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The evaporation of water from free-water surfaces or land surfaces is one of the
main components of the hydrological cycle and is a complex outcome of various
meteorological and physical parameters. A simulation procedure was evaluated in
this paper to study the capabilities of a neuro-fuzzy (NF) technique to estimate
daily pan evaporation (EP) magnitudes using meteorological variables. The assess-
ment of the NF technique for simulating EP values was performed via local (tempo-
ral) and external (spatial) data-management scenarios. Hence, a thoroughgoing
scan of the possible train and test-set combinations was carried out based on the
temporal and spatial criteria using k-fold testing procedures. A comparison was
also made between the NF and neural networks (NN) methods using the same data
and procedures. The obtained outcomes revealed that the proposed generalized NF
and NN models have good abilities at simulating EP values using meteorological
data. Therefore, the calibration of local NF models might not be required if suffi-
cient meteorological parameters exist in other weather stations. The results also
demonstrated that a proper assessment of the models’ performance accuracy should
include a complete temporal/spatial scanning of the used patterns.
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1 | INTRODUCTION

Water evaporation (an irreversible phenomenon) is one of
the important elements of the hydrological cycle (Brutsaert,
1982). Evaporation from the land surface is the largest ele-
ment of the terrestrial hydrologic cycle (Wallace, 1995),
which uses about 61% of total precipitation (Chow et al.,
1988). Therefore, it is an important element of the hydro-
logic cycle and accurate estimation of its quantity is a crucial
subject in hydrology, agro-meteorology and irrigation engi-
neering. Numerous studies have been carried out to derive
the mathematical/empirical relationships between the evapo-
ration and meteorological factors (e.g. Kohler et al., 1955;
Stephen and Stewart, 1963; Griffiths, 1966; Linarce, 1967;
Priestley and Taylor, 1972; Burman, 1976; de Bruin, 1978).
However, such empirical relationships have their downside
because they are non-transferable (Cahoon et al., 1991).

Evaporation is a nonlinear phenomenon that needs more
robust models to be simulated using meteorological parame-
ters. Therefore, the application of data-driven models
(e.g. the neuro-fuzzy (NF) technique) might be a suitable
alternative to the empirical models (Kim et al., 2015).

The NF technique is a combination of an adaptive neural
network (NN) and a fuzzy inference system (FIS), where the
FIS parameters are identified by the NN-learning algorithms.
The NF technique can approximate any real continuous
function on a compact set (Jang et al., 1997). It also clas-
sifies a parameter set via a hybrid learning rule by merging
the back-propagation gradient descent error digestion and a
least squares error method. Two fuzzy approaches: the
Mamdani (Mamdani and Assilian, 1975) and the Sugeno
(Takagi and Sugeno, 1985), can be used in different disci-
plines. The main difference between them is that they belong
to the consequent part: where Mamdani’s approach uses the
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fuzzy membership functions (MFs), Sugeno’s approach
applies linear or constant functions. Sugeno’s fuzzy
approach (Takagi and Sugeno, 1985) was applied in the pre-
sent paper to find the output variable (EP) magnitudes by
using the input variables (meteorological data). Among
others, Keskin et al. (2004), Kisi (2006a), Kisi and Ozturk
(2007), Aytek (2008), Shiri et al. (2011) and Pour Ali Baba
et al. (2013) employed the NF technique to model evapora-
tion. Kisi and Shiri (2010) used the NF techniques to predict
short-/long-term stream flows. Shiri and Kisi (2011a) com-
pared genetic programming with the NF to predict ground-
water table variations. Shiri and Kisi (2011b) compared
genetic programming and the NF to simulate pan evapora-
tion magnitudes using real-time and estimated meteorologi-
cal parameters.

An NN has one or more hidden layers, whose computa-
tion nodes are called “hidden neurons”. The hidden neurons
intervene between the external input and the network output
in some useful manner. The network is enabled to extract
higher order statistics by adding one or more hidden layers
(Haykin, 1998). Kisi (2006b, 2006c) applied the NN to esti-
mate evaporation.Most of these NF employments have
adopted a simple data set assignment where the training and
test blocks have been defined chronologically. However,
some others tried to apply other data-management scenarios
(e.g. Kumar et al., 2009; Marti and Gasque, 2010; Kisi
et al., 2012; Wang et al., 2014; Shiri et al., 2014a). Martí
et al. (2011) argued that a simple data set assignment might
derive in misleading/partially valid statements. The present
research aimed to evaluate the performance accuracy of the
NF and NN models when estimating EP using both spatial
and temporal data-management scenarios with daily meteo-
rological data from four low-altitude weather stations in
United States. The regional variations in temperature and
rainfall magnitudes and patterns in the lowlands supply fun-
damental information in order to understand the climatic var-
iability that provides important differences in vegetation and
primary production (Coppok, 1994). Hence, the present
paper evaluated the performance accuracy of the models in
lowland regions. Therefore, complete data set scanning was
carried out by defining all possible training and test combi-
nations based on temporal and spatial criteria. This is very
important from the practical point of view because it
exempts one from using the local data for evaporation
modelling by using the spatially evaluated models. There-
fore, the regions with limited or missing data would be bene-
fit from using the spatial (external) models.

