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An efficient approach for classification of mammograms for detection of breast cancer is presented. The approach utilises the two-dimensional
discrete orthonormal S-transform (DOST) to extract the coefficients from the digital mammograms. A feature selection algorithm based the on
null-hypothesis test with statistical ‘two-sample #-test’ method has been suggested to select most significant coefficients from a large number of
DOST coefficients. The selected coefficients are used as features in the classification of mammographic images as benign or malignant. This
scheme utilises an AdaBoost algorithm with random forest as its base classifier. Two standard databases Mammographic Image Analysis
Society (MIAS) and Digital Database for Screening Mammography (DDSM) are used for the validation of the proposed scheme.
Simulation results show an optimal classification performance with respect to accuracies of 98.3 and 98.8% and AUC (receiver operating
characteristic) values of 0.9985 and 0.9992 for MIAS and DDSM, respectively. Comparative analysis shows that the proposed scheme

outperforms its competent schemes.

1. Introduction: Breast cancer is currently one of the major reasons
of an increased death rate among women. Early detection through
periodic screening improves the chance of recovery from breast
cancer. For a reliable early detection, mammography is an
effective method in which digital mammograms are analysed [1].
Digital mammograms are the scanned X-ray images of breasts.
Interpretation of mammograms is a very important task for
radiologists as they refer patients for biopsy. However,
interpretation of mammograms varies among radiologists as it
depends on training and experience. This leads to different
judgments by different radiologists. It has been observed that 60—
90% of initially suspected malignant lesions by radiologists were
found to be benign later [2]. Therefore, avoidance of
misinterpretation is highly desirable. Currently, computer-aided
diagnosis is a very popular and efficient method that analyses the
digital mammograms and helps radiologists in mammogram
interpretation to detect the suspicious lesions as well as their
type. Regarding this responsibility, one important step is to
extract a set of significant features from the mammographic
images that can distinguish the benign lesions from malignant
ones. Different techniques and methods have been studied for the
extraction of features and the classification of mammograms into
benign and malignant classes.

Liu et al. [3] achieved an accuracy of 84.2% to classify the
benign and malignant mammograms by using a set of wavelet
based statistical features and a binary tree as the classifier. Pereira
et al. [4] proposed a method in which a spatial grey level depend-
ence matrix of wavelet transformed mammograms was used to
derive the texture features. These texture features were utilised to
classify the mammograms as benign or malignant with the help
of a non-parametric K-nearest neighbours (K-NNs) classifier. In
their method, the performance index values of AUC=0.617 and
0.607 have been achieved for discriminating the masses and micro-
calcifications, respectively. Verma et al. [5] used BI-RADS descrip-
tor features to classify the mammograms with their proposed soft
clustered based direct learning classifier and achieved an accuracy
of 97.5%. Fraschini [6] used discrete wavelet transform and
neural network to classify the mammograms. The performance
index value was AUC of 0.91 in the ROC curve. Buciu and
Gacsadi [7] achieved AUC value of 0.78 for the classification of
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benign-malignant mammograms. They used Gabor wavelets with
principal component analysis for reduction in the dimension of dir-
ectional features with the help of a support vector machine (SVM)
as a classifier. Prathibha and Sadasivam [8] obtained a classification
accuracy of 90.65% for benign and malignant mammogram charac-
terisation by using a combination of wavelet and SVM. Xiaoming
et al. developed a method using an SVM-based recursive feature
elimination (SVM-RFE) procedure with a normalised mutual infor-
mation feature selection (NMIFS) and achieved a performance
measure AUC of 0.9615 in the mammogram classification [9].
They used geometry features, relative gradient orientation-based
features, and texture feature like grey-level co-occurrence matrix
in their proposed scheme. Zanchetta et al. [10] used discrete
wavelet transform for the extraction of features and a polynomial
classifier to classify the benign-malignant mammograms. They
achieved the performance measure AUC of 0.95. Gorgel et al.
[11] achieved 91.67% classification accuracy for benign and malig-
nant mammogram classification using spherical wavelet transform
(SWT) for extraction of features and SVM as the classifier. In
their proposed method, a local seed region growing algorithm
was used to detect the region-of-interests (ROIs) of mammograms.
Kumar and Balakrishnan [12] developed a method based on the
combination of DWT and stochastic neighbour embedding tech-
nique for benign and malignant mammogram classification. They
used stochastic neighbour embedding technique to reduce wavelet
coefficients of mammograms and achieved classification accuracy
of 90.10% with the help of an SVM classifier. Ganesan et al.
[13] proposed a one-class classification method to classify the
mammographic images as benign or malignant. A trace transform
functional was used for extraction of features from the mammo-
grams and 92.48% of accuracy rate was obtained by using a
Gaussian mixture model (GMM).

