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Abstract

Carbon fiber-reinforced plastics (CFRP) are widely used in the plastics indus-

try. The production of CFRP is mostly carried out on the twin-screw extruder.

Many different process variables change the process ability and the final fiber

length in the product. In the literature, some models for fiber length decrease

along the extruder with glass fibers can be found. The effects of the processing

conditions on the final length for glass fiber are determined. In comparison,

the incorporation behavior of the carbon fibers are not sufficiently analyzed.

The purpose of this paper is to predict the fiber breakage along the screw for

carbon fibers. First of all, the buckling case must be determined. The basis of

the modeling is a fragmentation equation, for which a break probability and a

break rate are defined. A comparison with experimental data shows satisfac-

tory results.
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1 | INTRODUCTION

The constant improvement of mechanical and physical
properties of products is driving the demand for carbon
fiber-reinforced plastics. The reinforcement of polymers
with carbon fibers improves the stability and the stiffness.
The mechanical properties are determined by the incor-
poration behavior of the carbon fibers in the twin screw
extruder. The fiber diameter, the fiber content and the
final fiber length also impact the properties.[1] However,
the effects of the processing conditions on the final length
in the compound are not always readily apparent and are
mostly based on the experience of the compounder. A
carbon fiber breakage model for the modular twin-screw
extruder is therefore of particular significance for the

processing industry. In the literature, many studies can
be found for the fiber breakage and the influence of the
processing conditions on the fiber length in the com-
pound. Nevertheless, most studies for the fiber breakage
use glass fiber as the prediction base.

Bumm et al.[2] and Shon et al.[3] propose a kinetic
model for the glass fiber breakage where the fiber break-
age usually expressed by the following equation:

dL
dt

= −kf L−L∞ð Þ ð1Þ

The average fiber length L is dependent on a kinetic con-
stant kf and a length L∞ at which breakage no longer
occurs. Bumm et al. define the L∞ by comparing the
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compressive force and the buckling force according to
the Euler model.[4] However, the kinetic constant can
only be obtained via experimental studies. The kinetic
parameter varies depending on the material and the
screw configurations.[2]

Shon et al. do not specifically define the L∞, which is
essential for the prediction. Ville et al.,[5] based on,[3]

introduce a new approach, where the fiber length degra-
dation is described based on the specific mechanical
energy (SME):

dLw

dt
= −K 00SME Lw−Lw∞ð Þ ð2Þ

By using the SME as an influencing factor, Inceoglu et al.
validated the modified Shon-Liu-White model with
experimental results as described in Reference [6]. The
description of fiber length in the final product is accu-
rately predicted, while the fiber breakage along the screw
cannot be forecast with certainty. In general, the kinetic
models do not take into account that the fiber breakage
slows down for shorter fiber lengths. Furthermore, the
buckling of the fibers is not considered.[6]

The kinetic model in Ref. [5] was adapted for flexible
vegetal fibers by Berzin et al. The exponential law for the
fiber length and diameter is introduced in Ref. [7]

Lw =L∞ + L0−L∞ð Þ−kLΓΓ ð3Þ

The fiber length is dependent on the ultimate length L∞,
the cumulative strain Γ and a kinetic constant kLΓ. Since
the lignocellulose fibers also separate into individual
fibers, a similar equation is established for the diameter.[7]

Hernandez et al.[8] developed a pseudo-analytical
model which describes the forces leading to fiber damage
during flow. Investigations were carried out for l/d ratios
between 50 and 300, fiber motions along its axis, perpen-
dicular to its axis and in a shear flow at a − 45 degree-
angle. The buckling criterion was modified by a factor of
2 to correct the maximum force at the center of the fiber.
Furthermore, the solutions were compared to numerical
results performed with the boundary element
method (BEM).[8]

One of the most extensive research projects on the
twin-screw extruder was carried out by Durin et al.[9] In
this model, a fiber position in the flow using a Jeffery
equation is used. After determining the buckling parame-
ter for each position, the breaking potential is calculated.
With the help of a fragmentation matrix, a new length
distribution is calculated. For the model, the buckling
parameter Bu has to be defined in terms of the flow direc-
tion. A similar model for fiber length reduction in
injection-molded composites was developed by Phelps

et al.[10] The model is based on a conservation equation
for total fiber length combined with a breakage rate due
to buckling under hydrodynamic forces. Furthermore,
the model was implemented in a mold filling
simulation.[10]

From the state of the art, different needs for research
on modeling on the twin-screw extruder are derived:

1. Research need 1 (RN1): The assumptions and simplifi-
cations used here are based on the processing and
knowledge of glass fibers. The transfer of the model
assumptions for glass fiber breakage to carbon fibers
is a significant step in order to use the present models
for other fiber types. An adjustment of the assump-
tions has to be made in case of non-compliance.