2 | MATERIALS AND METHODS

2.1 | Data set

Daily meteorological data from four automated weather sta-
tions in the United States were used. Table 1 presents the

geographical positions of the weather stations. The minimum
and maximum station elevations above mean sea level were
for San Diego (4 masl) and Fresno (102 masl), which shows
that the altitude difference between the stations was small.
The considered variables were daily air temperature (TA),
solar radiation (RS), relative humidity (RH), wind speed (WS)
and pan evaporation (EP) for a 10-year period (January
1981–December 1990). Table 2 sums up the daily statistical
parameters of the used parameters, where Xmean, Xmax, Xmin,
SX, CV and CSX are the mean, maximum, minimum, stan-
dard deviation, co-efficient of variation and skewness co-
efficient respectively. All the studied locations show similar
statistical parameters for the meteorological variables,
although some obvious differences, especially in terms of
the higher order momentums (skewness), were obvious
between the stations. Such differences might affect the
extrapolations of EP using the NF models.

2.2 | Neuro-fuzzy (NF) system

As a simple example, suppose an FIS with two inputs x and
y and one output f. The first-order Sugeno fuzzy model can
be given as:

Rule 1 : If x isA1 and y is B1, then f1¼ p1x+ q1y+ r1 ð1Þ
Rule 2 : If x isA2 and y is B2, then f2¼ p2x+ q2y+ r2 ð2Þ

where A1, A2 and B1, B2 are the MFs for inputs x and
y respectively; and p1, q1, r1 and p2, q2, r2 are the parameters
of the output function. Here, the output f is the weighted
average of the individual rule outputs and is a crisp value.

The output of the i-th node in layer l is shown as Ol,i.
Each node i in layer 1 is an adaptive node with node Ol, i =
ϕA

i
(x), for i = 1, 2, or Ol, i = ϕBi − 2(y), for i = 3, 4, where

x (or y) is the input to the i-th node; and Ai (or Bi-2) is a lin-
guistic label (such as “low” or “high”) associated with this
node. The MFs for A and B are generally described by gen-
eralized bell functions, for example:

ϕAi xð Þ¼ 1

1+ x−cið Þ=ai½ �2bi ð3Þ

where {ai, bi, ci} is the parameter set. Parameters in this
layer are called premise parameters. The outputs of this layer
are the membership values of the premise part. Layer
2 includes the nodes labelled Π that multiply incoming sig-
nals, then send the product out. For instance:

O2, i ¼wi ¼ϕAi xð ÞϕBi yð Þ, i¼ 1,2: ð4Þ
Each node output shows the firing strength of a rule. The

nodes labelled “N” compute the ratio of the i-th rule’s firing
strength to the sum of all rules’ firing strengths in layer 3:

O3, i ¼wi ¼ wi

w1 +w2
, i¼ 1,2: ð5Þ
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The outputs of this layer are called normalized firing
strengths. The nodes of layer 4 are adaptive with node
functions:

O4, i ¼wifi ¼wi pix+ qiy+ rið Þ ð6Þ
where wi is the output of layer 3; and {pi, qi, ri} is the
parameter set. Parameters of this layer are called consequent
parameters. The single fixed node of layer 5 labelled Σ cal-
culates the final output as the summation of all incoming
signals:

O5, i ¼
X
i¼1

wifi ¼
P

i wifiP
i wi

ð7Þ

Hence, an adaptive network that is functionally equiva-
lent to a Sugeno first-order FIS was built. For detailed infor-
mation about the adaptive-network-based fuzzy inference
system (ANFIS), see Jang (1993).

2.3 | Neural networks (NN)

In the present study, NN models were trained by using a
Levenberg–Marquardt algorithm because this is more pow-
erful and faster than the conventional gradient-descent tech-
nique (Hagan and Menhaj, 1994). Moreover, a single hidden
layer would be enough for the NN to approximate the non-
linear phenomenon (Cybenco, 1989). Therefore, a single-
hidden-layer NN was employed and the numbers of hidden
neurons were determined iteratively. The sigmoid and linear
functions were used as the activation functions of the hidden
and output nodes respectively.

