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The potential of the new weighted-compressive sensing approach for efficient reconstruction of electrocardiograph (ECG) signals is
investigated. This is motivated by the observation that ECG signals are hugely sparse in the frequency domain and the sparsity changes
slowly over time. The underlying idea of this approach is to extract an estimated probability model for the signal of interest, and then use
this model to guide the reconstruction process. The authors show that the weighted-compressive sensing approach is able to achieve
reconstruction performance comparable with the current state-of-the-art discrete wavelet transform-based method, but with substantially
less computational cost to enable it to be considered for use in the next generation of miniaturised wearable ECG monitoring devices.
1. Introduction: Electrocardiograph (ECG) is considered as one of
the most important diagnostic tools for assessing the electrical and
muscular functions of the heart and thus plays an important role in
the battle against cardiovascular diseases which are among the top
causes of death in the world [1]. Although resting ECG monitoring
is a standard practice in hospitals, major efforts have been spent to
realise wireless-enabled low-power ECG monitoring. These
ambulatory monitoring devices, however, face many technical
challenges including limited wireless connectivity, short battery
life, bulkiness and so on [1]. State-of-the-art ECG monitors fall
short because either they transmit the uncompressed ECG data
over wireless networks, which put much pressure on wireless
links; or they compress the data in a compression unit after
collecting and storing the full data on the chip, which leads to
bulkiness and power inefficiency. In these approaches, the signal
of interest is first fully sampled according to the Nyquist rate. It
is then compressed, using a discrete wavelet transform
(DWT)-based algorithm [2] before being encrypted for
transmission.

An alternative approach, however, would be to use the recent
paradigm of compressive sensing (CS) [3–5] based on the fact
that ECG signals are largely compressible and thus sparse. The
CS employs linear sampling operators that map the signal into a
relatively small dimensional space which results in a small
number of measurements that can be wirelessly transmitted to the
remote tele-cardiology centre. The full signal can then be recovered
from a much smaller set of measurements than the number of
Nyquist-rate samples using complex, yet computationally feasible
and numerically stable, nonlinear methods. In CS, not only are
the sampling and compression phases unified, but under fairly
general conditions, the measurements obtained are considered to
be encrypted [6]. Hence, CS essentially moves the burden of com-
putation from the sampling device to the receiver-end where more
resources are available.

In recent works [1, 7–10], it has been found that CS-based
methods used in ECG sampling devices exhibit the best overall
energy efficiency. However, it was reported that they are inferior
in terms of compression performance compared with DWT-based
compression methods. This is not surprising as these works were
carried out using basic ℓ1 minimisation [3]. It is known that ℓ1 mini-
misation is better suited for sampling/reconstruction of static signals
and does not exploit the highly structured nature and quasi-periodic
property of ECG signals [11].

In this Letter, our focus is on the CS-based methods that are spe-
cifically tailored for sampling and reconstruction of time-varying
signals such as ECG. We examine the performance of these
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state-of-the-art CS-based methods when applied to the problem of
ECG sampling/reconstruction and compare them with the conven-
tional DWT-based method.

The rest of the Letter is organised as follows. This section ends
with a description of the notations used. Section 2 presents the
problem of reconstruction of time-varying signals and the current
state-of-the-art CS-based approaches that address this problem.
Details of our algorithm called ‘weighted-CS’ as applied to ECG
reconstruction, together with its efficient implementation, are pre-
sented in Section 3. Finally, we present and analyse our experimen-
tal results in Section 4 before providing the concluding remarks
in Section 6.

Throughout the Letter, vectors are denoted by boldface letters
(e.g. f, F) and fi is the ith element of the vector f. Scalars are
shown by small regular letters (e.g. n, k) and matrices are denoted
by bold capital Greek letters (Φ, Ψ). Superscript (t) added to a
vector/matrix refers to that of time t. We use the notation C|S to
denote the sub-matrix containing the columns of Ψ with indices
belonging to S. For a vector, the notation y|S forms a sub-vector
that contains elements with indices in S. Other notations are
introduced when needed.

