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In the context of home-based healthcare monitoring systems, it is desirable that the results obtained from biochemical tests — tests of various
body fluids such as blood and urine — are objective and automatically generated to reduce the number of man-made errors. The authors present
the StripTest reader — an innovative smartphone-based interpreter of biochemical tests based on paper-based strip colour using image
processing techniques. The working principles of the reader include image acquisition of the colour strip pads using the camera phone,
analysing the images within the phone and comparing them with reference colours provided by the manufacturer to obtain the test result.
The detection of kidney damage was used as a scenario to illustrate the application of, and test, the StripTest reader. An extensive
evaluation using laboratory and human urine samples demonstrates the reader’s accuracy and precision of detection, indicating the
successful development of a cheap, mobile and smart reader for home-monitoring of kidney functioning, which can facilitate the early

detection of health problems and a timely treatment intervention.

1. Introduction: The deployment of home-based healthcare
systems, which emerged in the last few years, requires that patient
data needs to be collected at least partially in the home
environment. Such data collection is partly based on tests of
various body fluids such as blood and urine, which are called
biochemical tests. Currently, there are a number of home-based
biochemical tests, for example, for measuring blood glucose levels
and substances in the urine. Such tests are typically use small,
paper-based strips with one or more pads containing chemicals that
exhibit colour reaction after contact with the fluids of interest. The
results are often obtained by semi-quantitative analysis after the
quick (within a minute) visual comparison of the colour developed
on the pads with those provided by the manufacturer. In the
context of healthcare home-monitoring systems, this would require
the patient to manually insert the test results, which is error-prone.
In addition, elderly or colour-blind people will likely face
difficulties in performing a quick visual analysis, which may lead
to incorrect results. Hence, fully-automated analysis of biochemical
tests would provide needed support in such cases.

Already in the late 1990s the manufacturers of strips, such as
Siemens, offered commercial automatic readers for biochemical
tests, based on specially designed, and therefore expensive, hard-
ware [1]. The exploitation of modern mobile technology has led
to the development of a number of portable readers of biochemical
tests, as recently reported in the literature. The phone camera has
been used in a number of systems for analysis of paper-based
assays of glucose and protein in urine [2] and of pH test strips
[3]. The latter system is capable of handling skewed strip placement
and partial reflection; the classification of the colour pH values is
based on clustering techniques. A mobile, pocket-sized colorimetric
reader for the analysis of 10-parameter paper strips was capable of
sending data via a smartphone to a healthcare specialist [4].
Immunoassay data are quantified by the system presented in [5]
using the open-source computer vision library OpenCV [6] for
image processing on a smartphone. Rapid diagnosis of various in-
fectious diseases is performed by another very recently developed
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reader [7]. The reader is a compact device, which is attached to
the existing camera unit of a smartphone and allows various tests
to be inserted within. Images of the tests are captured under light-
emitting diode (LED)-based illumination and digitally processed
on the phone for a diagnostic result and submission to a central
server. Other readers that use an energy-demanding, mechanical at-
tachment to the phone are Albumin Tester for analysis of albumin
concentrations [8], iTube for food allergen testing [9] and the
phone-based E. coli detection platform [10]. Despite the quick
image processing on the phone, the first two readers use specially
designed test and control tubes whose preparation require time.

Mobile readers for rapid diagnostic tests have recently gained at-
tention. One of them uses Google Glass technology to capture
images, which are subsequently sent via Wi-Fi to a server for pro-
cessing [11]. In the context of healthcare this may be critical as the
test outcome depends on internet connectivity. The commercial
Mobile Assay (mobileassay.com), on the other hand, requires that
the user manually places the test under the phone within a specified
frame depicted on the phone screen to allow image capture. This
implies that the test results are highly dependent on the correct op-
eration by the user. In the context of healthcare applications this can
be a challenging task as the users vary in their physical abilities (e.g.
vision) and abilities to operate well with technology. A recent
review of existing mobile readers is given in [12].