2.4 | Modelling protocol

According to Griffiths (1966), most of the evaporation varia-
tions can be associated with air temperature and wind speed
changes. In the present study, the following input

TABLE 1 Summary of the geographical positions of the studied locations

Station Station code US state Latitude (� N) Longitude (� W) Altitude (masl)

Fresno 1 California 36.78 119.72 102

Los Angles 2 California 33.56 118.24 30

San Diego 3 California 32.44 117.10 4

Santa Maria 4 California 34.54 120.27 77

TABLE 2 Statistical parameters of the used data set

Station Parameter Unit Xmax Xmin Xmean SX CV CSX

Fresno TA �C 34.900 –3.000 17.801 8.118 0.456 0.010

WS m/s 9.913 0.273 3.081 1.299 0.422 0.673

RH % 32.963 1.467 18.512 8.783 0.474 –0.135

RS MJ/m2 day 100.000 18.000 52.151 19.010 0.365 0.478

P KPa 102.300 98.300 100.440 0.512 0.005 0.351

EP mm 18.200 0.000 6.242 4.475 0.717 0.337

Los Angeles TA �C 29.900 5.700 17.011 3.343 0.197 0.038

WS m/s 12.719 1.439 3.604 0.973 0.270 2.029

RH % 31.191 2.771 17.928 6.846 0.382 –0.018

RS MJ/m2 day 102.700 99.100 101.170 0.368 0.004 0.143

P KPa 99.000 9.000 63.638 15.745 0.247 –1.088

EP mm 14.600 0.400 4.745 1.935 0.408 0.400

San Diego TA �C 30.200 7.200 18.029 3.485 0.193 0.146

WS m/s 10.897 0.961 3.704 0.989 0.267 1.152

RH % 31.066 3.277 18.100 6.618 0.366 0.022

RS MJ/m2 day 102.800 99.500 101.445 0.346 0.003 0.160

P KPa 97.000 10.000 64.915 14.120 0.218 –1.280

EP mm 14.800 0.000 4.851 1.872 0.386 0.318

Santa Maria TA �C 26.700 0.500 13.635 3.410 0.250 –0.112

WS m/s 12.530 0.810 4.592 1.535 0.334 0.515

RH % 31.923 3.285 18.575 7.239 0.390 –0.045

RS MJ/m2 day 102.300 98.600 100.795 0.374 0.004 0.027

P KPa 95.000 16.000 63.478 13.639 0.215 –0.795

EP mm 24.000 0.000 5.322 2.790 0.524 0.569
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configurations were assessed, which imply the effect of air
temperature (TA), wind speed (WS) and solar radiation (RS)
on total EP magnitudes:

• TA and WS

• TA and RS

• TA, WS, RH and RS

It is very important to introduce the input–output
matrices to the applied models in such a way that the gen-
eralizability of the models can be assessed. In the present
paper, the evaluation of the NF models’ performance
accuracies was performed using local (LNF models) and
external (ENF models) k-fold testing cross-validation.
Therefore, in the LNF models, the minimum temporary
test period was fixed as one year. The models were then
trained using the data from the remaining nine years. The
process was repeated at each station till all the existing
years were involved in the train-test phases. As the pre-
sent study uses data from four stations during the 10 years,
a total 120 (4 stations*10 years*3 input configurations)
train-test phases were established for the LNF models.
Further, in the ENF models, the available patterns of three
stations were used as training data, while the developed
models were tested using the complete patterns of one sta-
tion. Therefore, a total 12 (4 stations*3 input configura-
tions) train-test procedures were involved for the ENF
models.

Four statistical measures, namely, the co-efficient of
determination (r2), scatter index (SI), mean absolute error
(MAE) and co-efficient of residual mass (CRM), were
used to evaluate the performance accuracy of the LNF
and ENF models, the expressions for which are as
follows:

r2 ¼
Pn

i¼1 Eo−Eo
� �

EM−EM
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 Eo−Eo

� �2Pn
i¼1 EM−EM

� �2q

2
64

3
75
2

ð8Þ

SI ¼RMSE
E0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1 EM−Eoð Þ2

q

E0
ð9Þ

MAE¼
Pn

i¼1abs Eo−EMð Þ
n

ð10Þ

CRM¼
Pn

i¼1Eo−
Pn

i¼1EM
� �

Pn
i¼1Eo

ð11Þ

where Eo denotes the measured evaporation value at the i-th
time step; EM is the corresponding estimated evaporation
value; n is the number of patterns; EO is the mean value of
the measured evaporation values; and EM is the mean value
of the estimated evaporation values. The statistical indices of
the LNF models belonged to the complete period in each sta-
tion, that is, the estimations of each test stage were pooled
together chronologically and the statistical parameters were
computed for the complete period.

