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Probability forecasts with observation error: what should be forecast?
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ABSTRACT: When probability forecasts are made of a binary event, a commonly used measure for assessing the forecasts is
the Brier score. One of its properties is that it is proper, meaning that its expected value cannot be improved by the forecaster
issuing a probability other than his/her true belief. This property assumes that the occurrence or otherwise of the forecast event
is recorded without error. This note investigates what forecast should be made in order to minimize the expected value of the
Brier score when errors are present in the observations. Should it still be the forecaster’s true belief or should it be something
else, implying that the forecaster should hedge his/her forecast? The answer is that it depends on whether the forecaster can
model the error mechanism or whether the error mechanism is unknown. It is shown that in the former case the forecaster’s
true belief of the probability of the event should still be forecast. However, in the case of an unknown error mechanism, the
forecaster should attempt to forecast the probability that the erroneous observation indicates that the event has occurred, rather

than the true probability of the event.
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1. Introduction

Suppose that probability forecasts are to be made for a set of
binary events, such as whether the temperature at a station will be
below a threshold or whether ‘severe weather’ will occur some-
where in a specified geographical region. A commonly used mea-
sure of the quality of a set of such forecasts is the Brier score
(Brier, 1950). As well as being intuitive, the Brier score has the
desirable property that it is proper (Winkler and Murphy, 1968).
This means that the forecaster cannot improve the expected value
of the score by hedging, i.e. by giving a forecast probability dif-
ferent from his/her ‘true belief’. In demonstrating that the Brier
score is proper it is assumed that the occurrence or otherwise of
the event of interest is observed without error. This is not always
the case.

For example, suppose that the forecast is for the occurrence
of a severe weather event somewhere in a large geographical
area. If the event of interest is localized and the observing
network is sparse, it is then possible that a true occurrence
of the event is missed. Another example is when the event
of interest is that some measured variable is above/below a
threshold, e.g. wind speed above 50 knots or temperature
below 0°C. The measuring instrument used will have some
measurement error, which can lead to a false declaration
that the event has/has not occurred. These two examples are
examined in detail later but, more generally, observation error
can take many forms including reporting errors and practices
such as rounding, as well as measurement error. The latter
can vary greatly in magnitude, ranging from small values for
directly observed temperatures to large discrepancies for rainfall
radar.
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This note investigates what forecast should be made (the fore-
caster’s true belief or otherwise) when there is possible error
associated with observation of the forecast event. Section 2 dis-
cusses what the optimal forecast is when the error mechanism
is not known or is known. Two examples of the latter case are
described in Section 3 and Section 4 gives some final remarks.

2. The Brier score, optimal forecasts and propriety

Suppose that (f;,0;), i=1,2, ..., n, is a set of n probability
forecasts of an event and the corresponding observations. Here,
f; can take any value between 0 and 1, while o, can only take the
values 1 or 0, depending on whether the forecast event does or
does not occur. The Brier score is defined as:

ln 2
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If the observations are without error, it is relatively straight-
forward to show that the Brier score is proper, meaning that its
expected value cannot be improved by forecasting something
other than the forecaster’s true belief. Consider one of the terms
in the summation defining B in Equation (1). Dropping its sub-
script for notational convenience, this is (f —0)>. Suppose that
the forecaster believes that there is a probability p,, (honest belief)
of the event occurring on this occasion. The expected value of a
binary random variable is the sum over its two values of the prod-
uct of each value and the probability of that value occurring. The
random variable o takes the two values 0 and 1, with probabilities
1 — py, and p,, respectively, so the expected value of (f — 0)? is:

E{f-0}=f(1-py)+ (- 1’p, 2

Differentiating this expression with respect to f and equating
its derivative to zero shows that it is uniquely minimized when
f=py. Minimizing each term in B in Equation (1) will mini-
mize their sum, so the forecaster’s optimum forecast is his/her
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true/honest belief on each forecast occasion. However, what hap-
pens when the observations are made with error?

A number of authors have considered the effect of obser-
vational errors on verification measures, e.g. Candille and
Talagrand (2008), Pappenberger et al. (2009), Santos and Ghelli
(2012) and Mittermaier and Stephenson (2015). Of these,
Candille and Talagrand (2008) and Santos and Ghelli (2012)
specifically consider the Brier score when there is observa-
tional uncertainty, but from a different perspective to that given
here. They look at the effect of the errors on components of
the score corresponding to reliability and resolution and on
the Brier skill score, rather than what should be the optimal
forecast.

Now, suppose that it is known that the observation may be in
error, but there is no knowledge of the mechanism by which these
errors occur. For a given forecast, let o, denote the error-prone
observation and let g =Pr(o, = 1). If these error-prone observa-
tions are all that are available, it is not possible to evaluate the
expected value E{(f — 0)?} of the terms in the Brier score. Instead
it seems natural to minimize:

E{(f-0)'}=r0-a+¢-1%¢ O

which is minimized when f = ¢g. Thus, the forecaster should fore-
cast his/her belief that the error-prone observation will indicate
that the event has occurred, which will typically be different from
his/her belief that the event actually will occur.

If the observations are error-prone it would be hoped that there
is at least some knowledge of the error mechanism. Examples of
this are given in the next section but for the moment simply sup-
pose that it is possible to give beliefs for ¢ and for the conditional
probabilities ¢, =Pr(o = llo, = 1), ¢y =Pr(o = llo, =0). Then:

Pro=1)=p=cq+cy(1 —¢q) 4)

Pro=0)=1-p=(l-c))g+ (1 —c))(A—q) (5

Replacing p;, and g in Equations (2) and (3), respectively, by the
expression in Equation (4) gives the expected value of the term
in the Brier score when the forecast f is made to be:

E{f-0"} =0 - {cg+tced =@} +f*{(1 —c)q
+(1 —co)(l—q)}

Differentiating with respect to f and equating to zero, there
is considerable simplification and it turns out that the expected
value of the Brier score is minimized for:

f=clq+(1—c0)(1 -q)=p

Hence, given this knowledge/belief about the relationship
between the true and error-prone forecasts, the forecaster should
again forecast his/her true p;, belief regarding p, given his/her
knowledge/belief regarding ¢, ¢; and q.

