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Multi-parameter patient monitors (MPMs) have become increasingly important in providing quality healthcare to patients. It is well known in
the medical community that there exists an intrinsic relationship between different vital parameters in a healthy person, these include heart rate,
blood pressure, respiration rate and oxygen saturation. For example, an increase in blood pressure would lead to a decrease in the heart rate, and
vice versa. Although it is likely to improve the performance of MPM systems, this fact is not explored in engineering research. In this work,
experiments show that deriving additional features to capture the intrinsic relationship between the vital parameters, the alarm accuracy
(sensitivity), no-alarm accuracy (specificity) and the overall performance of MPMs can be improved. The geometric mean of the product
of all the vital parameters taken in pairs of two was used to capture the intrinsic relationship between the different parameters. An
improvement of 10.55% for sensitivity, 0.32% for specificity and an overall performance improvement of 1.03% was obtained, compared

to the baseline system using classification and regression tree with the four vital parameters.

1. Introduction: Multi-parameter patient monitors (MPMs) [1] are
widely used in intensive care units (ICUs) and general wards to
continuously monitor patients’ health based on the following
human vital parameters: heart rate; blood pressure; respiration
rate; and oxygen saturation (SPO2). MPMs in general require
lower missing probability, probability for missing an alarm when
an alarm is to be reported and false alarm probability, falsely
reporting an alarm when there is no alarm to be reported. This
means that the alarm accuracy, sensitivity and the no-alarm
accuracy and specificity should be as high as possible.

Studies on physiological parameters [2] show that there is a well-
established intrinsic relationship between vital parameters in
healthy people. For example, when a heart rate is on the higher
side, arterial blood pressure is expected to be on the lower side,
and vice versa, otherwise the health condition is said to be abnor-
mal. However, to the best of our knowledge, MPMs do not take ad-
vantage of this relationship.

In this Letter, we capture the correlation (positive/negative)
between human vital parameters, which include heart rate, arterial
blood pressure, respiration rate and SPO2 [2—4], to capture the in-
trinsic relationship between them and achieve higher sensitivity,
specificity and overall classification accuracy. We use correlation
features and geometric mean of the different vital parameters
taken in pairs of two, in addition to the four vital parameters in
the proposed system.

We use a classification and regression tree (CART) [5], the
decision tree learning algorithm using Gini-impurity index as the
parameter for constructing the tree, to verify the effectiveness of
the proposed approach in enhancing the performance of the
MPMs [6]. The system developed in the present work uses the
MIMIC-II [7, 8] database to learn the trends in the vital signs.

2. Database used for the experiments: Experiments were
performed with time series data such as heart rate, arterial blood
pressure, respiration rate and SPO2, obtained from the MIMIC-II
database [7, 8]. The MIMIC-II consists of two major
components; namely clinical data and physiological waveforms.
The physiological waveforms are collected from bedside patient
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monitors (Component Monitoring System Intellivue MP-70;
Philips Healthcare) used in medical, surgical, coronal care and
neonatal ICUs in a tertiary hospital. The waveform database
includes high-resolution (125 Hz) waveforms (e.g. electro-
cardiograms), derived numeric time series such as heart rate,
blood pressures and SPO2 [7]. The database also consists of
monitor generated alarms along with the physician annotated files.

3. Decision tree algorithm for multi-parameter patient
monitoring system: Decision tree learning [5] is one of the
machine learning approaches used for classifying data based on
certain attributes. In this Letter, we train the decision tree with a
continuous record of vital signs denoting normal and abnormal
conditions of the patient. We identify the vital signs in the
normal condition with the ‘no-alarm’ label and those in the
abnormal condition with an ‘alarm’ label. The classifier is ideally
trained to make the mapping x; »y; in a way that lowers the
number of errors in the classification, where x; are the input data
points and y; are the output labels. Once the system is trained
with all possible cases of normal and abnormal conditions, it can
then classify the vital signs for an unlabelled data set, to indicate
when the patient’s condition is deteriorating.