2. Reconstruction of time-varying signals: Digitised ECG signals
are generally processed in non-overlapping windows of n samples
because of the limited on-chip memory and real-time computing
constraints. In its noiseless formulation, the problem of
reconstruction of such a signal in each window, can be posed as
follows: let f (t) := [f (t)1 , . . . , f (t)n ]T [ Rn be the signal of interest
at epoch t which is measured using a sampling matrix
C [ Rm×n and y(t) = Ψf (t) is the observation vector at epoch t.
It is assumed that the signal of interest has a sparse
approximation (F (t) = Φf (t)) in some transform domain (Φ),
which is incoherent with the sampling domain. Let S(t) be the
support of the vector F (t), that is, S(t) :=
{k [ {1, . . . , n}: F (t)

k . 1}, it is then assumed that |S(t)| ≪ n,
where |S(t)| is the cardinality of S(t). The problem, at each
window t, is then to recover the original signal, f (t), from the
corresponding compressive samples (y (t)), assuming that F (t) is
sparse. A naive approach would be to use the basic CS approach
to reconstruct the signal of interest at each time frame separately
[1, 12]. However, this approach does not make any use of the
fact that the signal of interest in each window is related to the
signal of the previous epoch.

Another method to tackle this problem is based on the assump-
tion that the majority of spikes in the transform domain of the
signal window at t, would occur at same locations as the spikes
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Figure 1 Two consecutive ECG windows taken from record #119 in the
spatial and DCT domains
a Spatial domain
b DCT domain
c Estimation of P (2) from F (1)
in the transform domain of the previous signal window at t− 1.
Based on this, the modified-CS method [11] uses the support of
the previous time instance (S(t−1)) as an estimated support of the
signal of interest (F (t)) at current time and uses this estimate for
reconstruction of f (t), by finding a signal which satisfies the obser-
vations and is sparsest outside S(t−1). It is shown in [11] that under
fairly general conditions, the number of samples needed for perfect
recovery would be less than the conventional CS.
More recently the authors of [13] proposed a method called reg-

ularised modified-CS (RegMod-CS) which is as follows

f (t) = argmin {‖(Fg(t))|Ŝ(t−1)‖1 such that

Cg(t) = y(t), ‖(Fg(t))|S(t−1) − (Ff t−1)|S(t−1)‖2 ≤ d}
(1)

where Ŝ(t−1)
is the complement of S(t−1). The above optimisation

not only ensures that the signal of interest is sparsest outside the
estimated support (S(t−1)) but also the spike values in the transform
domain are close enough to the ones of the previous time instance.
However, in many real-world signals, the spikes may not stay in
exactly the same locations as in the previous time instance, but
move about the vicinity of these locations. This motivated us to
use a weighted-ℓ1 minimisation method, where weights are set
based on the reconstructed signal of the previous epoch. This
method is discussed in the next section.

3. Weighted-CS for ECG signal reconstruction
3.1. Sparse domain: In CS methods, reconstruction is carried out in
a transform domain (Φ) which is both sparse and incoherent with
the sampling domain (Ψ). We use the Gini index (GI) [14] and μ
to measure sparsity and incoherency of different sparse domains,
respectively. Table 1 shows the values of these two measures in
different transform domains for an ECG signal. It can be seen
that ECG is sparsest in the Wavelet domain (since the GI is
closest to 1); however, the sampling domain is least coherent
with the discrete cosine transform (DCT) domain. Therefore we
select DCT as the sparse basis (Φ) and we set F (t) = Φf (t).

