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An automated diagnosis system that uses complex continuous wavelet transform (CWT) to process retina digital images and support vector
machines (SVMs) for classification purposes is presented. In particular, each retina image is transformed into two one-dimensional signals by
concatenating image rows and columns separately. The mathematical norm of phase angles found in each one-dimensional signal at each level
of CWT decomposition are relied on to characterise the texture of normal images against abnormal images affected by exudates, drusen and
microaneurysms. The leave-one-out cross-validation method was adopted to conduct experiments and the results from the SVM show that the
proposed approach gives better results than those obtained by other methods based on the correct classification rate, sensitivity and specificity.

1. Introduction: Automatic digital image processing systems are
becoming increasingly important in health care, since they allow
efficient processing of images and objective medical diagnostics.
In recent years, a particular interest has been devoted to the
design of an automated computer-based system for the screening
of retina digital images [1] to detect the presence of exudates [2,
3], drusen [4, 5] and microaneurysm (MA) [6, 7]. In the problem
of exudates detection [2]; contrast enhancement fuzzy C-means
and support vector machines (SVMs) were used to detect and
classify bright lesions. The obtained sensitivity and specificity
were 88 and 84%, respectively. Multi-scale morphological
algorithms were used in [3] for exudate detection, to obtain a
sensitivity of 95.0% and a specificity of 84.6%. In the problem of
drusen detection, template matching and region growing were
adopted in [4] to detect the suspicious area. The proposed system
achieved a sensitivity of 83%. A gradient-based segmentation
algorithm based on labelling the maximum gradient path was
adopted in [5] to isolate drusens. Then, they were fitted by
Gaussian functions to compute the area affected. The sensitivity
and specificity for the automated process were 0.664 and 0.963,
respectively. In the problem of MA detection, a multiscale
amplitude modulation frequency modulation approach was
followed in [6] for the instantaneous characterisation of normal
and pathological retinal structures. Using partial least square, the
automated diagnosis system achieved a sensitivity of 92% and a
specificity of 54%. In [7], the problem of MA detection was
formulated as a detecting target problem in which the target is
embedded in a background clutter. The SVM [8] with radial basis
function kernel achieved a sensitivity of 0.90 on one database
and 0.45 on the other at a specificity of 0.90. A comprehensive
review on the subject can be found in [1].

In this Letter, we present a new automated retinal pathologies
detecting system based on the analysis of retina image by means
of the complex continuous wavelet transform (CCWT) [9, 10].
The CCWT will be used here because it allows the detection of
local singularities in the signal, it is shift invariant and provides
good directional selectivity. The complex wavelet transform pro-
vides information about the magnitude, as well as about the
phase angle of the analysed signal. It continuously decomposes
the signal into the magnitude and the phase angle. The magnitude
describes the strength of the local variations, while the phase
angle indicates their location. In our automated retinal diagnosis
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system, only information about the phase angle will be considered
to characterise the image. Unlike the magnitude of a complex
valued image, the phase image is not affected by colour variation,
non-uniform illumination and intensity variations. In addition, the
phase image reflects the geometrical structure of this image.

This Letter is organised as follows: Section 2 describes the pro-
posed method; in Section 3, the simulation results are presented;
finally, Section 4 gives the conclusion.

2. Methodology: The complex continuous Gaussian wavelet
transform is chosen based on two assumptions. First, we make
the hypothesis that the biological texture of the retina is normally
distributed. Thus, large deviations from this hypothesis could
characterise abnormal images. Second, the complex continuous
Gaussian wavelet is appropriate to detect local variations in the
signal because of its smoothness.

The CWT of a square integrable function (signal) s(¢) where
s(t) € L*(R) is given by [9]

1 —b
W(a, b) = ﬁjs(t)¢(t7) dr (1)

where a and b denote the scale and translation parameters, W(a, b)
are the wavelet coefficients and ¥(¢) is the mother wavelet function.
The complex Gaussian wavelet ¥(f) — which is the mother wavelet
in our case — is given by

V) =G, e @)
where C,, is a scaling parameter and j = +/—1. Then, the instantan-
eous phase angle ¢(a,b) of W(a, b) is calculated as follows
Wia, b
¢(a, b) = arctan (%) 3)
where W(a, b) and W,(a, b) are the imaginary part and the real part
of W(a, b), respectively.

