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Falls are one of the leading causes of injuries among the elderly. Therefore, distinguishing fallers and performing preventive actions is vitally
important. A new variation of the gait energy image (GEI) called coloured gait energy image (CGEI) is proposed for classifying subjects as
fallers and non-fallers and for visualising their gait patterns. Eight elderly fallers, eight elderly non-fallers and eight young subjects performed
timed up and go (TUG) test, which is one of the well-known clinical tools for fall risk assessment and contains two gait sequences. Subjects
were also asked to perform two other variations of the TUG test, namely TUG with manual load and TUG with cognitive load. Gait sequences
were extracted from the TUG test based on the opinion of three human observers. Then the gait cycles were automatically extracted from the
walking sequence and divided into three phases, corresponding to double support and first and second half of single support. Next, the GEI of
each phase was generated and formed one of the colour components of CGEI. Histogram-based features obtained from CGEI were then used to
classify the video collected from walking sequences of elderly fallers and non-fallers. Correct classification rate was improved by

approximately 27% compared with the standard TUG test.

1. Introduction: A fall is defined as unintentionally coming to the
ground level with a reason other than stroke, epileptic seizure, drug
use and sudden unconsciousness [1]. It might cause injuries,
fractures, fear of fall and immobility among the elderly people.
About one-third of seniors fall each year and more than half of
them do not talk about it with their physicians when it occurs [2].
In some studies, automatic sensor-based methods have been
proposed to detect falls. For example, in the method presented
in [3], a 3D video-based system for monitoring an elderly
person to detect fall was proposed. In a more recent study, a
two-stage method based on data from the Microsoft Kinect
for detecting falls in the homes of the elderly people was
presented [4].

However, if the elderly fallers are identified based on their
motion patterns and targeted for interventative treatment, the cost
associated with fall will decrease extensively. Therefore several
tools have been proposed for fall risk assessment and classification
of seniors as fallers and non-fallers. Some of the tools assess fall
risk based on questionnaires inquiring about fall risk factors and
the patient’s health status; whereas in the other ones, the subject
is asked to perform some pre-defined tasks and the risk of falling
is assessed based on the subject’s performance in these tests [5].
For scoring how a subject performs the tasks, some of the
methods have relied on the clinician’s subjective assessment,
while the others have suggested more objective criteria by using
sensors. In [6], methods based on sensor devices to evaluate func-
tional performance of sit-to-stand and stand-to-sit have been com-
prehensively reviewed.

Another well-known clinical test for fall risk assessment is timed
up and go (TUG) test [7]. In [8], using body-worn kinematic
sensors, a quantitative assessment framework for the elderly sub-
ject’s performance in the TUG test has been proposed. In another
attempt, inertial sensors were used to extract features from the
TUG test for classification of the elderly as fallers and non-fallers
[9]. Body-worn sensors or inertial sensors are relatively expensive.
In addition, inertial sensors have to be attached on the subject’s
body. This may lead to changes in the normal pattern of activities
and is annoying, particularly for the elderly. Therefore vision-based
markerless systems with inexpensive cameras seem to be desirable.
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Although in some studies such as [10], different gait parameters
have been extracted, there has been limited focus on vision-based
methods for identifying differences in gait pattern aiming at classi-
fying the elderly as fallers and non-fallers.

In this Letter, a vision-based markerless gait analysis method for
classification of the elderly subjects as fallers and non-fallers is pro-
posed. The presented method is a novel modification of gait energy
image (GEI). GEI first introduced in [11] for gait identification,
gives implicit cues about gait patterns. Its main advantages are ro-
bustness to error in silhouette extraction and low computational
cost. Its main drawbacks are sensitivity to camera angle and lack
of temporal information. To overcome the latter, GEI has been
modified in this study.