3.2. Weighted-CS algorithm: The weighted-CS is a method
specifically developed for reconstructing time sequences of sparse
signals, where sparsity changes smoothly with time [15]. Based
on the assumption that the sparsity of the current signal is closely
related to the one of the previous time instance, weighted-CS
uses the reconstructed signal of the previous time instance, F (t−1),
and estimates the probability of each element of F (t) having a
non-zero value, that is, pi := Prob(F (t)

i . 1). It then employs this
estimated probability model to guide the reconstruction process.
The above assumption is observed to be valid in the context of

ECG signals. The support of ECG signals in the DCT domain
changes slowly between successive windows even when there are
significant changes in the spatial domain. This is illustrated in
Fig. 1, where despite differences between the signal in the spatial
domain for two consecutive windows, the frequency spectrum of
these windows in the DCT domain are similar. Note that the
range shown in Fig. 1b is [1–300] as there are no frequency
spikes beyond 300. Fig. 1c illustrates how spike locations change
from one time frame to the next by plotting binary signals
F̂
(1)

and F̂
(2)

corresponding to DCT signals F (1) and F (2), such
Table 1 Comparison of sparsity and incoherency of different transform
domains

Φ Spatial DFT DCT Wavelets

GI(Φf) 0.292 0.615 0.791 0.833
μ(Φ, Ψ) 5.899 4.855 4.614 5.049
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that a location is set to one only if a spike exists at that location
that is, F̂i = 0 if Fi ≤ ε and F̂ i = 1 if Fi > ε. It can be seen that
the frequency spikes (†) in the second window, either occur at
the same locations, especially in the lower frequency range [1–
100], or in the close vicinities of the frequency spikes of the first
signal window (○) for higher frequencies in the range [100–250].

3.2.1 Probability model: Based on the observation that the location
of spikes in F (t) is closely related to the ones of F (t−1), this section
describes the estimation of the sparsity probability model for a
signal at time t, from the reconstructed signal at time t− 1.

Suppose there is a spike in the i th location of F (t−1). In the next
time instance, there is a very-high probability that this spike remains
in the same location but also some possibility that it moves to some
other point in the vicinity. Based on this, the weighted-CS uses a
Gaussian distribution to provide an estimate of the probability of
the progression of a spike in the next time frame (see Fig. 2a);
and probability of jth element of F (t) being non-zero p(t)j

( )
is the

accumulated probability of the spikes of F (t−1) moving to location
j at time t as follows

p(t)j =
∑

i[S(t−1)

1������
2ps2

√ e−(j−i)2/2s2 (2)

where S(t−1) is the support of F (t−1) and σ is the variance of the
Gaussian distribution.

In Fig. 1c, it can be seen that the maximum value p (2) (the dashed
line) which is extracted from F (1), based on (2), is 1 and coincides
with the locations where F (1)

j and all elements in its vicinity are all
69
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Figure 2 Illustration of
a Probability of progression of a spike in the next time instance
b Weights (wi) against probability (pi)
non-zero, that is, in the range of [0–100]). The probability decreases
from 100 to 250, finally p (2) becomes zero corresponding to loca-
tions where F (1)

j and all the elements in its vicinity are zero; from
250 to720. It can be seen that p (2) indeed corresponds well to the
frequencies existing in F (2).

3.2.2 Reconstruction: In order to incorporate the probability model
of the signal into the process of reconstruction, we minimise a
weighted ℓ1 norm (3), where the weights are adjusted according
to the probability of each entry being non-zero

min ‖ W (t)Fg(t) ‖1 s.t. Cg(t) = y(t) (3)

where W = diag([w1, w2, …, wn]). Intuitively, a smaller weight
should be given to those entries with higher probability of being
non-zero whereas those elements with small probability should be
penalised with larger weights. Naturally, we want to reward and
penalise the elements uniformly using a linear function. Thus, the
choice of the weight for each element is

wi = 2(1− pi) (4)

Fig. 2b shows the chosen weights with respect to the value of the
probability. It can be seen that as the probability of an element
being non-zero increases, its weight decreases accordingly. Note
that if pi = 0.5 then wi = 1.

The weighted-CS method for reconstruction of the ECG signals
is summarised in Algorithm 1.

Algorithm 1: Reconstruction of ECG signals using weighted-CS:

1. If t = 1:g(t) = argmin { ‖ Fg(1) ‖1 s.t.C(1)g(1) = y(1)};
2. t = t + 1;
3. S(t−1) := {k [ {1, . . . , n}: Fg(t−1)

k . 1};
4. Compute p(t) := [p(t)1 , . . . , p(t)n ] from (2);
5. Compute W (t) from (4);
6. g(t) = argmin { ‖ W (t)Fg(t) ‖1 s.t.Cg(t) = y(t)}; and
7. Go to step 2.