2. Research need 2 (RN2): The geometry of the twin-
screw extruder is special and offers different
approaches for modeling. In particular, the modular
design and process areas (gusset area, gap area and
channel area) require special consideration during
modeling. Especially their inclusion during the fiber
length calculation is essential.

3. Research need 3 (RN3): Up to now, shear rates have
only been used to calculate the fiber length for
selected parts of the twin-screw extruder.[6,9] calculate
the shear rate against the channel height. However,
3D simulations have shown in preliminary investiga-
tions that the other geometric areas also have a con-
siderable influence. The aim should be to calculate all
shear rates and influencing factors such as viscosity as
well as the linkage with RN2.

4. Research need 4 (RN4): The influence of parameter
changes on the fiber length for carbon fibers has not
been investigated. In particular, the adjustment of the
final fiber length during the change is to be analyzed.
Furthermore, the determination of the effects of the
individual factors on the final length is particularly
important.

The main aim of the present study is the development
of an analytical model for the carbon fiber breakage for
twin-screw extrusion. The focus is on the transmission of
the assumptions of glass fibers to carbon fibers. There-
fore, the buckling case for the fibers has to be deter-
mined. Furthermore, the tensile stretch of the fiber will
also be calculated in the breakage probability.

2 | DETERMINATION OF THE
BUCKLING CASE

Kloke developed a model for the length distribution of
short glass fiber compounds after processing on the twin-
screw extruder.[11] The fibers in a polymer flow are
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charged by a shear stress τ resulting from the shear flow
(Figure 1).[11]

The shear stress can cause different loading cases[11]

(Figure 2):

1. The force on the cross-sectional surfaces of the fiber is
so high that the fibers are crushed under this load.

2. Due to the force, the fiber buckles. In the case of fiber
breakage due to Euler buckling, a distinction must be
made between plastic and elastic buckling.

The theory of Euler is based on Hooke's law, which
means that the buckling formula is only valid above the
slenderness limit or below the proportionality limit
according to Reference [12]. The proportionality limit
indicates the stress above which the proportionality of
Hooke's law of stress is no longer valid. Since carbon
fibers (also glass fibers) are brittle materials, the progres-
sion of their stress–strain curves is approximately linear.

To determine the buckling case, the limiting slenderness
λ0 is calculated as follows[12]:

λ0 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2 �E

σtensile stress

s
ð4Þ

where E: E-modulus; σ: tensile stress.
In addition, the critical fiber length lc must be consid-

ered. According to Euler, elastic buckling takes place
above this critical length and plastic buckling below it.[11]

lc is defined as follows[12]:

lc = λ0�

ffiffiffiffi
I
A

r
ð5Þ

where A= π � d
2

� �2
; I: axial moment of inertia; A: cross-

sectional area; λ0: limiting slenderness; d: fiber diameter.
In the following table, the values from the literature

and the calculated results for the critical length as well as
the limiting slenderness for chopped fibers can be seen.
The limiting slenderness and the critical length are calcu-
lated using Equation (4) as well as 5 and the values are
highlighted in gray in Table 1. Two types of carbon fiber
were used for this calculation, high tenacity (HT) and
intermediate modulus (IM).

With an assumed diameter of 5 or 7 μm and the calcu-
lated limiting slenderness, plastic buckling is only present
below a value of 42 or 27 μm. Elastic buckling can there-
fore be assumed for the fibers. For the elastic bending
force line, the length-diameter ratio is inserted into the
Eulerian buckling force.[11] For different l/d-ratio, FEuler
(equation (6))[11] is calculated and can be seen in Figure 3.

