AISH and Nifiol + 2; the final decision tree was built
as shown in Figure 4. Taking the decision tree of Cluster-1 (as
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Table 2. The Pearson correlation co-efficients between the number of TCs in each cluster and several climate indices (the maximum in the three
clusters is marked in bold).

JJA Cluster-1 Cluster-2 Cluster-3
Nifio 1 +2 —0.342%%* —0.022 0.166
Nifio 3 —0.273* 0.014 0.199
Nifio 4 —0.147 0.139 0.139
Nifio 3.4 —0.169 0.107 0.185
Multivariate ENSO Index (MEI) 0.175 0.162 —-0.011
Pacific Decadal Oscillation (PDO) —0.303* —0.045 0.088
Quasi-biennial Oscillation (QBO) —0.08 —0.175 0.037
North Atlantic Oscillation (NAO) 0.088 —0.023 —0.024
Northern Boundary of the Northern Hemisphere Subtropical High 0.12 0.21 —0.147
Area Indexes of Subtropical High (AISH) —0.270%* 0.084 0.034
Southern Oscillation Index 0.016 0.068 —0.183
Northern Boundary of the South China Sea Subtropical High —-0.106 0.238 0.021
South China Sea Subtropical Ridge Line —0.088 0.219 0.013
Eurasian Meridional Circulation Index (EMCI) —0.258%* —0.117 0.211
Eurasian Zonal Circulation Index 0.118 —0.015 —-0.012
Pacific Ocean Subtropical High Ridge 0.145 0.075 —0.055
Area Index for the Subtropical High over the Pacific -0.229 0.092 0.008
Pacific Polar Vortex Intensity Index 0.088 0.125 —0.065
Northern Boundary of the West Pacific Subtropical High Index (110° E-150° E) 0.199 0.058 0.021
Western Pacific Subtropical High Ridge Line (WPSHRL) (110° E-150°E) 0.372%%* 0.106 —0.03
Area Index for the Subtropical High over the West Pacific (AISHWP) (110° E-180° E) —0.252% 0.045 0.072
Strength Index of the Subtropical High in the Western Pacific (SISHWP) (110° E-180° E) —0.27% 0.039 0.063
Asian Meridional Circulation Index (AMCI) —0.258%* —0.139 0.186
Index of Asia Polar Vortex Intensity (IAPVI) 0.144 0.114 -0.075
Index of Asian Zonal Circulation 0.145 —0.024 —0.106
India—Burma Trough (IBT) —0.285%* 0.070 —0.004

Level of significance: *P =0.05; **P =0.01.
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Figure 2. Decision tree model of Cluster-1 track frequency prediction based on the CART algorithm.
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Figure 3. Decision tree model of Cluster-2 track frequency prediction based on the CART algorithm.
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Figure 4. Decision tree model of Cluster-3 track frequency prediction based on the CART algorithm.

Table 3. Rules on predicting the frequency of Cluster-1 TC tracks discovered by the CART algorithm.

Rules

Decision attributes

Learning accuracy

If (Nino3 < —0.125 and IBT <23.667 and PDO < —1.298), then the frequency is not high

If (Nifio3 < —0.125 and IBT <23.667 and PDO >—1.298), then the frequency is high

If (Nifio3 < —0.125 and IBT > 23.667 and QBO <2.3), then the frequency is not high

If (Nifio3 < —0.125 and IBT > 23.667 and QBO > 2.3), then the frequency is high

If (Nifio3 >—0.125 and QBO < —22.667), then the frequency is high

If (Nifio3 >—0.125 and QBO >—-22.667 and Nifio4 <0.672), then the frequency is not high
If (Nino3 >—0.125 and QBO >-22.667 and Nifio4 > 0.672), then the frequency is high

Nifio3, IBT, PDO 1/1=100%
Nifio3, IBT, PDO 16/16 = 100%
Nifno3, IBT, QBO 3/3=100%
Nifio3, IBT, QBO 2/2=100%
Nifio3, QBO 2/2=100%
Nifio3, QBO, Nifo4 21/21 =100%
Nifio3, QBO, Nifo4 1/1=100%

shown in Figure 2) as an example, each route starting from the
root node to the leaf node represents a rule predicting whether the
frequency of the Cluster-1 TC tracks in summer is high or not.
Take the leaf node ‘1(16/0)’, for example, the number 1 before
the parentheses means the frequency of Cluster-1 summer TC
track is high; numbers 16 and 0 mean that the node contains
16 samples of which there are 16 — 0= 16 samples in which the
frequency has been classified correctly and no (0) samples with
the wrong classification. The accuracy of the self-learning by the
model was 100%. The test set was substituted into the decision
tree for verification and the classification result showed that the
prediction accuracy was 87.5%. In general, a strategy may be
used to prune the branch(es) of the decision tree in order to pre-
vent the model from overfitting. However, this pruning strategy
was not used in the current study because, with a small sample
size, it had little impact on the experiment. Comparison results
show that the accuracy of the model reached its highest level
without the application of this pruning strategy. The construc-
tion method of the CART model for Cluster-2 and Cluster-3 was
identical to that for Cluster-1. Figures 3 and 4 are the decision
trees of Cluster-2 and Cluster-3, respectively. The accuracy of
the self-learning by the CART model was 86.96% (Cluster-2) and
100% (Cluster-3) and the testing accuracy was 62.5% (Cluster-2)
and 68.75% (Cluster-3).