It should be noted that at time t = 1, since no prior knowledge of
the signal is available, all weights are equal to one and therefore (3)
becomes the conventional ℓ1 minimisation.

3.2.3 Efficient implementation of weighted-ℓ1 minimisation: The
weighted-ℓ1 minimisation in step (6) of Algorithm 1 is a convex
optimisation problem, and it is acknowledged that solving it
using methods such as interior points has a polynomial running
time of O(n3) [16]. To deal with the complexity, we use a class
70
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of greedy-based iterative method which is easy to implement, rela-
tively fast and known [16, 17] to have a reconstruction performance
similar to those of convex optimisation-based methods.

In order to find the minimiser of (3), let ĝ(t) be W (t)Φg (t).
Equation (3) can then be rewritten as

min ‖ ĝ(t) ‖1 s.t. CF−1W−1 ĝ(t) = y(t)

Reformulating the above constrained optimisation problem using
Lagrangian multipliers and setting Λ: = ΨΦ−1W−1, we obtain

min l ‖ ĝ(t) ‖1 +
1

2
‖ L ĝ(t) −y(t) ‖2 (5)

It is shown in [17] that the solution to (5) is given by the limit of the
sequence

ĝ(t)it+1 = Sl( ĝ
(t)
it +LT(y(t) −L ĝ(t)it )) (6)

where Sl is the soft-thresholding function as

Sl(x) =
x− l if x . l
0 if |x| ≤ l

x+ l if x , −l

⎧⎨
⎩

Equation (6) basically minimises the error between the current esti-
mate of the signal and the observations through the gradient decent

direction of ‖ L ĝ(t)it −y(t) ‖2. It then imposes sparsity on the esti-
mated signal using the soft-thresholding operator applied
component-wise to each element of the input vector. Once (6)
converges to ĝ(t)conv, the original signal g (t) can be recovered as

g(t) = F−1W−1ĝ(t)conv (We set W =W + ɛI so that W is invertible.).

4. Experimental results: ECG signals of 10 min duration were
extracted from the following records of the MIT-BIH Arrhythmia
database [18]: 100, 101, 102, 103, 107, 109, 111, 115, 117, 118,
119, 201, 207, 208, 209, 212, 213, 214 and 232. These ECG
signal datasets were used in experiments to compare the
performance of the weighted-CS with the other state-of-the-art
CS and DWT-based algorithms. These datasets consist of ECG
signals with different rhythms, ectopic beats, QRS complex
morphologies and irregularities [19]. The ECG signals were
digitised at above-Nyquist sampling rate of 360 Hz and each
sample is represented by 11 bits. The processing window of 2 s
with length of n = 720 samples, was used for all algorithms.

The ECG signals are then reconstructed from different number of
samples using Algorithm 1. We compared the results obtained with
Healthcare Technology Letters, 2014, Vol. 1, Iss. 2, pp. 68–73
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Figure 3 Distribution of
a Compressive sample measurements
b Their difference value

Figure 4 Mean performance comparison over all records
our weighted-CS algorithm with those obtained using RegMod-CS,
ℓ1 minimisation and the conventional DWT thresholding-based
compression technique [2]. We used the latter as a comparison
benchmark since it has been shown to outperform the embedded
zerotree wavelet [19] and the set partitioning in hierarchical trees-
based methods, for ECG compression at a lower cost [2].

4.1. Performance measures: Since no pre-processing has been done
on the ECG datasets, we use the normalised percentage
root-mean-square difference (called PRD1) in this Letter. PRD1
is independent of the dc level of the original signal and is defined as

PRD1 = ‖ g(t) − f (t) ‖2
‖ f (t) − �f

(t) ‖2
∗ 100

where �f
(t)
is the mean value of the original signal. The link between

the value of PRD1 and the diagnostic quality of the reconstructed
ECG signals for the MIT database was established in [20], that is,
PRD1 in the ranges 0–2 and 2–9 corresponds to very good and
good, respectively. The compression ratio (CR) is defined as

CR = bro
brc

where bro and brc denote the number of required bits to represent
the original and compressed signal, respectively.