2. Dataset: In this study, an elderly faller was a person older than
65 years who had fallen twice or more in the last year. The
characteristics of the subjects are summarised in Table 1. Each
subject was asked to perform the TUG test in front of a camera
three times. In the TUG test, the subject is asked to rise from an
armless chair, walk three meters, turn 180°, walk back to the
starting point, and sit down again. Two walking sequences of the
TUG test were extracted and used for CGEI computation. In this
study, we used the TUG test to compare our proposed method
with the TUG test as an example of a commonly used tool for
fall risk assessment in terms of their faller/non-faller classification
ability. In the conventional TUG test, fall risk is assessed only by
measuring the total time of the test. Therefore, we also recorded
the total time to perform the TUG test for comparison purposes.

Table 1 Characteristics of subjects

Young subjects Non-faller Faller
no. 8 8 8
age, year 254+1.1 68.9+3.2 71.8+3.2
weight, kg 72.1+8.8 61.1+4.5 60.9+2.7
height, cm 175.6 +6.1 165.9+3.9 165.0+4.9
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Figure 1 Installed setup for data collection and frame of recorded video
from faller subject

a Installed setup

b One frame of recorded video

The data were collected at the Motor Control and Computational
Neuroscience Laboratory at the University of Tehran. Eight fallers,
eight non-fallers, and eight young subjects (control group) partici-
pated in this study. Subjects performed the test in front of a white
background and were asked to do their best to follow the straight
path on the floor, which was made using transparent tape. The floor
was green; the distance between the camera and the centre of the
path was 3.2 m and the camera height was 1.2 m. Fig. 1a shows the
installed setup for data collection. The spatial resolution of the
camera was 640 x 480 pixels and its frame rate was 25 frames per
second. All subjects were asked to initiate their gait with the camera
side leg. Fig. 15 shows a faller while performing the test. In addition,
subjects were asked to perform two other variations of the TUG test to
emulate normal life conditions more concretely. The first variation
was the TUG test with manual load in which the subjects performed
the TUG test while carrying a glass of water and the second variation
was the TUG test with cognitive load in which subjects accomplished
TUG while doing a mental task, that is, counting backwards from a
random number greater than 50 with a specified step size [7].

Finally, 216 video sequences of the TUG tests were collected (24
subjects, each performed three variations of the test three times). In
addition, 120 background frames had been collected before each
subject performed each test and labelled as background videos.
Therefore the database included 216 background videos. Visual in-
spection was used to validate the method. In order to reduce the
error of human observation, we asked three observers to inspect
the videos instead of one. First, the observers were asked to find
frames corresponding to the start and end of walking in each se-
quence. Secondly, the observers were asked to mark heel contact
and toe clearance.

All observers were M.Sc. students at the University of Tehran.
Software was developed in MATLAB and utilised for showing the
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Figure 2 Width of the one-third lower part of the silhouette (S,,) against
frame number in whole frames of a TUG test for a faller subject
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videos to the observers and recording the results of their visual in-
spection. They could stop or replay the video as many times as
they wanted and were allowed to zoom in on any selected frame to
evaluate it more precisely. They were also able to move the video
backwards and forwards frame by frame and insert a datatip text
box to display the x- and y-coordinate values of any desired point.

The toe off and heel contact times were clearly defined for the
observers at the beginning. As suggested in [12], we defined the
heel contact time as the time when the heel stops moving temporar-
ily, and toe off as the time in which the toe position starts to change
after being unchanged for a period of time. Using the datatips and
zoom option, the observers could inspect the toe and heel positions
frame by frame. We asked the observers to consider the foremost
point of the foot as toe and the posterior end of the foot as heel.
The observers were blind to the labels of ‘faller’ and ‘non-faller’
and could spend as much time as they needed to inspect the
video. Suggested frames of all observers were averaged for each
video sequence and videos of walking were trimmed accordingly.
By averaging the reported frames, the overall error was reduced.
Since two walking sequences exist in each TUG test, a total of
432 videos were collected.

