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Both the theoretical background and the experimental results of an algorithm developed to perform human respiratory rate measurements
without any physical contact are presented. Based on depth image sensing techniques, the respiratory rate is derived by measuring
morphological changes of the chest wall. The algorithm identifies the human chest, computes its distance from the camera and compares
this value with the instantaneous distance, discerning if it is due to the respiratory act or due to a limited movement of the person being
monitored. To experimentally validate the proposed algorithm, the respiratory rate measurements coming from a spirometer were taken as
a benchmark and compared with those estimated by the algorithm. Five tests were performed, with five different persons sat in front of
the camera. The first test aimed to choose the suitable sampling frequency. The second test was conducted to compare the performances
of the proposed system with respect to the gold standard in ideal conditions of light, orientation and clothing. The third, fourth and fifth
tests evaluated the algorithm performances under different operating conditions. The experimental results showed that the system can
correctly measure the respiratory rate, and it is a viable alternative to monitor the respiratory activity of a person without using invasive sensors.

1. Introduction: This Letter deals with a respiratory rate
measurement algorithm that uses a red green blue-depth (RGB-D)
camera. Breathing is a fundamental physiological task in living
organisms, and there are many respiratory diseases that require
attentive care and respiratory training. For this reason, it is
particularly important to monitor the respiratory activity of a
human being. Among invasive methods, it is possible to cite the
spirometer, pneumotachography, respiratory  inductance
plethysmography [1, 2] or thermistor [3]. There are studies trying
to obtain breath rate activity from pulse oximiters [4, 5];
however, oximetry alone is of limited value in the investigation
of the user breath and it is not common. They all are
state-of-the-art devices which can be adopted to measure the
respiratory activity; however, they require a direct contact with
the person to be monitored, and may interfere with the natural
respiration activity (e.g. physical limitation, stress, unease, etc.).
To overcome this limitation, non-invasive devices are required
instead. In the literature, several systems have been investigated:
CCD camera [6], structured light plethysmography [7], slit light
projection pattern [8] or ultra-wideband sensors [9]. The use of
RGB-D cameras for the detection of breathing is quite a recent
technique and is described in only a few papers in the literature
such as [10-16]. In [10], the authors describe two approaches
(respiratory rate and leg jiggling measurement) for unobtrusively
sensing subtle non-verbal behaviours using the RGB-D camera.
A vision-based method to estimate the respiration rate of subjects
from their chest movements using principal component analysis
and autoregressive spectral analysis is presented in [11]. In [12],
a system is developed to measure human chest wall motion for
respiratory volume estimation without any physical contact, while
in [13], a depth analysis technique was developed to monitor the
users’ sleep conditions without any physical contact. Reference
[14] proposes a Kinect-based respiratory monitoring system that
overcomes the limitation of Kinect’s depth resolution and
achieves real-time respiratory tracking. In [15] the authors
propose to use an active-stereo-based depth sensing system for
forced flow-volume loop measurements and for semi-automatic
and automatic assessment of abnormal breathing patterns. In [16],
it is possible to see how a vision-based method can be used for
recovering the cardiac pulse rate from recordings of the human face.
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In this Letter, the RGB-D camera is used as a sensor, which
provides the needed information to be processed by the proposed
algorithm and to measure the respiratory rate of a sitting person
in an indoor environment. The innovative contribution of the
present work is regarding the development of an algorithm that
automatically identifies the respiratory rate with a low-cost
system, and thus can be used without overly restrictive constraints.
Moreover, unlike the papers mentioned previously, the algorithm
has been experimentally tested both in nominal and non-nominal
conditions, in order to verify its robustness with respect to
common disturbances that can affect such systems, that is, variation
in environmental light, user orientation and clothing. Video 1 shows
an experimental demonstration of the system.

The Letter is organised as follows: Section 2 describes the hard-
ware and software adopted for developing the low-cost system.
Section 3 details the problem of detecting a person and finding
his/her respiratory rate through the use of the RGB-D camera.
Section 4 shows the experimental results in different operating con-
ditions. Finally, Section 5 summarises the key points of the paper
and provides an overview of the future developments of the respira-
tory rate measurement algorithm.

2. System configuration: The proposed respiratory rate detection
algorithm exploits low-cost hardware and an open source software.

2.1. Hardware: A RGB-D camera is a vision sensor, which can also
measure the distance of objects within its field of view. A RGB-D
camera is used for the identification of persons and objects, even if
the background and the person or the object have the same colour.
RGB-D cameras can recognise overlapped objects by calculating
the distance for each of them.