FEuler =
π3 �d4
64 � l2 �E ð6Þ

where d: fiber diameter; l: fiber length; E: E-modulus.
In addition to plastic and elastic buckling, another

loading case can occur. The compressive force on the
cross-sectional surfaces of the fiber is so high that the
fibers are crushed under this load.[11] The compressive
force F (until breaking) results from[14]:

FPressure = σcompression �A ð7Þ

τ

τ

FIGURE 1 Shear stress on a fiber, υ: Circumferential screw

speed based on Reference [11]

F F

FIGURE 2 Loading cases, fiber on the left (1) and fiber on the

right (2) based on Reference [11]

TABLE 1 Values and results

Fiber E-modulus (GPa) Breaking stress (MPa) Fiber diameter (μm) Limiting slenderness Critical length (μm)

HT 235 4200 7 24 42

IM 279 5600 5 22 27

Note: Reference [13].
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with

σcompression≈10 �σbreaking stress

where σcompression: compressive stress; σbreaking stress:
breaking stress; A: cross-sectional area

The compressive stress is calculated approximately by
means of the breaking stress.

HT-fiber: Fpressure,HT = 42,000 MPa � 3.85 � 10–1 1 m2 =
1.6 N.

IM-fiber: Fpressure,IM = 56,000 MPa � 1.96 � 10–1 1 m2 =
1.1 N.

The calculations for the HT and IM fibers are summa-
rized in the following diagram.

The vertical lines indicate the l/d ratio for the calcu-
lated limiting slenderness (cf. Table 1). The critical length
is divided by the diameter. Below this limit, plastic buck-
ling occurs. Elastic buckling can be assumed for both
fiber types from a l/d ratio of approx. 5.9 (HT) or 5.5
(IM). Transferred to a fiber length, plastic buckling would
only occur below a fiber length of 42 (HT) or 27 μm (IM).
In first experimental results, the end fiber length is signif-
icantly higher, so that the case of plastic buckling can be
excluded.[11]

For both types of carbon fibers, the compressive force
for crushing the fibers is not dependent on the length
and is around 1.6 (HT) or 1.1 (IM). In case of fiber break-
age by crushing, the point of intersection of the two
forces (bending force and crushing) must be considered.
The value for crushing is at a l/d ratio below 2.5. If the
fibers are around this ratio, the compressive force is
smaller or equal to the bending force. Only below this
fiber length does the compressive force become relevant
for fiber breakage. Transferred to a fiber length, crushing
would only occur below a fiber length of 14 (HT) or
8.5 μm (IM). For these carbon fibers, crushing can also be
excluded. Therefore, a fiber breakage according to the
second Euler buckling can be assumed.[11]

3 | THEORETICAL MODEL

To describe the fiber length development, two constants
have to be determined[15]: The first constant describes the
fiber length decrease caused by the twin-screw extruder.
This rate includes all mechanical processes that lead to a
breakage. Considering a time interval, this rate expresses
the probability that a fiber will break in a given time
period. The second rate considers the increase of the dif-
ferent fiber classes by breaking the longer fibers down
into shorter fiber lengths. This constant describes the rate
at which fibers decrease from one length to another.
Viewed over a period of time, it describes the probability
of fractures during this period. For the description of
fiber degradation, a differential equation is needed,
which considers the decrease and the increase of fiber
length classes. Length intervals K are defined for this
purpose:

Ki = i−1ð ÞΔl, iΔl½ � for 1≤ i≤n ð8Þ

where i: discrete points; l: fiber length.
In Figure 4, the intervals along the fiber are visual-

ized. In this case, the first class is K1 = [0,Δl] and the last
class is Kn = [(n− 1)Δl, nΔl], with the initial length of
each fiber L = nΔl. The fragmentation equation (9) is
given by the following equation based on.[10]The number
of fibers N(t,i) in length class Ki at time t. The breakage
rate is later evaluated with the mean fiber length of the
corresponding class (cf. Equation (8)).

d
dt
N t, ið Þ= −k lm ið Þð ÞN t, ið Þ+

Xn
j= i+1

k lm jð Þð Þ �N t, jð Þ �2 �Δl

�pl jð Þ lm ið Þð Þ
ð9Þ

where

0
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7
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]
N[

ecr
of

l/d-ratio [-]

bending force HT

l/d- limiting slenderness
HT
crushing HT

bending force IM

l/d- limiting slenderness
IM
crushing IM

FIGURE 3 High tenacity (HT)-fiber

and intermediate modulus (IM)-fiber

based on Reference [11]
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lm ið Þ= i−
1
2

� �
Δl

For the solution of the fragmentation equation, the fiber
breakage rate k and the probability density pl( j) are needed.