4.2. Signal encoding in CS against DWT method: In CS only m
linear combinations (referred to as compressive measurements) of
the n samples of each window need to be stored and processed.
In our experiments, compressive measurements are taken using
y (t) = Ψf (t), where Ψ is of size m × n and its independent
identically distributed (i.i.d.) entries are drawn from a Gaussian
distribution N (0, 1/m). It is known from the CS literature that
such matrices satisfy a property called restricted isometery
property with an overwhelming probability, which makes them a
good choice for the sampling operator [3, 21].
Fig. 3a shows the histogram of measurement values of the ECG

datasets. Although the original signal requires 11 bits for its repre-
sentation, removing redundancy between measurements prior to
transmission would result in smaller ‘difference values’ between
consecutive ECG measurements as shown in Fig. 3b. Just 9 bits
would be sufficient to represent these difference values (which
range from −200 to 200). Huffman coding with a dictionary of
size 512 and average codeword length of 6.3 is then used to
encode the difference signal. Huffman coding is used as an
Healthcare Technology Letters, 2014, Vol. 1, Iss. 2, pp. 68–73
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entropy coder instead of the run-length coding since the former
was found to achieve higher CRs.

In the DWT method, the signal of interest is first decomposed
using Daubechies wavelet of order 8 as it was found to be the most
appropriate wavelet basis for ECG signals [22]. Different levels of
thresholds are selected to achieve different compression rates and
coefficients having values smaller than these threshold are set to
zero. The run-length algorithm is then used to code the resulting
vector. Note that choosing the value of the threshold may generally
not be easy in portable ECG sensing devices since the noise variance
of the signal is not known a priori [23]. It should be noted that in
RegMod-CS and weighted-CS, reconstruction is based on informa-
tion which is extracted directly from the reconstructed signal of the
previous time instance. In the very first time window of each ECG
signal, about 75% of the samples are used to fully recover the
signal of that window without using any prior knowledge.

4.3. Performance comparison: The mean PRD1 against CR for all
test datasets is presented in Fig. 4 for all methods. It can be seen
that the performance of the weighted-CS is comparable with
DWT and superior to the other CS-based methods in terms of
PRD1. This is more prominent in the higher CRs. Figs. 5a and b
show the performance variance of our method and DWT,
respectively. The centre of each ‘bar’ represents the average
performance. From Fig. 5, it can be seen that performance
variation for both algorithms is more in higher CRs. Moreover, it
is observed that DWT exhibits smaller variations in the
performance, compared with weighted-CS. Also, for CRs of up to
11 for DWT and 10 for Weighted-CS, the reconstructed signals
are of good diagnostic quality (corresponding to PRD1 ≤ 9 [20]).
71
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Figure 5 Performance variance for all records

Table 2 Average computational time per window (ms)

Method ℓ1 RegMod-CS Weighted-CS DWT

encoder 48 48 48 502
decoder 638 719 269 195

Figure 6 Reconstructed signals (record 119)
a Original signal
b RegMod-CS reconstruction, CR = 10.63 and PRD1 = 13.69
c DWT reconstruction, CR = 10.41 and PRD1 = 8.76
d Weighted-CS reconstruction, CR = 10.63 and PRD1 = 9.03
4.4. Running time and memory requirement: Although in
DWT-based algorithms, all n samples need to be stored prior to
compression, in CS-based methods only m compressive
measurements need to be stored and processed (m ≪ n). Table 2
shows the execution time (all the algorithms are implemented in
Matlab 7 on a Intel Core i5 CPU with 1.6 GHz processor.) of
encoder and decoder of the methods presented in this Letter for
one window. From the table it can be seen that the DWT-based
method, unlike CS-based approaches, results in a higher
computational load at the sampling/encoder end rather than at the
decoding end. In addition, it can be seen that the decoding time
of the weighted-CS is comparable with the one of the DWTmethod.