Despite the potential value of the above mentioned automated
readers of biochemical tests, there is still a need for cheaper and
easier-to-use readers to support home-based healthcare decision-
making. Modern mobile devices such as smartphones provide an
excellent platform for the development of such readers. In line
with current trends, here we present Strip Test — a novel smartphone-
based reader for the quantitative analysis of biochemical tests. The
reader contains a mobile application that uses the phone’s camera to
capture images of pads with colour reaction, then analyses the
images and finally compares them with the reference colours pro-
vided by the manufacturer to obtain the final test result. The
StripTest reader offers the following advantages:
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e Clinically validated quantitative standardised analysis with
minimal user intervention and input error.

e Mobile, easy to use and cheap reader as no extra hardware is
needed except the smartphone and the strips.

e Automatic contact with a caregiver can be initiated when the test
results indicate health risk.

e Easy integration within more comprehensive home-based health
monitoring systems.

This research was originally motivated by the development of a
home-monitoring system for pregnant women [13]. Crucial for
detecting pregnancy complications is urinalysis and in particular,
the measurement of protein and creatinine levels in urine by
means of a special paper-based stick (dipstick); see Fig. 1 —
step ©. We note that the working principles of the reader, as
described here, are general and can also be applied to biomedical
tests of other body fluids. Preliminary detection methods and
experiments with artificial test fluids were reported in [14]. Here
we extend not only the image processing and classification
methods, but also experimentally demonstrate the clinical useful-
ness of the StripTest reader. This shows the potential of the
reader to facilitate prevention and monitoring healthcare tasks,
without requiring costly tests and additional work by the care
providers.

2. Method
2.1. Design requirements of mobile readers: To build useful
home-based mobile readers of biochemical tests, a number of
factors need to be taken into account. First, for colour-based
biochemical tests, the surrounding environment conditions such
as sunlight and reflection, considerably influence the test results,
which requires their control to minimise the variation, for
example, by creating a dark environment and using the LED light
of the smartphone as the only light source. Secondly, the
resolution of the camera plays an important role in this
application as well. Thirdly, the reader should have sufficient
power to be able to perform fast image processing (object
detection and colour analysis) so that instant results are obtained.
Finally, the intended users (patients) differ in their abilities and
skills in performing and reading the tests. As a consequence, the
user’s intervention needs to be minimised and well-controlled.
Related to these issues is that the automated reader needs to be
easy to use. Recent advances in mobile applications allow the use
of text-to-speech features that can support visually impaired people.
To maximally account for these design requirements, we devel-
oped a simple holder in which the user can place the strip with
the phone on top of it. The holder is based on a slight adaptation
of the smartphone’s box delivered by the manufacturer; see Fig. 1 —

@ the StripTest @ the dipstick is @ the phone is
reader is activated placed in the placed on the top
designated holder part of the holder

@ images of the pads are taken and
analysed

B crestiine

Albumin

Alb.J/Creat.

Figure 1 Scheme of the working principles of the StripTest reader
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steps ® and @. This adaptation involves the addition of a plastic
base that fits perfectly in the bottom of the phone box. Within
this base a space is carved out for the dipstick, so that the position
of the dipstick always remains fixed. The plastic material of the base
guarantees easy cleaning after use. The holder (i) minimises the user
intervention, and (ii) creates a dark environment, effectively elimin-
ating external light influences. The built-in LED of the phone is
used to capture image(s) of the dipstick when placed in the
holder. An important consideration in this design is that a sufficient
distance between the dipstick and the mobile camera is provided,
such that focused images are taken, in case the phone does not
support ‘macro mode’ of the camera. Furthermore, although the
use of LED may lead to over-exposure of the captured images,
by using the same image processing algorithm for both test and ref-
erence images, we minimise this effect.

2.2. Working principles of the StripTest reader: they are built on the
manufacturer’s instructions for reading reagent strips:

1. Perform the test.

2. Wait a prescribed time (around a minute) for a biochemical con-
centration colour to develop on the strip.

3. Compare with the reference colours provided by the manufactur-
er to classify the test.

The StripTest reader performs steps 2 and 3. The working prin-
ciples of the StripTest reader are sketched in Fig. 1.

2.2.1 Image acquisition: Once the image acquisition module of the
StripTest app is activated, the LED light of the phone is turned on
automatically and a specially designed screen appears on the
phone. Given the fixed and stable placement of the strip in the
holder, this screen contains designated windows, which delineate
the borders of pad tests on the strip and correspond to the images
to be taken; see Fig. 1 — step ®. The position of the designated
windows are determined relative to the screen resolution of the
phone. In such a way, there is no need to process the whole image
to segment the pad(s) and the obtained images are of a small size,
making data storage, processing and transfer easy. Given the
change of the colour reaction over time, the reading of the pad
colour is to be done following the manufacturer’s instructions for
time #y. Hence, we designed the image acquisition of the StripTest
app to start automatically after 7, seconds making M subsequent
images of the pad, each taken every ¢ seconds. Before image
capture, the camera auto-focus is activated. The images are saved
on the phone’s data storage space.