RGB-D Structured Light (SL) cameras are sensing systems that
capture RGB images along with per-pixel depth information. In
detail, RGB-D SL cameras project a known pattern onto the
scene or subject of interest, and the distortion in the project
pattern encodes the depth information of the scene or object. The
principle of SL cameras is that, given a specific angle between
emitter and sensor, the depth can be recovered from triangulation.
An SL camera is composed of an infrared (IR) projector, a diffrac-
tion grating and a standard complementary metal oxide
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semiconductor (CMOS) detector with a band-pass filter centred at
the IR light wavelength. The diffraction grating is a computer-
generated hologram, which produces a specific periodic structure
of IR light when the laser shines through it. The projected image
does not change in time. The IR CMOS sensor detects this
pattern projected onto the room and scene, and generates the corre-
sponding depth image. Compared with cameras based on time of
flight (TOF) technology, SL cameras have a shorter range and
images appear to be noisier and less accurate. Post-processing algo-
rithms can, however, take care of these issues. Moreover, SL
cameras are much cheaper than TOF cameras. Further information
on SL cameras can be found in [17].

SL sensors are proven to be effective for breath rate measurement
as well [10—-13]: the sensors’ resolution is usually adequate to sense
small movements like those performed by the thorax during the re-
spiratory phase [18]. An innovative RGB-D SL camera, namely the
Kinect camera, has been adopted to develop the proposed respira-
tory rate detection algorithm.

2.2. Software: Open Natural Interaction (OpenNI) is used to
implement further functionalities of the vision sensor. OpenNI is
a multi-language and multi-platform framework that defines the
application programming interface (API) for writing applications
that use natural interaction, that is, interfaces that do not require
remote controls, but allow people to interact with a machine
through gestures and words typical of human—human interactions.
This API has been chosen because it incorporates algorithms for
background suppression and identification of people motion,
without causing a slowdown in the video.

3. Respiratory rate detection: To measure the human respiratory
rate, the person has to be identified. This operation is called
calibration. The calibration algorithm recognises different parts of
the person’s body, associating a point (joint) to each of them.
The calibration operation is required by the vision sensor to find
the person in its field of view and is performed by using the
functionalities already available within the OpenNI library. After
this procedure, the proposed respiratory rate detection algorithm
starts. The respiratory rate detection algorithm counts the number
of breaths per minute of a person. Using the depth information
provided by the camera, the algorithm identifies the person’s
chest and calculates the mean value of the depth of the chest at
each time

N
D(k) = w (1)

where D;(k) is the information of the depth at the ith point associated
to the chest at the sampling instant &, and N is the number of points
of the chest. The mean value D(k) is calculated using data sampled
at the frequency of 1/7.=7 Hz, where T, is the sampling time. A
sampling frequency of 7 Hz was chosen because this frequency
allows one to obtain the most accurate respiratory rate, as detailed
in Section 4.1. The initial position of the chest of the monitored
person is used as the reference value. The subsequent
measurements are used to identify the number of breaths.

The algorithm calculates the weighted average of the mean
values of the depth. This weighted average WA(k) is calculated
over a sliding window of four samples with the following formula

3
WA®K) =D wy_ Dk — i) @)
i=0

where D is calculated according to (1) and wy_; (where w,_; <1,
Vi <3) is the weight associated to the mean value D(k —i). The
choice of the sliding window size (four samples) is a trade-off
between noise rejection and loss of depth information caused by
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averaging over large window size. The weights are w;=1, w;_; =
0.7, wy_»=0.4 and w;_3=0.1, in order to give more importance
to the last samples. After calculating the weighted average, the al-
gorithm calculates the derivative of the weighted average as

WA(k) — WAk — 1)
T

c

dWA(k) = 3)

The proposed analysis of the derivative allows one to identify the
maxima and the minima of the average value, and to eliminate ir-
regularities in breathing. In fact, in case of irregularities, the ana-
lysis of the weighted average is not sufficient to calculate the
number of breaths. The algorithm analyses the derivative and
counts the number of times that it becomes positive to calculate
the respiratory rate. To do this, the algorithm automatically analyses
the sign of the derivative, detects when it changes and checks if that
sign is kept for at least three samples. In detail, if the sign changes
from negative into positive, a new breath is detected. If the sign
changes from positive into negative, the breath passes from the in-
halation phase to the exhalation phase. The algorithm checks that
the change of the sign persists for at least three samples in order
to avoid disturbances overlaid on the signal which may cause an in-
correct count. In this way, the algorithm automatically counts the
number of breaths.