3 | RESULTS AND DISCUSSION

The statistical indices of the LNF, LNN, ENF and ENN
models averaging the results of the all stations are shown in
Table 3. As could be foreshadowed, the quadruple-input
models (LNF3 and ENF3 as well as LNN3 and ENN3) gave
the best performance accuracy. Nevertheless, the major
downside of this input combination is the requirement of
more input variables that might not be provided in many
areas. Moreover, the local models produced more accurate
outcomes than the external models, since they were trained

TABLE 3 Global average performance parameters of the considered approaches

Model
Co-efficient of
determination (r2)

Mean absolute
error (MAE) (mm)

Scatter
index (SI)

Co-efficient of residual
mass (CRM)

Local

NF1 0.590 1.179 0.280 –0.005

NF2 0.756 0.845 0.215 –0.003

NF3 0.977 0.212 0.052 –0.0003

NN1 0.531 1.296 0.308 –0.005

NN2

NN3

External

NF1 0.541 1.290 0.400 0.010

NF2 0.720 1.160 0.330 0.030

NF3 0.856 0.792 0.170 0.005

NN1 0.487 1.421 0.442 0.013

NN2

NN3
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with the meteorological patterns of the same stations that
were used for testing (using different years for training and
for testing). In the case of the external models, the ENF3
(which relied on input combination 3) improved the perfor-
mance accuracy of the LNF1 and LNF2 models by 40% and
21% reductions in their SI values respectively. Finally, the
models that relied on TA and RS were more accurate than
those that relied on TA and WS. Therefore, the inclusion of
RS as an input variable of the NF models (instead of WS)
seems to be more suitable in simulating EP, which confirms
the results obtained by Shiri et al. (2014b).

Figures 1–3 show the performance indicators per test sta-
tion for the input combinations 1–3 respectively. By compar-
ing Figures 1–3, the above-mentioned statements regarding
the superiority of the LNF3, LNN3, ENF3 and ENN3
models over the other two applied input combinations can
be confirmed. Regarding the input combination 1, the local
model (LNF1) gave the most accurate results in Fresno
(code: 1; with the highest altitude) with the minimum SI
(0.17) and MAE (1.004 mm/day) and the highest r2 (0.916)
values, while Santa Maria (code: 4) presented the worst
results for this input combination with the highest SI (0.38)
and MAE (1.51 mm/day) as well as the lowest r2 (0.481)
values. A possible reason for such a discrepancy between
the stations would be the differences in the statistical charac-
teristics (Table 2) of the meteorological data (especially in
terms of TA and WS) of the stations. Further, this might show
the differences among the different subseries of the

meteorological parameters used for training and testing the
models, which makes it difficult to obtain accurate results in
some locations. In the case of the external model (ENF), the
best simulations corresponded to Los Angles (code: 2) with
the lowest SI (0.31) and MAE (1.09) values, while the simu-
lations obtained in Santa Maria (code: 4) were the worst
among the others with the highest SI and MAE values (0.48
and 1.42 mm/day respectively). Again, Santa Maria pre-
sented the worst results for the ENF model, such as the local
one. This might be attributed to its disimilarities in terms of
the time-series trend of the meteorological parameters with
the other studied locations. The r2 value of the ENF model
for Los Angles was lower than that for the Fresno, although
an adverse outcome was observed for the MAE and SI
values. This could be expected in some cases, since the r2

value presents only the linear relations between the target-
simulation pairs, so some vast differences would not be pic-
tured well with this index if they had a similar trend in varia-
tions. A similar statement could also be presented for the
NN models.

Attending to the input combination 2 (LNF2 and ENF2
models; Figure 2), Fresno gave the best simulations
(SI = 0.14, MAE = 0.649 mm/day), while Santa Maria
presented the lowest performance accuracy (SI = 0.29,
MAE = 1.19 mm/day), similar to input combination 1. The
simulations for San Diego (code: 3; with the lowest altitude)
were similar to those for Fresno (ΔSI = 0.57, ΔMAE =
0.063 mm/day), which might be linked to the similarities
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between the EP statistics (Table 2) of these stations. A com-
parison of the present input combination with the former
(combination 1) showed that the LNF2 and ENF2 have
improved the accuracy of the LNF1 and ENF1 models
(in Fresno) with 17% and 29% reduction in SI values

respectively. The higher performance improvement belonged
to the external models, which could show the effect of
including the most influential parameters (here, RS) in exter-
nally trained models of EP simulation. The same perfor-
mance improvements in terms of SI reduction in Santa
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Maria were 23% and 21% respectively. Here, the local model
presented more improvement than the external one. Again,
the statements given above would stand here regarding the
disimilarities between the time-series of the used meteoro-
logical parameters of the studied stations.