3. Two scenarios for error-prone observations

3.1. Spatially missed events

Suppose that the forecast is for the occurrence of a severe weather
event somewhere in a large geographical area. If the event of
interest is localized and the observing network is sparse, it is
then possible that a true occurrence of the event is missed, but
it is likely that when an occurrence is said to have occurred
then this is correct. This means that ¢; ~1 but ¢, >0 and
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p~q+cy(l—q)>q. As an example, suppose that ¢, =0.2; so,
on the 20% of occasions that the observation said ‘no event’
there was, in fact, a missed event. If g =0.75, then p =0.80, and
if ¢=0.20, then p=0.36, for example. One apparently strange
aspect of this scenario is that there is a lower bound on p,
namely ¢,. With ¢, =0.2, for example, it is impossible to have
p <0.2; otherwise g < 0. It ought to be possible to take p to be
any value between 0 and 1 and indeed it is. The restriction is
really one on ¢,. If p, g are very small, then the proportion of
‘observed non-events’ that correspond to missed events is itself
very small — hence the bound.

3.2. Temperature below/above threshold measured with error

Suppose that the event of interest is whether or not the sur-
face temperature is below or above a threshold. As an example,
0°C is an obvious threshold. The observed temperature may
be subject to measurement error due to the instrument, the
exposure, the measuring process or any combination of these.
Other factors may also lead to errors such as a reporting pro-
cess in which there is a mismatch between the time of obser-
vation and the time for which the forecast is made. Let T be
the observed temperature and 7 the true temperature and assume
that 7|t ~ N (z, 6%) and 7 ~ N (u,02). From these assump-
tions, if u, 6,2 and o, ? are specified, then the joint distribution
of T and 7 can be found, as can the conditional distribution of
7, given T. The joint distribution of 7" and 7 is bivariate nor-
mal with E(T) = E(z) = u, var(t) =02, var(T)=0,> + c;* and
cov(T, 7) =0,

Given this distribution and the conditional distribution of
T given T, the quantities p, g, ¢, and ¢; can be calculated.
In the present context c¢;, ¢, are probabilities that the true
temperature is below the threshold, given that the observed
temperature is below/above the threshold respectively. For
illustration, suppose that o, =3.0 °C and 6,;=0.5 °C. This
implies that the true temperatures are mostly within a range of
about 12 °C and the observations are rarely in error by more
than 1°C. The values of o, and o, are chosen subjectively,
but the latter is not out of line with the conclusions of Mitter-
maier and Stephenson (2015). The correlation between 7 and
is 0.986.

The probabilities p, ¢, ¢, and ¢, can be calculated for various
values of u. For a threshold of 0 °C, Table 1 gives values of p and
q for selected values of .

Recall that p is the true value for the probability of a tem-
perature below 0 °C, whereas g is the probability of this event
implied by the erroneous observations. In the previous section it
was suggested that for propriety a forecaster should forecast p
rather than ¢q. In this example, p and ¢ are very similar because
of the high correlation between 7 and 7, although their ratio
diverges from 1 as u increases. Differences between p and g are
larger if o is much closer in value to o, but this does not seem
realistic.

Values for ¢ and ¢, for the same situation as above, for selected
values of y, are given in Table 2.

Recall that ¢ is the probability that the temperature really is
below the threshold when the observed value says it is, and ¢,
is the corresponding probability for the true temperature when
the observation indicates that the temperature is not below the
threshold. The probability c¢; is reasonably close to 1 unless
the mean temperature is substantially above the 0°C threshold.
Similarly, ¢, is close to zero unless the mean temperature is well
below the threshold.
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Table 1. True and observed probabilities for a selection of values of y.

Mean, u —4 -2 2 4 6 8
True probability p 0.909 0.748 0.500 0.252 0.091 0.023 0.004
Observed probability g 0.906 0.745 0.500 0.255 0.094 0.024 0.004
plgq 1.003 1.004 1.000 0.989 0.966 0.938 0.899
Table 2. Conditional probabilities c¢;, ¢, for selected values of y.

Mean, u —4 -2 0 2 4 6 8
c 0.990 0.974 0.947 0.912 0.867 0.817 0.761
I 0.133 0.088 0.053 0.026 0.011 0.003 0.001
4. Concluding remarks Acknowledgement

The expected value of the Brier score for probability forecasts
is minimized when the forecaster forecasts his/her true belief,
meaning that the score is proper, provided that the observa-
tions are recorded without error. When error is present, with no
knowledge of the error mechanism, the forecaster should forecast
his/her belief regarding the probability of the erroneous observa-
tion indicating that the event of interest has occurred, rather than
his/her belief regarding the true probability of the event. How-
ever, when the error mechanism can be modelled, the forecaster
should revert to forecasting his/her belief regarding the true prob-
ability of the event. In the latter case, two simple examples have
been examined. In these examples, comparisons can be made
between the true probability of the event of interest and its prob-
ability as suggested by the erroneous observations. The reason
for reversion to true belief is perhaps that with knowledge of the
error mechanism it is possible to deduce true probabilities from
those given by the erroneous observations, whereas this is not
possible when the error mechanism is unknown.

This note assumes that propriety is the important property for
binary probability forecasts. If this is not considered to be the
case, strategies other than those recommended above may be
deemed more appropriate.
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