It is possible to extract further information from the weighted
average and the derivative:

Time of exhalation, ATE,;=TE, — TI,_,

Time of inhalation, ATI;=TI; — TE,_;

Depth of exhalation, ADE, = WA(TE,/T,) — WA(TI,_,/T.)
Depth of inhalation, ADI; = WA(TL/T,) — WA(TE,_{/T,)

where TE; is the instant of time in which the exhalation of the ith
breath ends, TI; is the instant of time in which the inhalation of
the ith breath ends, WA(-) is the average value of the mean
values of the depth of the chest at the sampling instant in which
the exhalation or the inhalation of the considered breath ends. If
the person moves during the measurement, then the algorithm
records the information, recalculates the position of the chest and
uses it as the new reference value. Once the measurement ends, if
the person moved during the acquisition, the algorithm reconstructs
the mean value of the depth of the chest (D(-)). At the instant in
which the user started to move, the mean value of the depth of
the chest (D(-)) undergoes a shift. In order to properly calculate
the number of breaths, the algorithm sums the mean value of the
signal D(-) before the shift to the value of the signal D(-) after the
movement.

The algorithm introduced above can be resumed by the following
steps:

1. Detection of torso and shoulders: These are the points that allow
finding the chest of the user.

2. Definition of the region of interest (ROI): The ROl is the chest of
the person, which is within the region delimited by the shoulder and
the torso, as shown in Fig. 1.

3. Depth measurements: The depths of all points inside the box are
measured.

4. Calculation of the mean value of the depth: Calculation of the
mean value of the depth of the points inside the ROI is performed.
If the person is moving, the algorithm recalculates the torso and
shoulders coordinates (step 1). When the online part of the algo-
rithm (measurement) ends, then the mean values of the z coordi-
nates are evaluated offline to find the respiratory rate, see Fig. 2.
5. Calculation of the weighted average on a sliding window of four
samples: If the user moves during the acquisition, the mean value of
the depth of the chest (calculated at step 4) is reconstructed by
summing the mean value of the signal before the movement to
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Figure 1 Region of interest
The white arrows indicate the vertices of the box and their coordinates
The red arrows indicate the torso and shoulders joints found in step 1
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Figure 2 Comparison between normalised signals from spirometer and
camera
The red signal represents the spirometer output, while the blue signal
represents that from the camera

the value of the signal after the movement, see Fig. 3. A weighted
average is calculated over a window of four mean values (calculated
in step 4) to eliminate any peaks.

6. Calculation of the derivative of the weighted average: The de-
rivative is calculated from the weighted average. In the proposed al-
gorithm, the derivative was chosen because through its analysis it is
possible to identify the maxima and the minima of the average
value. The analysis of the derivative also allows elimination of ir-
regularities in breathing.
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Figure 3 Calculation of weighted average when user has moved

Blue signal is the mean chest distance and the red signal is the same signal
after the reconstruction

As it can be seen, the algorithm reconstructs the signal to calculate the
respiratory rate at the instant 880, when the user moved
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7. Calculation of the respiratory rate, the depth and the time of in-
halation and exhalation: By identifying the local maxima and
minima through the study of the derivative, it is possible to count
the number of breaths during the measurement and, therefore, the
number of breaths per minute. Then, it is possible to calculate
the time and the depth of the breaths to understand the quality of
the respiration. If the user is not breathing, the algorithm sends an
alarm signal.

4. Experimental results: To evaluate the performances of the
proposed respiration measurement algorithm, five sets of tests
were performed. The algorithm was tested in multiple scenarios
and it has proved to be robust for common domestic/home care
applications. The first one is a preliminary test to choose the best
sampling frequency. The second is a validation test to evaluate
the goodness of the algorithm with respect to a moving user. The
third, fourth and fifth are robustness tests to evaluate if the
algorithm also works in different operating conditions, like a
different orientation of the person, a different light condition or a
different kind of clothing. In order to validate our method, a
spirometer was used as gold standard. During the tests,
participants needed to breathe inside a spirometer to record the
respiratory course. In the meantime, the respiratory course was
measured by our algorithm. The spirometer measures the amount
of air inspired and expired through it, while the algorithm
analyses the movement of the chest. Even if the two methods
obtain the breath signal starting from two different measurements
(the inspired and expired air and the chest wall motion,
respectively), the maxima (and minima) of the respiratory signal
must match in both cases, as it is possible to see in Fig. 2.