The system developed in this work uses the CART [5] algorithm
that learns the continuous multi-parameter patient data and the add-
itional parameters to generate a tree model that makes decisions
about the sample belonging to a normal or an abnormal patient con-
dition. Decisions are made with the help of automatically generated
rules. The CART algorithm is designed to produce a set of ques-
tions, the answers to which determine the next set of questions.
The result of these questions is a tree structure, the ends of which
are called terminal nodes, where the actual decisions are made.
The algorithm makes use of the Gini-impurity index [4], a
measure of node impurity; that is, it measures how often a randomly
chosen element from the data set would be incorrectly classified if it
were randomly labelled according to the distribution of the labels in
the subset. Gini impurity can be computed by summing the prob-
ability of each item being chosen times the probability of a
mistake in categorising that item [9]. It reaches its minimum,

19
© The Institution of Engineering and Technology 2014



zero, when all cases in the node fall into a single target category .
The decision tree algorithm always attempts to minimise the devi-
ance or impurity indicated by Gini impurity index. The Gini
index of a target node # may be defined as [5, 7, 9]:

N
Ig=1="Y pi/ty (1)
i=1

where N is the number of samples at the target node and p(i/f) is the
relative frequency of class 7 at node .

4. Improving the performance of MPMs: Towards improving the
performance of the MPM without any additional algorithmic
complexity, we use geometric means of the vital parameters taken
in pairs of two, in addition to the four vital parameters used in
the baseline system. The expanded feature set contains additional
information about the balance/imbalance in the patient’s health
status: for example, the relationship between the parameters
exposes the risk factor for problems like cardiovascular
abnormalities [3], hypoxia (low oxygen content in the blood),
hyperoxia (high oxygen content in the blood) and so on. In this
Letter, we gather this additional information by increasing the
feature set to F, thereby improving the system performance. The
improved feature set F is

F= [xl,xz,x3,x4, VX1Xy, X1X3, /X1 Xgs ASX2X3, /X Xg, ‘/x3x4]
@

where x1, x», x3 and x4 are the vital parameters, i.e. heart rate, blood
pressure, respiration rate and SPO2 values, respectively, and the
remaining six correlation features help capture the instrinsic
relatioship between the vital parameters.

5. Experiments and results: Experiments were performed using
the MIMIC-II database. The database consists of vital parameters
from 413 patients. We first split the data into training and test
data; training data consisted of 300 patients and the test data
consisted of the remaining 113 patients. No patient data was
shared between the training and test data. Subsequently, for
computational considerations, we randomly selected 20 patients
from the training data for training the decision tree algorithm and
8 patients from the test data set for the testing the effectiveness of
the approach. The trials were then repeated ten times, every time
selecting a new set of patients for the trial, and the results
averaged across the trials. The training data at every trial
consisted of more than 50000 samples, and the test data
consisted of more than 19 000 samples, each sample having an
instance of all the four vital parameters. More than 90% of the
samples represented no-alarm condition, and the remaining alarms.

In this experiment, we did not use any windowing techniques to
preprocess the physiological signals, and therefore each sample was
taken as an example to train and test the condition of the patient.
Table 1 compares the performance results of the baseline decision
tree MPM system using four vital parameters: heart rate; blood pres-
sure; respiration rate; and SPO2, and the system with additional six
correlation features. The total number of features in the baseline
system is four, and the proposed system is ten, with an additional
six correlation features.
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Table 1 Decision tree algorithm with vital parameters and correlation
features

Overall classification
accuracies, %

Sensitivity, %  Specificity, %

baseline system 88.66 99.35 98.50
proposed system 99.21 99.67 99.53

Results conclude that the use of correlation features along with
the four vital parameters helped enhance the MPM system perform-
ance by 10.55% in sensitivity, 0.32% in specificity and a 1.03%
improvement in the overall classification accuracy, compared to
the baseline decision tree system with the four vital parameters
alone.

6. Conclusion: There exists an intrinsic relationship between the
different human vital parameters, heart rate, blood pressure,
respiration rate and SPO2. Our baseline decision tree system
using CART algorithm uses these four vital parameters as its
input features. In this Letter, we proposed a novel approach to
improving the performance of the MPMs taking advantage of the
intrinsic relationship between the different vital parameters, using
additional six features that are the geometric mean of the vital
parameters taken in pairs of two (correlation features), making the
total number of features in the proposed system as ten.

We evaluated the baseline system and the proposed system using
sensitivity, specificity and overall classification accuracy. Results
show that the use of the correlation features, to capture the intrinsic
relationship between the vital parameters, helped improve sensitiv-
ity by 10.55%, specificity by 0.32% and the overall classification
accuracy by 1.03%.
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