5. Discussion: It is evident from Fig. 4 that our method
significantly out-performs the RegMod-CS in terms of mean
PRD1 at different CRs and this is because of two main reasons.
Firstly, while RegMod-CS is based on the assumption that the
values of spikes in the DCT domain are close enough to the ones
of the previous time instance, the weighted-CS only uses the
location of the spikes of the previous time instance. The reason is
that even though the location of the spikes tend to remain within
a close vicinity of the ones of the previous time instance, their
values do change and therefore ‖F(t) − F(t−1)‖2 is not as small as
expected (see Figs. 1b and c). Secondly, instead of just using the
support of the previously reconstructed signal, S(t−1), as the
estimated support of the current frame, weighted-CS obtains a
probability vector which remains valid even when the support
is changing.

Aside from comparing with the CS-based methods, we have also
compared our method with a DWT-based signal compression algo-
rithm which has been shown to be superior to other wavelets-based
methods for ECG signal compression and at a lower cost [1, 2].
Based on the mean PRD1 presented in Fig. 4, the performance var-
iances reported in Fig. 5 and running times given in Table 2, it can
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be concluded that the performance of the weighted-CS is quite com-
parable with that of the DWT-based method in terms of the recon-
struction PRD1 but with significantly lower computational
complexity and memory requirements imposed on the encoder.
From Figs. 6c and d which shows window segments of recon-
structed irregular heartbeat signals, it is evident that our method
performs perceptually better with less loss of details although our
method is slightly inferior to DWT in terms of the PRD1. The
DWT method generally tends to reconstruct over-smoothed
signals which could potentially lead to loss of some important
diagnostic features.

One of the main differences between CS-based and conventional
DWT-based methods is that in DWT compression, all n samples are
stored prior to compression and then an optimal representation of
the signal, which is equivalent to the m most significant coefficients
of the sparse domain, is encoded. The location of these significant
coefficients are not known beforehand. Therefore there is a need to
Healthcare Technology Letters, 2014, Vol. 1, Iss. 2, pp. 68–73
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either directly encode the whole signal of size n in the sparse
domain or encode the m significant bits, along with their corre-
sponding indices using two different codebooks. On the other
hand, instead of taking the best m coefficients, m linear combination
of all the coefficients are taken in CS-based methods. This sampling
matrix could be fixed and known to the receiver device and therefore
only the values of the samples need to be encoded and transmitted. It
should be noted that in wavelets-based methods the significant bits
can be coded in order of their importance (depending on their mag-
nitude) and therefore the encoding process can be stopped at any
point once the target quality/compression is achieved. This is
however not possible in CS, as compressive measurements are all
of the same importance to the reconstruction process.

5.1. Choosing the window size: The window size is of vital
importance since it was observed that increasing the window size
improves the CR for a given distortion, but on the other hand
increases the running time and memory requirements. We
observed a good compromise between processing time and CR to
be a window size of 720. However, the decision about this is
fundamentally open. One may even choose more complicated
(adaptive) windows which for example include a certain number
of heart beats.
It should be also mentioned that in the last stage of our decoder,

we used a relatively simple lossless coding scheme, and therefore
there is still much room for improvement. We expect that a more
elaborate entropy coder would result in greatly improved perform-
ance. In summary, based on the experimental results presented in
this letter, weighted-CS appears to be an appealing alternative to
the traditional full acquisition/compression methodology. This
might potentially have a significant impact on the future of low-
power wearable ECG monitoring devices.

6. Conclusions: We have successfully adapted the recently
introduced weighted-CS method for reconstructing ECG signals
from a small number of samples, by integrating an iterative
method to more efficiently solve the minimisation in the
weighted-CS. Our weighted-CS algorithm uses information in the
DCT domain to efficiently reconstruct ECG signals using a
weighted ℓ1 minimisation. Our experiments on ECG signals,
show that our algorithm achieves competitive performance with
the state-of-the-art DWT compression method, but at much lower
computational cost and memory requirements.
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