2.2.2 Image processing: Every image / captured and stored on the
phone is analysed in a number of steps, depicted in Fig. 2a. First,
the acquired image is decoded to a bitmap, which subsequently is
used to obtain the red—green—blue (RGB) and cyan-magenta—
yellow (CMY) levels in the image. Based on these levels, we
next compute a histogram for each basic colour component C —
red, green, blue and cyan — and the corresponding component
mean uC over the number of pixels N in the image

|
e =N E G
i=1

Furthermore, we also compute the mean Aue value of the image uH;
based on the mean values of red, green and blue components

pH; = arctan 2(v3(uG; — pBy), 2uR; — pG; — uB))
Although the choice of the colour components for analysis might

depend on the particular biochemical test solutions, we note that
the image processing procedure still remains the same. For
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Figure 2 Scheme of the image processing and classification methods used
in the StripTest app

a Image processing

b Curve fitting of reference images

¢ Classification of a test image

example, in the current urinalysis application the choice of cyan was
determined by the albumin reaction on the pads (from green to
blue), whereas the choice of hue was motivated by the creatinine
and protein reaction also containing orange or yellow colours.

2.2.3 Test sample classification: Since our analysis follows the
manual reading of the biochemical tests, we need to obtain the
digital representations of the reference images (pads) provided by
the manufacturer, which will subsequently be used for the classifi-
cation of a test sample. To do so, for each concentration we have a
number K of reference images r/, and we apply the same image pro-
cessing procedure to them, as described above. This results in a set
of mean values uC,;,j =1, ..., K, per colour component C. This
analysis is performéd only once and the obtained mean colour
values are saved as vectors in the analysis module. A regression
curve is fitted between the mean colour values thus obtained and
the respective reference values for the concentration. In such a
way, we interpolate between the finite number of reference points
and achieve fine quantification of the test results; this is schematic-
ally illustrated in Fig. 2. Such one-time analysis can serve as a
basis for calibration of the reference colours for other mobile
devices and camera settings.

Subsequently, the image processing analysis, as described in
Section 2.2.2, is applied to a test sample image #/ to obtain the pre-
dicted colour values. In combination with the fitted curve for solu-
tion and colour, we predict quantitatively the concentration of the
substance at the test sample, as illustrated in Fig. 2¢. We note that
although the two images (test and reference) come from different
sources, the same image acquisition and processing process is
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applied to both of them to maximally minimise the colour discrep-
ancies, which is evident by the good diagnostic performance of the
analysis as reported in the next Section.

3. Results

3.1. Clinical problem of kidney damage: The clinical problem we
focus on for the evaluation of the StripTest app is kidney
damage. The kidneys play an important role in the body for
filtering wastes from the blood, regulating blood pressure and
maintaining salt/water balance. It can therefore be very
detrimental if the kidneys are damaged. One such life-threatening
condition where kidney damage is observed is, for example,
preeclampsia — a pregnancy-related disorder which causes 76 000
mothers and 500 000 babies to die each year worldwide [15].
Other common consequences of malfunctioning kidneys are
hypertension, edema (swelling because of the water retention)
and anaemia. Kidney damage can be identified by the leakage of
proteins from the blood into the urine. When this leakage is
abnormally high, the condition is referred to as ‘proteinuria’.

3.2. Proteinuria: The diagnosis of proteinuria is only done by
laboratory tests. Common tests for detection are the urine reagent
strips, which are widely used in the clinic as well as at home.
The indicator measured by these tests is the protein-to-creatinine
ratio (PCR), which compares the amount of protein and creatinine
in a urine sample. Table 1 presents the clinical criteria for
classification of proteinuria. Beginning stages of kidney damage,
called albuminuria (albumin is the main protein in the blood that
leaks easily because of its small size), however, can be diagnosed
at protein leakage level between 3.4 and 30 mg/mmol, and for its
detection the developed StripTest reader would be especially
useful to facilitate a timely intervention and to prevent severe
complications.