The suggested automated retina diagnosis system is performed
according to the following stages. The adaptive histogram equalisa-
tion technique is applied to the retina digital image to minimise the
non-uniform lighting. Then, the retina image is converted to two
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Figure 1 Flowchart of the proposed retinal automated diagnosis system

one-dimensional signals: one is formed by the concatenation of the
rows and the other one is formed by the concatenation of the
columns. Subsequently, each signal is analysed by using the
CCWT at a finite number, p, of level decompositions. Following
that, the instantaneous phase angles of each one-dimensional
signal are computed at each level of decomposition to form one
vector, and the norm (magnitude) of this vector is calculated. As
a result, the final features vector contains 2p (2 one-dimensional
signals X p norms) magnitudes. Finally, the features vector forms
the input to the SVM to perform the classification task. The
block diagram of the overall automated system is described in
Fig. 1.

Let / be an image of size m x n. After applying the adaptive histo-
gram equalisation technique to /, the image 4 is obtained. Then, the
rows of 4 are concatenated to obtain the one-dimensional signal 4y
of dimension m X n. Similarly, the columns of 4 are concatenated to
obtain the one-dimensional signal A¢ of dimension n x m. Therefore
the instantaneous phase angles of 4; and A at the level of decom-
position a (Ap and Ac) are ¢(a, b) and ¢c(a, b), respectively.
Hence, the overall vector of instantaneous phase angles of A at
the level of decomposition @ is obtained by computing the

exudates

normal

Figure 2 Examples of retina digital images
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following mathematical norm

mxn

O ()= |3 (da b))’ @)

b=1

Similarly, the overall vector of instantaneous phase angles of 4 at
the level of decomposition a is obtained by computing the follow-
ing mathematical norm

De(a) = [ D (dcla b)) (5)
b=1

It is well known [9] that the wavelet scale value a is related to the
corresponding frequency F, according to

Fe
Fy==% ©)
where Fc is the wavelet centre frequency and A is the sampling
period. This relationship indicates that lower values of the scale par-
ameter a correspond to higher values of F,. Since it can be observed
that the presence of retina pathologies is usually associated with
specific patterns in the corresponding images, and that these pat-
terns usually involve more or less abrupt variations in the images.
Although other choices could have been made, we have concen-
trated our analysis on the lower scale values a=1, 2, 3.

Hence, the feature vector FV is composed as follows

FV=[0 (1) O (2) PB) Pc(l) D) PcB)] (7)

Vector FV forms the input to the classifier; namely the SVM [8].
This classifier solves a binary classification problem in which the
output y € {—1,+ 1} is obtained by seeking a hyper-plane w-O(x)
+b=0 to separate the data from classes +1 and —1 with a
maximal margin. Here, x denotes the input feature vector, w is a
weight vector, © is the mapping function to a higher dimension
and b is the bias used for the classification of samples. The decision
frontier is given by

S0 =3 300y 00) + b ®)

where each ¢; is a Lagrange coefficient. As mentioned before, the
role of the kernel function is to implicitly map the input vector
into a high-dimensional feature space to achieve better separability.
Finally, the optimal decision separating function can be obtained as
follows:

y= sign(Zy,ul—K(x,-, x)+ b) ©)

In this Letter, the quadratic kernel is used to map the input vector
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Figure 3 CCWT representation of the horizontal signal A; of a normal image

FV into the high-dimensional feature space. It is given by

K(x, %) = 00:)0) = ((x; - %) + 1)° (10)
The main advantage of the quadratic kernel is that it belongs to the
polynomial kernels family; thus it is a global kernel. In addition, it
is less computationally demanding than higher order polynomial
kernels and radial basis kernel.