3. Silhouette extraction: In each frame, the background was
removed by means of thresholding the Mahalanobis distance of
the pixels from the background statistics. Each background pixel
was assumed to have a normal distribution. The mean and
standard deviation of the background pixels for each test video
were calculated using the background videos. After thresholding,
some undesired regions remained due to noise and shadows on
the floor. The noise was removed by utilising morphological
operators and omitting the scattered regions far from the largest
connected component (silhouette). To restrict the extracted
foreground to the silhouette and eliminate the shadows on the
floor, the angle between the G-axis and RGB vector for each
extracted pixel of the lower part of the silhouette was found. The
pixels with angles less than 150 were excluded from the
silhouette. The underlying reason for using this procedure for
shadow removal was the fact that the proportion of different
colour components of a shadow pixel on the floor is nearly
identical to the floor pixels. As a result, the angle between the
G-axis and the RGB vector of a shadow pixel is almost equal to
zero although the norm of an RGB vector of a floor pixel and a
shadow pixel might differ considerably.

4. Conventional GEI: First the heights of all silhouettes were
normalised. To align the silhouettes for each walking sequence,
the images were transferred so that the centre of the trunk became
the centre of the image. GEl(x, y) was built by averaging all
aligned silhouettes using the following equation

1 N
GEI(x, ) = ) _B,(x.7) (1)
n=1

where B,(x, y) is the aligned silhouette in the nth frame and N
represents the total number of frames. In B,(x, y), if a pixel
belongs to the silhouette, its value is one, otherwise its value is zero.

5. Coloured gait energy image (CGEI): To fuse temporal
information to GEI, each gait cycle was divided into three parts,
namely DS, SS1, SS2 and the GEI was computed for each part
separately. At first, the bounding box of the one-third lower part
of the silhouette in each frame was found and S,,, which was an
array containing the bounding box width of all frames, was built.
We have not used the width of the whole body, since in many
cases the width of the bounding box corresponding to the whole
silhouette had remained almost unchanged particularly during the
TUG test with manual load since the subject was carrying a
glass. S, is plotted in Fig. 2 against the frame number. Local
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minima and maxima of §,, that are more than 20 frames apart are
marked.

The flowcharts depicted in Figs. 3a and b show the procedure for
extracting Fyc and Fro, respectively, which were later used for
CGEI generation. In these flowcharts, Fyypi, and Fjymax correspond
to the local minima and maxima of S, and (condition)? test,
whether the condition has been fulfilled or not. Just the one-seventh
lower part of the silhouette was considered to evaluate if a swing
foot passed the stance foot, as according to anthropometric data,
half of the knee-heel length is nearly one-seventh of the body
height. Fig. 3¢ shows the location of pixels of interest for lowermost
and headmost as described in flowcharts. A few frames after and
before Fyc, in which the lowermost pixel of the front foot (an ap-
proximation for heel) stopped moving temporarily, are shown in
Fig. 4a. Similarly, a few neighbouring frames of Frq are depicted
in Fig. 4b. In Fig. 5a, x—y coordinates of the lowermost pixel of
the front foot is plotted against the frame number. Fyc is marked
in this figure. Moreover, as depicted in Fig. 5b, the frame in
which the position of the headmost pixel of the back foot
(an approximation for toe) changed dramatically after being station-
ary for a while was labelled as Fro.

Fro and Fyc are almost equal to the heel contact and toe off
times, respectively. These events are important in gait analysis as
they are used to divide gait into two phases. Double support
phase starts from heel contact of the front foot and ends with toe
off of the back foot while single support starts from toe off until
heel contact of the same foot. Having the definition of the gait
phases in mind, we divided each step into three parts: DS (almost

Find local minima of Sy which
are more than 20 frames apart

Find local maxima of Sy which
are more than 20 frames apart

=it J=itl
d=number of connected Omit the front foot
" | components in 1/7 lower part of Find the headmost pixel of the
the silhoutte back foot in j" frame [(x,y);]

Y
1
Omit the back foot
Find the lowermost pixel of the
front foot in j* frame [(x,y);]