3.3. Evaluation set-up: Together with the Laboratory for Clinical
Chemistry of Radboud University Medical Centre, the
Netherlands, a protocol for the laboratory evaluation of
the StripTest app was developed. It describes in detail the
experimental set-up for: (i) artificially prepared samples and (ii)
human urine samples. For both types of samples the reference
concentration of a substance is determined in the laboratory,
providing the ground-truth values.

The goal of the experiments was to establish how well the
StripTest reader can determine the concentrations in terms of accur-
acy and precision (repeatability). Although the StripTest reader is
compared to the laboratory ground-truth values for a thorough ana-
lysis, we note that given the ultimate application, namely home-
based health monitoring, the accuracy we aim at concerns the
correct clinical classification as presented in Table 1.

During the evaluation procedure, we made use of the following
commercial urine reagent strips for detection of albuminuria and
proteinuria, produced by Siemens: (A) Albustix: 50 strips with 1
pad (protein) and (B) Microalbustix: 25 strips with 2 pads
(albumin and creatinine). A set of reference colours for visual com-
parison is provided by the manufacturer (Fig. 3), which are also
used in the StripTest reader for classifying the test sample.

Table 1 Clinical criteria for classification of proteinuria based on the
ranges of protein—creatinine ratio

normal <3.4 mg/mmol
albuminuria 3.4-30 mg/mmol
proteinuria 30-333.3 mg/mmol

severe proteinuria >333.3 mg/mmol
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Figure 3 Reference colours for the Albustix and Microalbustix urine
reagent strips

a Albustix

b Microalbustix

3.4. Implementation issues: The StripTest reader has been fully
implemented in Google’s open source Android operating system,
a running platform for a diversity of smartphones and tablets. The
implementation of the user interface and the image processing
analysis was straightforward using the standard Android Software
Development Kit (SDK). The results presented next are obtained
by the reader implemented on an HTC Desire Android
smartphone with a 5 megapixel colour camera including
auto-focus, macromode and flash. In the current application, four
images are being taken starting at 45 s after activating the image
acquisition module with each image having dimensions of 96 x
96 pixels and a size of 8 kb.

4. Results and discussion

4.1. Experiments with artificial solution samples: To evaluate the
analytical performance of the developed application, test samples
were composed at the Laboratory for Clinical Chemistry. Stock
solutions of human albumin (200 g/l, Albuman, Sanquin, the
Netherlands) and creatinine (30 mmol/l, Merck, Germany) were
used to create four different ground-truth-concentrations in the
saline (0.9% NaCl); see Table 2. These four solutions were based
on the clinical classification of proteinuria (see Table 1). Exact
concentrations of the created solutions were verified on clinically
validated assays. Creatinine solutions were verified on the Abbott
Architect ¢160000 random access analyser using the enzymatic
creatinine assay (Abbott laboratories, IL, USA). Human albumin
concentration in the created stocks was verified on the Siemens
BNII nephelometer, using anti-human albumin (Q0328, Dako,
Glostrup, Denmark).

where gt and m denote the ground-truth and the mean of a solution
concentration Sol.

The analytical performance resembled in the precision on both
creatinine and albumin was evaluated using a standard EPS5 protocol
according to the Clinical and Laboratory Standards Institute (CLSI)
guidelines. This reflects the repeatability of the measurement
within, and in between, days. For biomedical test applications,
the precision is typically measured using the coefficient of variation
(CV) computed in percentage over a number of repeated tests 7'

o7 (Sol)

CV(Sol) = e

100

where o and m denote the standard deviation (std.dev.) and the
mean of a solution concentration Sol. To evaluate the precision,
for each ground-truth concentration we performed 15 sample tests
with the StripTest analyser during the period of 5 days (three
samples per day). Both accuracy (reflected in the bias) and precision
(reflected in the CV) for each solution — albumin (protein) and cre-
atinine — as well as for the protein-creatinine ratio (PCR) are shown
in Table 3.

Results from these experiments confirmed that the protein stick
analysis was not very sensitive at low protein concentration,
below 31.3 mg/1 (limit of quantification; CV =22%). Both accuracy
and precision were highly improved from a concentration of 125
mg/l. Overall the analytical performance for the analysis of creatin-
ine was very good, also at lower concentrations. The PCR was
highly accurate in the detection and classification of albuminuria
and proteinuria, and indicated some underestimation of classifica-
tion of severe proteinuria.