3.1 | Fiber breakage rate k

The model in this article is based on the concept that a
flow force induces fiber buckling and, with the increasing
bending load, a fiber breakage occurs. To break a fiber,
the bending load must be at least equal to or greater than
the load a fiber can withstand. When a fiber bends, the
tensile stress causes the fiber to elongate and the com-
pression stress results in a shortening of the fiber. In the
middle of the cross section is the neutral axis, which
maintains the length during loading, see Figure 5.[16]

The bending load can be calculated with the help of
the acting bending moment M, the axial moment of iner-
tia I and the maximum axis distance amax

[17]:

σedge =
M
I
�amax ð10Þ

In this equation, amax describes the distance from the neu-
tral axis to the edge. In the case of a round bar, amax corre-
sponds to d/2 (see Figure 5). Inserting the moment of inertia
I = π�d4

64 according to Reference [12], amax and converting
the bending moment changes the formula as follows:

σedge =
M
I
�amax =

Fflow �ymax
π�d4
64

�d
2

ð11Þ

where d: fiber diameter; ymax: maximum deflection of the
fiber; Fflow: force acting on the fiber by the flow.

In this equation, ymax describes the shift of the neutral
axis due to the force from the polymer flow (see Figure 5).

For the calculation of the bending moment in Equa-
tion (11), the deflection caused by the force (ymax) and
the force itself (Fflow) have to be defined. During proces-
sing on the twin-screw extruder, the polymer flow creates
a load on the fiber and a substitute force Fflow from the
shear stress of the flow σflow and the lateral surface
Asurface can be determined (Equation 12).[11,17]

The polymer flow generates a shear stress on the fiber
surface resulting from the shear flow. The shear stress acts
on the longitudinal direction of the fiber, for which the
sheath surface of the fiber is used (see Figure 1).

Fflow =Asurface �σflow ð12Þ

The stress can be described with the shear rate and the
viscosity of the material η and with some transitions the
force is calculated as follows[11]:

Fflow = π �d � l �η � _γflow ð13Þ

The maximum deflection of the fiber is described by the
following formula[17]:

FIGURE 4 Length intervals K along a fiber

FIGURE 5 Deflection of the fiber due to

the force
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ymax =

ffiffiffi
8

p

π
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

FEuler

Fflow

r
� lfiber ð14Þ

FEuler: Force to bend the fiber according to Euler.
In addition to the flow force, the force that a fiber can

withstand is calculated based on the Euler buckling the-
ory (see Equation (6)). Inserting FEuler and Fflow in Equa-
tion (14) results in:

ymax =

ffiffiffi
8

p

π
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

π2 �E �d3
64 �η tð Þ � _γ tð Þ � l3

s
� l ð15Þ

With Equations (13) and (15), the bending load caused by
the polymer flow σedge is described as follows:

σedge =
32 �η tð Þ � _γ tð Þ � l

d2
�

ffiffiffi
8

p

π
� l �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

π2 �E �d3
64 �η tð Þ � _γ tð Þ � l3

s

ð16Þ

To break a fiber, the bending load by the flow (σedge)
must be at least equal to or greater than the tension a
fiber can withstand. The breaking stress of a fiber is
defined in Equation (17) as in Reference [12].

σbreaking stress = ε �E ð17Þ

where ε: elongation at break; E: E-modulus.
Balancing the two tensions, the following equation is

obtained:

σedge
σbreaking stress

=
Fflow �ymax

I �amax

ε �E ð18Þ

The fiber breakage rate k for the fragmentation equation
(Equation (9)) is defined with the help of the Equation (18)
including the residence time tl. For a time interval, k
expresses the probability that a fiber will break in a given
period of time between the considered element sections.

The rate includes all mechanical processes that lead
to a break and can be described as follows:

k t, lð Þ= σedge
σbreakage

� 1
tl

ð19Þ

k t, lð Þ= 32 �η tð Þ � _γ tð Þ � l
d2 � ε �E �

ffiffiffi
8

p

π
� l �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

π2 �E �d3
64 �η tð Þ � _γ tð Þ � l3

s
� 1
tl

ð20Þ

The following graph shows the breakage rate for a fixed
point in time as a function of the fiber length (Figure 6).