Figure 3 Procedure of finding Fyc and Fro and pixels of interest of two
sample forms

a Fuc

b Fro

¢ Headmost and lowermost pixels of two sample frames
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Figure 4 Neighbouring frames of Fyc and Fro
a Fuc

b Fro
The frame number is stated above each image

equal to double support phase), SS1 (almost equal to the first half
of the single support), and SS2 (almost equal to the second half
of the single support). In the next step, GEI is computed for each
part of each step using (2)—(4).
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Figure 5 Example of X-Y position pixel against frame number
a Lowermost pixel of front foot
b Headmost pixel of back foot
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Figure 6 CGElps, CGElgs; and CGElgs, (a—c) CGEI and GEI (d, e)
a CGElpg

b CGEISSl

¢ CGElgg»

d CGEI

e GEI

CGEIDS(X, ) CGEISSl(X, ) and CGEISS2(x, y) are the GEI for DS,
SS1 and SS2. Fyc; and Fyc; represent frames corresponding to
two consecutive steps (one stride). CGElps, CGElgs; and
CGElgg, for a single step are shown in Figs. 6a—c, respectively.
To visualise the new variation of GEI, CGElpg, CGElgg; and
CGElgg, were considered as red, green and blue components, re-
spectively of a new image called CGEIL. The CGEI is compared
with GEI in Figs. 6d and e. The final CGEI was built by averaging
the obtained CGEI for all steps.

As the final aim of this Letter was to discriminate between the
gait of elderly fallers, who sometimes suffers from asymmetric
gait, two CGEIls were built for each walking sequence. In the first
one, (CGEI) .5, we averaged CGElIs of all steps starting from the
left foot heel contact, while in the second one, (CGEDg;gn, We aver-
aged CGElIs of all steps starting from the right foot heel contact. To
cancel the impact of subjects’ clothes and body size, the value of all
stationary parts of CGEI (white areas) was set to zero, forming
masked CGEI. CGEls and masked CGEls of an elderly faller and
non-faller are depicted in Fig. 7.

a b c d

Figure 7 (CGEI);.; and (CGEI)pgi, of faller and non-faller subjects

a (CGEI)p ¢ of faller subject

b (CGEDRign of faller subject

¢ (CGEI)L ¢q of non-faller subject

d (CGEDRign of non- faller subject

In all cases, CGEI and masked CGEI are shown in top and bottom,
respectively.
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Figure 8 Extracted features for a faller and a non-faller by concatenating
the histograms of three components of (CGEI) .5

6. Feature extraction and classification: In GEI, the higher grey
level shows that the pixel remains stationary for a longer time.
Therefore the number of pixels in each bin of the grey-level
histogram implicitly gives cues about the subject’s gait pattern.
As the head and the upper part of the trunk are almost still in
comparison to the feet, we generated the eight-bin grey level
histograms just for the two-third lower part of the silhouette. The
histograms of all components of (CGED) . and (CGEI)gigh; Were
found separately for each gait sequence. The first bin, which was
corresponding to the ‘zero’ grey-level value, was omitted as it
was associated with background pixels.

After omitting the first bin, all histograms were normalised so
that the area under the histogram became one. For each gait se-
quence, three feature vectors were built. To generate the first one,
the normalised grey-level histogram of the two-third lower part of
conventional GEI was built. The histogram of the two-third lower
part of each component of (CGEI), ¢ and (CGEI)gjgh: Was gener-
ated separately and then concatenated to build the second feature
vector. The third feature vector was built similar to the second
one by using masked (CGEI) s and (CGEDgjgh. Extracted features
for a faller and a non-faller from (CGEI)_ .« is shown in Fig. 8.

The dimension of all feature vectors was reduced to three using
principle component analysis (PCA). Support vector machine

Table 2 Error (%) for faller/non-faller, faller/young and young/non-faller
detection

Classification to: Faller/ Faller/ Youth/
non-faller youth non-faller

Mean of entire test duration
(threshold with the lowest error
is considered)

standard 37.5 25 50
manual load 31.2 25 43.7
cognitive load 25 18.75 43.7
Proposed feature from GEI

standard 354 20.8 39.6
manual load 31.2 22.9 41.6
cognitive load 29.1 18.75 39.6
Proposed feature vector 2

standard 16.7 12.5 20.1
manual load 6.2 8.3 25.0
cognitive load 6.2 10.4 20.1
Proposed feature vector 3

standard 104 8.3 18.7
manual load 6.2 6.2 22.9
cognitive load 4.2 4.2 14.6
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Table 3 Percentage error, sensitivity, specificity, PPV and NPV of
detecting a faller using histogram-based feature vector obtained from DS1,
SS1 and SS2 for the TUG test with cognitive load