3. Data and simulation results: The dataset is formed by 23
normal, 22 exudates, 20 drusen and 24 MA,; all obtained from the
STARE database [11]. The LOOM technique is used for better
generalisation capability of the SVM. Examples of retina digital
images are shown in Fig. 2. Fig. 3 shows the CCWT
representation (real part, imaginary part, modulus or magnitude,
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Figure 4 CCWT representation of the horizontal signal A; of an MA image
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and angle) of the horizontal signal 4; of the normal image.
Similarly, Fig. 4 shows the CCWT representation (real part,
imaginary part, modulus or magnitude, and angle) of the
horizontal signal 4; of the MA. The modulus (magnitude) of the
signals Ap is drawn for comparison purposes with the angle
signals. For instance, phase angle signals seem to contain more
information regarding the original signal than the modulus. This
finding could be explained by the fact that the phase image
(signal) reflects the geometrical structure of the texture.
Figs. 5-10 show the boxplots of the angle and the phase for
normal, MA, drusen and exudate images depending on the CWT
level of decomposition for both horizontal and vertical signals.
As can be seen, there are clear differences in statistical
distributions of the angle and the phase between normal, MA,
drusen and exudate images for all decomposition levels,
particularly for MA and exudates based on horizontal signals.
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Figure 5 Boxplot of the horizontal signal A; phase angle at the first level of
decomposition, normal (1), MA (2), drusen (3), exudates (4)
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Figure 6 Boxplot of the horizontal signal A; phase angle at the second level
of decomposition, normal (1), MA (2), drusen (3), exudates (4)
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Figure 7 Boxplot of the horizontal signal A; phase angle at the third level
of decomposition, normal (1), MA (2), drusen (3), exudates (4)
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Figure 8 Boxplot of the vertical signal Ac phase angle at the first level of
decomposition, normal (1), MA (2), drusen (3), exudates (4)
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Figure 9 Boxplot of the vertical signal Ac phase angle at the second level of
decomposition, normal (1), MA (2), drusen (3), exudates (4)
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Figure 10 Boxplot of the vertical signal Ac phase angle at the third level of
decomposition, normal (1), MA (2), drusen (3), exudates (4)
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Table 1 SVM simulation results

Statistics Drusen Exudates MA
accuracy 86 (+0.0915) 97 (£0.0431) 100
sensitivity 82 (+£0.1276) 100 100
specificity 91 (+0.0635) 94 (£0.0904) 100

This finding could explain the perfect accuracy for MA images and
the high accuracy for exudates, as seen in experimental results. For
instance, such differences in feature distributions help SVM to
separate normal and MA features.

The correct classification rate (accuracy), sensitivity and specifi-
city statistics are used to assess the performance of our approach.
Table 1 provides the normal-against-one classification results in
percentage and standard deviations are in parenthesis. For simpli-
city, only the best performances are presented. For instance,
results of exudates and drusen in Table 1 are obtained with a poly-
nomial kernel of order 3, while results of MA are obtained with a
polynomial kernel of order 2.

As shown in Table 1, our results compare favourably with the
results obtained by other algorithms found in the literature to
detect exudates [1, 2], drusens [3, 4] and MA [5, 6], especially
for MA pathology. The main advantages of our approach are that
it is simple, fast and effective. Indeed, it is simple because it does
not require segmentation or morphological operations. In addition,
image processing and feature extraction based on our approach is
fast since the image is transformed into two one-dimensional
signals from which phase angles are easily computed to characterise
the image with only two features. In particular, the processing time
for a given image including concatenation, analysis by CWT and
feature extraction has been found to be less than 5s using
Matlab® environment. Finally, our system is accurate because it
achieves better pathologies recognition rate results than those
reported in the literature for several previous works. However,
our proposed method suffers from the following limitation: as it
is based on CWT, it is difficult to determine the most appropriate
complex wavelet and the most appropriate levels of decomposition
of this wavelet. Optimally chosen wavelet and decomposition levels
may improve exudates and drusen detection rates.

4. Conclusion: We have presented a new automated system for
pathologies detection in retina digital images based on the
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analysis of the image by means of the CCWT to obtain phase
angle information which is fed to SVM. The simulation results
show that our method gives results that compare favourably with
the results reported in [1-6]. This could be explained mainly by
the fact that phase angles contain valuable information that allows
discriminating between normal and abnormal retina images. Our
automated diagnosis system does not require performing the
detection on a given colour channel, segmenting vessel and optic
nerve, and also does not use retina morphological features. In
summary, the proposed detection system appears to be promising
for clinical applications. Future work will consider a larger
database and other retina pathologies. We will also investigate the
role of complex wavelet type and decomposition levels in
improving performance measures.
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