3.2 | Probability density

For solving the fragmentation equation, in addition to the
fiber breakage rate k, a probability density pl( j) is needed.
For the probability density, a distribution which is sym-
metric around the expected value is required. Durin et al.
and Phelps et al. use a Weibull or a normal distribution
which is valid for all real numbers. A standardization is
performed in order to adapt the probability density to the
fiber breakage probability. In contrast to a Weibull distri-
bution as in Reference [9], beta distributions can be used
for local fractional probabilities, which are defined on
arbitrarily closed intervals. The beta distribution is a con-
tinuous probability distribution over an interval. This
allows a determination of any real number in the interval
range without a standardization. The length of the inter-
val is given by the respective carbon fiber length.[18]

py xð Þ=
Γ 2αð Þ � x

y

� � α−1ð Þ
� 1− x

y

� � α−1ð Þ

Γ2 αð Þ ð21Þ

where Γ: Gamma function ðΓ zð Þ= Ð∞
0 tz−1e− tdt).[18]

With this Equation (21),[18] for each length y �[0, L],
it is possible to specify a beta distribution on [0, y]. The
parameter α of the beta distribution has to be defined
and is determined by existing data. The density function
changes depending on how alpha α is defined. With the
help of the experimental data, the parameter is deter-
mined and the density function is fitted. It is specified
with the Nelder–Meader method and amounts to 2.06. In
this case, the variance is 0.78125 and a standard deviation
of σ = 22.1%. In this context, for a fiber with an initialFIGURE 6 Breakage rate for 5 s for a screw speed of 200 1/min
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length of 4 mm, it is more likely to break at 2 mm with a
standard deviation of approximately 884 μm than at the
edge points.

4 | VERIFICATION

To solve the fragmentation equation, a code was written
in MATLAB®. For the fracture rate k, the residence time,
the viscosity and shear rate values are taken from the
simulation program SIGMA (simulation of co-rotating
twin-screw extruders). The shear rate is calculated sepa-
rately in the twin-screw geometric areas channel, gap
and intermeshing area, see Figure 7. The differential
Equation (9) is solved using the classical Runge–Kutta
method. After all iteration steps have been completed, a
matrix N is generated for discrete points in time of the
fiber length distribution, which can be plotted as a bar
chart.

To check the general function of the presented calcu-
lation model, the analytical model is first checked with
previously measured data. The first calculations and mea-
surements were made for a speed of 200 1/min and a
fiber content of 35%. For the investigations, a twin-screw
extruder (KraussMaffei Group GmbH, ZE28 BluePower
Ultraglide, Germany) was used. For the materials, a

polypropylene (Borealis AG; HK060AE, Austria) and
chopped fibers with a length of 4000 μm (C.A.R. FiberTec
GmbH, Germany) were chosen. The screw and barrel
design can be found in Figure 8. The positions for the
sampling are marked in the screw design with blue
arrows. While the first position is directly after the fiber
feeding, the last position is at the screw tip.[19]

In Figure 9, the simulated graph and the measure-
ment points are shown. The fiber feeding starts at 24.95 s
and the screw tip is reached at 54.25 s.

FIGURE 7 Channel, intermeshing area

and gap

FIGURE 8 Screw and barrel design
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The measurement points are close to the simulated
data, and significant deviations cannot be found. The
fiber end length of 54.25 s matches the simulated value
well. The initial fiber reduction in the first 5 s or so gen-
erally corresponds with the simulated values, but slightly
higher deviations can be seen in comparison to the other
points. The first measured points are located shortly after
the fiber entry into the melt. Some experimental investi-
gations regarding homogeneity over fiber content have
shown that these points have the lowest values. The sam-
pling position and the relatively long fiber length could
be possible reasons for the deviations.

5 | CONCLUSION

In this article, a model for the carbon fiber breakage
along the twin-screw extruder was introduced. For this
purpose, a fragmentation equation was set up and solved
numerically. A further possibility for describing probabil-
ities and breakage rates was presented. The parameter α
of the beta distribution was defined with experimental
data for carbon fibers. The buckling case was also deter-
mined using the values for carbon fibers. In general, this
model can be applied to other fibers by adjusting the beta
distribution and reviewing the buckling case. The first
experiments show good agreement with the resulting
length development. For a validation of the model, more
data should be collected to increase the informative
value. The time steps for the length calculation in the
MATLAB code can also be made smaller to obtain the
best possible results, even if the computing time increases
significantly.
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