In these experiments, five healthy participants of both genders
(three females and two males) were involved. Their age was
included between 25 and 33 years old. Every participant performed
three rounds of respiratory measurements, one for each test, for a
total of 39 acquisitions per participant. In each round, participants
could breathe as they wanted (e.g. slow/fast breathing, superficial/
deep breathing, etc.). We recorded the respiratory rate with our al-
gorithm and the spirometer, and evaluated the errors coming from
their comparison. Then, for each considered condition, we calcu-
lated the mean values m; and the standard deviations o; of the
errors for each participant user;, for i=1, ..., 5. At the end of the
tests, we calculated the mean values and the standard deviations
of the previous mean values for each operating condition, M and
%, respectively

5
M= Zi:sl m; (4)

25:1 (m; =M )2
3= 5 5)
The lower M is, the better the algorithm. At the same time, the level
of agreement between the respiratory rate measurements calculated
by the proposed method and the spirometer was accessed using
Pearson’s correlation coefficient () and the no-correlation coeffi-
cient (p), calculated for each condition

_cov(X, Y)
" e e) ©

p:2F(— r,/% |n—2> 7

where cov(X, Y) is the covariance between the two variables X and
Y, o(X) and o(Y) are the standard deviations of the signals X and Y,
respectively, F(-|) is the cumulative distribution function and # is
the number of experiments. The Pearson’s correlation coefficient
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Figure 4 Scheme of experimental environment in which tests were performed
The user is sitting at 1.4 m from the RGB-D camera

During the acquisition, the user has to breathe inside the spirometer and he can move as he wants on the chair

measures the strength of linear association between the two vari-
ables X and Y. The coefficient is measured on a scale with no
units and can assume a value from —1 to +1. If the sign of the cor-
relation coefficient was positive, then a positive correlation exists; if
the sign of the correlation coefficient was negative, then a negative
correlation exists. A correlation coefficient of zero, r =0, indicates
no linear association between the two variables (null hypothesis).
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Figure 5 Regression line and scatter plot of tests performed for moving
users

Table 1 Frequency test results

However, to be ‘statistically significant’, the correlation coefficient
must be significantly different from zero. To reject the null hypoth-
esis and to conclude that there is correlation between the considered
variables, the no-correlation coefficient p should be lower than 0.05.
The higher 7 is and the lower p is, then the better the algorithm per-
forms (for more details on these indexes, refer to [19, 20]). The
experiments were conducted indoors and all participants were
asked to sit at a distance of 1.4 m in front of the depth camera, as
detailed in Fig. 5.

4.1. Sampling rate: To choose a suitable sampling rate, a
preliminary test was conducted. The respiratory rate is typically
characterised by a frequency of 12—20 breaths per minute, that is,
0.2—0.33 Hz. Thus, for the chosen application, the algorithm
should sample at a frequency greater than 1 Hz to perform
properly. However, the sampling rate is a modifiable parameter,
which could be changed to best adapt to the chosen scenario. The
results obtained from sampling at a frequency of 5, 7 and 9 Hz
were compared. The results are reported in Table 1. As it is
possible to see, the best sampling frequency is 7 Hz, because this
is the frequency which minimises the error between the
measurements obtained by the algorithm and those obtained by
the spirometer, and for which the correlation shows the highest
value (r=0, 9802 and p=10"'"). A frequency of 5 Hz is too
small and may cause excessive loss of data, while a frequency of

Sampling rate userl user2 user3 user4 userS M z r D

> Hz 'g (1) g g ;232 g:igz 0.8 0.859 0.9133 107
T 0 esm | 04 o | ome
T - T A S R

m; = error mean value, o; = error standard deviation. M=mean of m; values, £ = standard deviation of m; values, r = correlation coefficient, p =no-correlation

coefficient
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9 Hz is too big and generates a signal with an excessive presence of
noise. Note that the proposed system is a suitable monitoring
system which was designed to work best with people with
average breath rate. However, the chosen sampling rate can be
adjusted in case the system needs to be used for monitoring
people with lower or higher breath rates. In detail, the algorithm
can work in a range between 2 and 24 Hz, adjustable according
to the end user desire, with the sample rate and the fixed-sample
average filtering designed to be independent.

4.2. Moving user and relative test results: Initially, the participants
were asked to remain still in front of the camera (first scenario), then
they were let free to move while sitting on the chair (second
scenario). The results are reported in Table 2. As it is possible to
see, in the worst case M=0.533 and r=0.9753, thus it is
possible to conclude that the proposed algorithm can be used to
measure the respiratory rate, both if the user is stationary or is
moving. The regression line and the scatter plot in the algorithm
tests are shown in Fig. 4.