Finally, in the case of input combination 3, Fresno and
Santa Maria again presented the best and worst outcomes
with the lowest and highest SI and MAE values respectively.
The LNF3 model improved the performance accuracy of the
LNF2 model with 78% and 77% reductions in the SI and
MAE values of Fresno respectively, as well as 69% and 67%
reductions in the same respective indicators for Santa Maria.
This shows that the inclusion of all necessary variables as
input parameters enhanced modelling accuracy to a great
extent, although the need for large amount of meteorological
variables would be a crucial drawback of this model, as dis-
cussed by Shiri et al. (2014b). Therefore, the assessment of
the NF models based on external patterns (ancillary data
from other stations which have not been incorporated in
training phase) would be necessary. Analysis of the statistics
of the ENF3 model shows SI reductions of 65%, 58%, 46%
and 13% for Fresno, Los Angeles, San Diego and Santa
Maria respectively when compared with those of the ENF2
model. Again, the minimum performance improvement
belonged to Santa Maria. Comparing Figures 1–3 shows that
the ENF3 improved the local NF models’ (LNF1 and LNF2)
accuracies in terms of both SI and MAE reductions. The
CRM and r2 values fluctuated between the models and sta-
tions. However, as a general statement, a global increase in

model accuracy could be observed, as stated above. Such
oscillations among locations dictated the necessity of evalu-
ating the models’ performance accuracy via complete data
set-scanning processes, as discussed by Martí et al. (2011).

Figure 4 illustrates the breakdown of the annual SI
values for the LNF models at each studied location. The SI
magnitudes show obvious fluctuations within the test years
for all three input combinations and four studied stations.
Among others, the mean maximum fluctuations for the SI
during the study period were observed for Los Angeles
(0.1), San Diego (0.16) and Santa Maria (0.16) for input
combinations 1–3 respectively. The fluctuations range was
at a minimum for Fresno. The order of the models’ perfor-
mance accuracy (in terms of SI) was almost the same for all
stations and test years, where input combination 3 surpasses
inputs 1 and 2, and input 2 surpasses the first input combina-
tion. Differences between the mean SI values for the applied
input combinations at each station are obvious, emphasizing
the superiority of the third input combination over the two
other applied combinations. However, considerable oscilla-
tions could be observed in the SI values for different test
years, as stated above. Therefore, a complete data-scanning
procedure is a crucial data handling method for managing
the EP modelling issues.

Summarizing, the NF and NN models had good capabil-
ity at modelling daily EP values using even limited meteoro-
logical inputs (TA and RS) in low-altitude stations, which
might have different climatic characteristics in terms of
meteorological variables than the other regions. Wind
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turbulence effects are more obvious in those regions. This
was the reason why the wind speed-based models (based on
mass-transfer-based theory) could not give promising results
for those regions. Further studies might be needed to
enhance the outcomes of the present study.

4 | CONCLUSIONS

The current study presented an evaluation of the neuro-fuzzy
(NF) systems in estimating daily pan evaporation (EP) mag-
nitudes in low-altitude stations by using a complete data-
scanning procedure, for example, a k-fold testing approach.
Using data from four low-altitude US weather stations cov-
ering a period of 10 years, the NF models were developed
and assessed based on local (temporal) and spatial (external)
scales. Three input combinations were defined using the
available meteorological inputs to feed the NF models. A
comparison was carried out between the outcomes of the NF
models with neural networks (NN) by using the same mate-
rials. The obtained results revealed that the third input com-
bination comprising air temperature, wind speed, solar
radiation and humidity records gave promising results for
both local and external scales. Accordingly, when no data
were available for a target station, the model could be devel-
oped using the ancillary data from the feeding station and
used in the target station. Nevertheless, the combination
comprising air temperature and solar radiation gave accurate
results in both scales, which exempts the use of local data
when external models fed with exogenous data are available.
The present study used data from four low-altitude stations
to model daily EP values. Further investigations might be
needed using data from both high and low altitudes to assess
the generalizability of the NF (and other models) in order to
strengthen the present outcomes.
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