4.2. Experiments with human urine samples: To test the accuracy of
the StripTest analyser in a clinical setting, we applied it to 110
human urine samples, from which 65 were of diseased (different
degrees of kidney failure) individuals and 45 were of healthy
individuals. The albumin (protein) value varied between 2 and
8860 mg/l and the creatinine between 1.3 and 29.2 mmol/l, which
resulted in samples with a PCR varying between 0.3 mg/mmol
(normal condition) and 1080.49 mg/mmol (severe proteinuria).
We first compare the predictions obtained from the StripTest ana-
lyser with the coarse classification based on the reference colours
from the manufacturer. The latter is obtained by classifying the
known concentrations of protein and creatinine for each sample to
the closest reference colour and then divide them to obtain the

Table 3 Accuracy and precision of the StripTest reader on the four
artificial samples S;, i=1, ..., 4 for a total of 15 samples

o Solution Sol Value StripTest predicted
We used two standard measures — accuracy and precision — to
estimate the performance of the StripTest analyser. The accuracy, Mean Std. Precision  Accuracy
which measures the correctness of the result based on the ground- dev. (CV%)  (Bias%)
truth measurement (see Table 2), is reflected in the bias, which is
computed in percentage over a number of repeated tests 7" as albumin, mg/1 31.3 12.3 2.8 22 39
125 71.1 9.3 13 57
. |gt(Sol) — my(Sol)| 250 256.6 41.4 16 103
Bias(Sol) = 100 - =———————=100
(Sol) at(Sol) 500 496.1 38.9 8 99
creatinine, 10 8.4 14 16 84
Table 2 Laboratory concentration samples used in the experiments mmol/l 5 3.5 0.6 17 70
2.5 2.5 0.2 8 100
Sample S# Albumin, mg/1 Creatinine, mmol/l PCR, mg/mmol 1.25 1.9 0.2 8 152
Si 31.3 10 3.13 PCR, mg/mmol §1=3.13 1.5 0.2 16 48
S 125 5 25 S$,=25 20.6 2.2 11 82
S; 250 2.5 100 S§3=100 104.4 19.3 18 104
Sy 500 1.25 400 S,=400 263.0 29.4 11 66
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Table 4 Summary of the accuracy of the StripTest analyser

Table 6 Clinical accuracy of the StripTest analyser

Criteria Number (%) of samples Measure Definition StripTest result, %
underestimated 6 (5.4%) sensitivity TP/(TP + FN)-100% 92
overestimated 13 (11.8%) specificity TN/(TN + FP)-100% 84
clinically important (exact + overestimated) 104 (94.6%) PPV TP/(TP +FP)-100% 90
overall accuracy (£1 pad) 110 (100%) NPV TN/(FN + TN)-100% 88

PCR; we refer to this as a manual classification. The results in terms
of R? fitted scores for all 110 samples, and are 0.91 and 0.15 for the
StripTest analyser and the manual classification, respectively. These
scores clearly indicate an improvement by the automatic analyser,
indicating that having a finer classification helps in a better detec-
tion of protein leakage in the urine.

We next determined the detection capabilities of the analyser for
the clinical problem of proteinuria. The first column of Table 5
reports the clinically relevant conditions with the respective
ranges of PCR. The second column of the table presents the classi-
fication results per condition. Since the Microalbustix strips are only
able to detect albumin concentrations up to 150 mg/l we used the
following rule to decide when to apply Albustix strips for detection
of higher concentrations of protein

IF Det-Alb < 70 mg/L THEN Det-Alb/Det-Creat
ELSE Det-Prot/Det-Creat

where Det-Sol is the solution concentration detected by the
StripTest analyser. In Table 4, we present a summary of the
accuracy.