Sensitivity, %  Specificity, %6  PPV,%  NPV,%  Error, %
DS 83 83 83 83 16.7
SS1 88 96 95 88 8.3
SS2 75 38 86 78 18.7

(SVM) and leave-one-gait sequence-out cross-validation were uti-
lised to evaluate the performance of the proposed method. Each
time, one walking sequence was considered as the test data and
all other sequences except those belonging to the same subjects
were used as a training dataset. By eliminating all sequences of
the subject from the training set, we ensured that the biometric prop-
erties of the gait did not boost the classification result.

7. Experimental result: To evaluate the performance of the
proposed method in faller/non-faller classification, it was applied
on the dataset. As suggested in Section 6 three feature vectors
based on GEI, CGEI and masked CGEI were generated for each
walking sequence. The error (%) for classification of the elderly
subjects as fallers or non-fallers is shown in the first column of
Table 2. To evaluate the discriminative ability of the proposed
features and its robustness, two other classification tasks were
accomplished. In the first one, using the proposed features the
elderly fallers were distinguished from the young subjects. In the
second task, the proposed method was applied on the data of
elderly non-fallers and young subjects and its error is reported in
the last column.

As expected, the classification error of the third feature vector
was the lowest and over all, the classification error of faller/young
subjects was less than other classification tasks. To compare the
proposed method with an example of a clinical method which is
currently in use for the elderly fall risk assessment, the error for
each classification task using the time required to perform the
TUG test is also reported in Table 2. The TUG test is currently uti-
lised as a clinical tool for elderly faller detection and normally if the
entire time to perform the TUG test is below a threshold, the subject
is considered as non-faller. Here for each variation of the test and
each classification task, we applied different threshold values to
find the one with the lowest error. As shown, the proposed
method outperformed the TUG test.

As stated in 2.4 the starting and ending frames for generating
CGElps,) is almost equal to heel contact and toe off times,
which were marked for each step in our dataset by visual inspection.
To evaluate the performance of the proposed algorithm in extracting
these events, Fyc and Fro were compared to the average of the
reported frames by three observers for heel contact and toe off.
The total number of steps in 432 walking sequences was 3312.
The mean-squared error for toe off and heel contact detection was
2.8 and 1.5 frame?, respectively.

To find the gait phase in which the differences between fallers
and non-fallers are more obvious from the silhouette shape, classi-
fication was performed using histogram-based features obtained
from each phase separately. Since the best result in the previous
part was obtained from the TUG test with cognitive load, the clas-
sification task was performed just for this test. Sensitivity, specifi-
city, positive predictive value (PPV), negative predictive value
(NPV) and error of classification are reported in Table 3.
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8. Conclusion: In this Letter, a new modification of GEI, which is
called CGEI has been proposed and used to classify the elderly
subjects as fallers and non-fallers and to visualise the walking
sequences. It has been demonstrated that the discriminative ability
of features extracted from the TUG test with cognitive load is
higher than that of the TUG test with manual load and the
standard TUG test. In addition, the result suggested that the most
impaired gait phase among fallers is SS1. This phase is almost
corresponding to toe clearance.

As future work, we are going to use CGEI for abnormal gait de-
tection and gait identification. It should be noted that the proposed
method for toe off and heel contact detection was validated by
visual inspection of an observer looking at the recorded video
images frame by frame, since gait event detection was not the
focus of this study. In future, the ability of the method for automatic
gait event detection could also be validated using the well-known
gait event detection techniques based on foot switches or gait-mats.
The main drawback of the proposed algorithm is its sensitivity to
the view angle of the camera. In addition, the proposed algorithm
uses a simple background model for silhouette extraction.
Therefore the method is sensitive to the background and environ-
ment light.
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