4.3. Orientation experimental results: A typical limitation of the

algorithms developed for RGB-D cameras is that they require
the person to be monitored to keep a desired alignment w.r.t. the

Table 2 Algorithm test results

camera (e.g., frontal). In order to evaluate if the algorithm also
works with a different orientation of the person, the participants
were rotated 25°, such that they were no longer aligned with the
camera. This value was chosen because it represents the limit of
the calibration algorithm, i.e., the maximum orientation after
which the algorithm of the OpenNI library fails to calibrate the
user. The results are reported in Table 3. As it is possible to see,
in the worst case, M=0.467 and r=0.973. Thus, it is
experimentally proven that the orientation of the person does not
affect the proposed algorithm, assuming that it does not exceed
the limit imposed by the calibration algorithm.

4.4. Light experimental results: A typical limitation of the RGB-D
sensor is that it is sensitive to the light conditions of the operating
environment, thus different light conditions can affect the
respiratory rate measurement. In order to evaluate if the results
change with different light conditions, a test was conducted using
three different light sources. The intensity of the lights was
measured with a brightness sensor posed on the camera (uV/cm?).
The first light was the neon lamp of the room (25 pV/em?). The
second light was a photographer spotlight (1400 pV/em?),
positioned in front of the camera. The third light was the neon
lamp of the corridor (0.7 wV/cm?), while the neon of the room

Type of movement userl user2 user3 user4 user5 M z r p

stationary m; 0.333 0.333 0.333 0 1 _10
o; 0.471 0.471 0.471 0 0.817 04 0.327 0.9802 10

moving m; 0.333 0.333 0.667 0.333 1 _10
o; 0.471 0.471 0.471 0.471 0.817 0.533 0.267 0.9753 10

m;=error mean value, o;=error standard deviation, M =mean of m; values, £ = standard deviation of m; values, r = correlation coefficient, p =no-correlation

coefficient

Table 3 Orientation test results

Orientation userl user2 user3 user4 userS M z r p

0° m; 0.333 0.333 0.333 0 1 10
o; 0.471 0.471 0.471 0 0.817 04 0.327 0.9802 10

25° m; 0.333 1 0.333 0.333 0.333 9
o; 0.471 0.817 0.471 0.471 0.471 0467 0.267 0.9730 10

m; = error mean value, o; = error standard deviation, M =mean of m; values, X = standard deviation of m; values, » = correlation coefficient, p =no-correlation

coefficient

Table 4 Light test results

Light intensity userl user2 user3 user4 user5 M z r P
S I R A
I S T T I T
S - - T T

m; = error mean value, o; = error standard deviation, M =mean of m; values, X = standard deviation of m; values, r = correlation coefficient, p =no-correlation

coefficient
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Table 5 Clothing test results

Clothing userl user2 user3 user4 user5 M z r )4
ST I - S R TR S VRN R i RV
R T E A N T IRTCS NI [PV
S I T T GO A B (R ST R

m; = error mean value, o; = error standard deviation, M= mean of m; values, X = standard deviation of m; values, = correlation coefficient, p = no-correlation

coefficient

was turned off. The results are reported in Table 4. In this scenario,
the worst values are M=0.4 and r=0.9292, proving that the
algorithm works well also in different light conditions.

4.5. Clothes experimental results: To evaluate whether the
algorithm is independent from the clothing, a test using three
different kinds of clothing was conducted. The participant had to
wear a sweater (first scenario), a jacket (second scenario) and a
T-shirt (third scenario). The results are reported in Table 5. As it
is possible to see, in the worst case M= 0.4 and »=0.9506, thus
it is possible to conclude that the algorithm works also with
different clothes, as long as the movement of the chest is still
detectable.

5. Conclusion: In this paper, a non-invasive respiratory rate
measurement algorithm that uses a RGB-D camera was
presented. In total, we recorded 195 rounds of respiratory
measurement from five participants. The results have shown that
the error between the measurements obtained by the algorithm
and those obtained by the spirometer, used as a benchmark, has
a maximum value of M=0.533 and the correlation coefficient
has a minimum value of »=0.9292. Thus, it has been
experimentally proven that the proposed algorithm can be used
for measuring the human respiratory rate.

However, an issue was identified, that is related to the use of the
OpenNI library during the calibration phase. The library needs the
user to be in frontal position, with an angular orientation not
exceeding 25°. When this does not happen, then two or more
body joints overlap, and the algorithm does not have enough infor-
mation to calibrate the target anymore. To avoid that, the algorithm
should be able to identify a higher number of joints: in this way, the
algorithm should be able to keep track of the person even when
several joints overlap. In the future, the proposed respiratory rate
measurement algorithm will be integrated with a mobile platform
that implements monitoring functions to help people to live inde-
pendently as long as possible in their homes.
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