The under- and over-estimated samples are those whose pre-
dicted concentration is less and more than that of the ground-truth,
respectively. Note that underestimation may result in missing the
timely detection of kidney problems, thus having a worse impact
than overestimation from a clinical point. Finally, we observe that
the analyser’s predictions are always within +1 pad from the
ground-truth, misclassifying mainly the samples with borderline
PCR values (see the ranges below the numbers of classified
samples in Table 5). This implies good overall accuracy, but to
obtain a better insight into the clinical implications of the analyser’s
results, we look at a number of standard statistical measures, namely
sensitivity (the ability of a test to correctly classify an individual as
‘diseased’), specificity (the ability of a test to correctly classify an
individual as ‘diseased-free’), positive and negative predicted
values (PPV and NPV). Based on the results from Table 5 we ob-
tain: true positive (TP)= 60, false positive (FP)=7, true negative
(TN)=38, false negative (FN)=5 and the clinical performance
measures reported in Table 6.

Both PPV and NPV are comparably high, which indicates good
prediction capabilities of the analyser. A high PPV is highly prefer-
able when medical treatment can cause collateral damage. A high
NPV is needed if you do not want to miss disease with the test
and treatment cannot cause any harm at all. So in our case, 88%
of the individuals with a negative result obtained from the
StripTest analyser are truly negative while the other 12% have a
negative test result but do have some degree of kidney damage.
By using a smart algorithm we should focus on these 12%, for
example, by repeating the test in the morning (at that time urine
is concentrated and traces of protein are more likely to be detected).

4.3. Integration of the StripTest reader within a home-based
pregnancy monitoring system: As mentioned earlier, the
development of the StripTest reader was originally motivated by
the need for performing urinalysis within a home-based
pregnancy monitoring system, called eMomCare [13]. This
system also contains an Android-based mobile application, which
made the integration of the StripTest app straightforward. We
performed usability tests with seven pregnant women to obtain
insight into the user-friendliness and the technical operation of
the eMomCare system and its components, including the
StripTest analyser. Each monitoring system was in use for at least
2 weeks, and the pregnant woman was performing urine strip
tests every alternative day. The measurements obtained from the
StripTest analyser, a blood pressure meter and other clinical
information was saved on the smartphone and used by an
embedded probabilistic intelligent model [16] to automatically
interpret the results and provide a direct feedback to the woman
about her current health status and an appropriate advice for
action, for example, if the status indicates a slight worsening in
the woman’s health condition then she is advised to monitor
again after some time and if a considerable worsening is detected
then the advice is to immediately contact the caregiver.

Using a specially designed questionnaire each user was able to
provide her feedback about the use of the system and the various
components. Concerning the StripTest analyser there were no tech-
nical problems experienced and the use of the automated urinalysis

Table 5 Clinical classification accuracy of the StripTest reader on human urine samples

Protein—creatinine ratio StripTest predicted Total (110)
(PCR), mg/mmol
Normal Albuminuria Proteinuria Severe proteinuria
normal 38 7 45
(<34 (5 with PCR >2.1)
albuminuria 5 36 6 47
Ground-truth (3.4-30) (3.8 <PCR <5.0) (PCR > 13.0)
proteinuria 11 11
(30-333.3)
severe proteinuria 1 6 7
(>333.3) (PCR=388.2)
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was perceived as positive and useful, even for users with limited
smartphone experience.

5. Conclusions: We have presented novel research on the
development of a fully-automated, laboratory and clinically
validated analyser of biochemical tests, called StripTest, using a
smartphone and commercial urine strip tests. The design of the
proposed analyser minimises the effect of external surrounding
factors, including the user’s intervention. Except for the phone and
the strips, no additional equipment is needed, making the reader
cheap and portable. Furthermore, the reader can be easily enhanced
with personalised features such as test schedules at preferable
times. The results obtained with artificial sample concentrations
and human urine samples demonstrated the good detection
capabilities of the StripTest analyser, not only for critical health
signs such as proteinuria, but also for early health-risk signs such
as albuminuria. The image processing and colour analysis
implementation of the analyser are Java-based, making it
straightforward to integrate it within more comprehensive
home-based healthcare monitoring systems. We have done this for
the remote monitoring of pregnant women to provide a timely
feedback about the woman’s current and predicted health status.

In summary, the clinical validation results and application of the
StripTest analyser are to have important clinical implications in
terms of prevention and timely detection of health problems, ad-
equate treatment intervention, better overall health outcomes and
reduced work pressure on caregivers. In turn, this will provide ben-
efits for the healthcare system as a whole by identifying low- and
high-risk patients to whom tailored care can be provided and by re-
ducing costs for treating severe health complications and for
hospitalisations.
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