With reference to Figure 2, a set of seven rules for predicting
whether the frequency of the summer Cluster-1 TC tracks over
China is high or not was extracted and is shown in Table 3: this
was the qualitative prediction model. In the first column, each
rule in the qualitative prediction model is described by the term
‘If-then’. The second column describes the attribute variables for
making the rules. The learning accuracy of each rule is listed in
the third column. The accuracy is calculated as the ratio of the
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correctly classified samples to the total samples in the leaf node.
In a similar way, Tables4 and 5 contain the rule sets generated
according to Figures 3 and 4.

The above classification results indicated that the nonparamet-
ric statistical approach CART can produce satisfactory accuracy
in predicting Cluster-1 TC tracks in summer and a simple, sci-
entific and easy rule set for prediction can be obtained. Using
CART to study TC frequency also provides a novel framework
for investigating the nonlinear statistics of TC track frequency.

5. Conclusions and discussion

Cluster analysis has been used widely to unravel the different
types of tropical cyclone (TC) tracks. However, less attention has
been paid to the cluster analysis of landfalling TCs, especially
over the Chinese coast. This study attempted to classify histor-
ical landfalling TC tracks over the Chinese coast using Finite
Mixture Model (FMM) based cluster analysis and to apply the
Classification and Regression Tree (CART) to build a prediction
scheme for landfalling TC frequency. Both the FMM and CART
performed encouragingly in extracting useful knowledge from
the historical TC archive. The research findings of this study can
be summarized as follows.

1. TC tracks over China during 1951-2012 were classified into
three clusters using the FMM algorithm. It was found that
the tracks of the Cluster-1 TCs formed more eastwards and
northwards in the study area and had stronger intensity and
longer lifespans. They accounted for a larger proportion of
the total frequency and exerted influence on many developed
regions.

Meteorol. Appl. 23: 587-593 (2016)
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Table 4. Rules on predicting the frequency of Cluster-2 TC tracks discovered by the CART algorithm.

Rules

Decision attributes Learning accuracy

If IAPVI<30.333 and QBO < —3.550 and EMCI <46.667), then the frequency is high
If IAPVI<30.333 and QBO < —3.550 and EMCI > 46.667), then the frequency is not high
If JAPVI <30.333 and QBO >-3.550 and AISH < 157.333), then the frequency is not high
If IAPVI<30.333 and QBO >-3.550 and AISH > 157.333), then the frequency is high

If IAPVI > 30.333 and QBO < —15.705), then the frequency is not high
If JAPVI> 30.333 and QBO >—15.705), then the frequency is high

IAPVI, QBO, EMCI 12/16 =75%
IAPVI, QBO, EMCI 6/6 =100%
IAPVI, QBO, AISH 18/18 =100%
IAPVI, QBO, AISH 1/1 =100%
IAPVL, QBO 1/1=100%
IAPVI, QBO 4/4=100%

Table 5. Rules on predicting the frequency of Cluster-3 TC tracks discovered by the CART algorithm.

Rules

Decision attributes Learning accuracy

If (EMCI <47.883 and IBT < 12.167), then the frequency is high

If (EMCI<47.883 and IBT > 12.167 and AISH < 159.333), then the frequency is not high
If (EMCI <47.883 and IBT > 12.167 and AISH > 159.333), then the frequency is high
If (EMCI > 47.883 and Nifiol +2 <—1.200), then the frequency is not high

If (EMCI > 47.883 and Nifiol 4+ 2 >—1.200), then the frequency is high

EMCI, IBT 1/1 =100%
EMCI, IBT, AISH 39/39 =100%
EMCI, IBT, AISH 1/1 =100%
EMCI, Ninol +2 1/1 =100%
EMCI, Nifol 42 4/4 =100%

2. The frequency of the Cluster-1 TCs was significantly cor-
related with the El Nifio-Southern Oscillation (ENSO), the
Pacific Decadal Oscillation (PDO) and several other climate
indices which form the basis of building the seasonal predic-
tion model.

3. The CART algorithm was used to derive the Cluster-1 deci-
sion tree containing seven leaf nodes, in which ENSO, PDO,
the quasi-biennial Oscillation (QBO) and several other cli-
mate indices were taken as predictors. Meanwhile, seven
rules were established for predicting tracks. The self-learning
accuracy of the model was 100% and the prediction accuracy
was 87.5%, showing the reliability of the model.

In order to formulate a more accurate prediction model for
the frequencies of Cluster-2 and Cluster-3 TC tracks, it will be
necessary to find a more suitable dataset for the prediction: the
data and the output attribute should contain higher heterogeneity.

The TC data volume is increasing with constantly improved
observational methods and skills. Thus, the technology of data
mining, which is a cutting-edge tool in the age of large amounts
of data, will play an increasingly important role both in improv-
ing our understanding of TC landfall variability and in shedding
light on the prediction and analysis of TC landfall over China.
This study has provided a practical point of view from which
to analyse TC landfall data and predict TC landfall over China.
Dynamic models will be integrated to complement data mining
methods in TC-related studies in the future.
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