In this Letter, we propose a scheme in which a two-dimensional
(2D) discrete orthonormal S-transform (DOST) has been used to
extract features from mammographic images. A feature selection al-
gorithm has been suggested using null-hypothesis test with ‘two-
sample #-test’” method to select significant features from the avail-
able set of extracted features. A combination of the AdaBoost algo-
rithm with random forest (AdaBoost-RF) classifier is used to
classify the mammogram as benign or malignant using the selected
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Figure 1 Extracted ROIs from different mammographic images (source:
MIAS database)

a—d Benign type

e—h Malignant type

features. The obtained results are compared with the existing
methods to validate the efficacy of the proposed scheme.

2. Proposed method: The proposed method consists of three
important phases: feature extraction, selection and classification.
Conventional cropping operations are employed to select the
region-of-interests (ROIs) as shown in Fig. 1. These ROIs
become inputs to our suggested scheme. The overall block
diagram of the proposed scheme is shown in Fig. 2.

2.1. Feature extraction: The scheme uses a 2D DOST which is a
multi-scale technique to extract the pixel-by-pixel texture features
of a mammographic image. DOST is based on the S-transform,
which is a time—frequency representation closely related to
continuous wavelet transform [14]. The S-transform is
advantageous for the analysis of mammographic images as it
preserves the phase information using linear frequency scaling.
However, the major limitation of S-transform is its high time and
space complexity because of its redundant nature. To remove
these limitations, DOST uses an orthonormal set of basis
functions. Therefore DOST has less computational and storage
complexity when compared to S-transform. DOST of a
mammographic image, f(x, y) of size N x N can be obtained using
a dyadic sampling scheme given by the following steps:

1. Perform 2D Fourier transform (2D-FT) on the image f{x, y) of
size N x N to obtain Fourier samples, F(u, v) < 2D-FT[f{(x, »)].

2. Partition F(u, v) and determine the number of points in that
partition.

feature extraction phase

discrete orthonormal S- transform
of K i

generation of feature matrix (M = K)
M: number of i
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null-hypothesis test using different feature matrix
| values of signi level (o)

classification phase

dataset

I I timal It
change eimanc Optimal resul
signficance|

level (o)

Figure 2 Block diagram of proposed scheme for classification of
mammograms
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3. Compute the square root of the number of points and multiply it
with F(u, v) to obtain a result.

4. Apply an inverse 2D-FT on the result to obtain the DOST de-
scription of the image f(x, y), which is termed as voice image and
given by

1
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where v, = 277! 2772 and v, = 2771 4272 are horizontal
and vertical voice frequencies.

5. A rectangular voice image is obtained having 2P+ x 27!
points same as in the original image.

In DOST, each pixel p(x, y) within the image gives voice frequen-
cies (vy, v,) with 277" x 227! bandwidth. Subsequently the pixel-
wise local spatial frequency description in DOST is computed as

1. Select an arbitrary pixel at coordinate (x, y) within the image.
2. Compute the value of the voice image S, V(v,, v,) in the fre-
quency order (p,, p,) of the location (x, y) at
S[x/N x 2P1 y/N x 2271,

3. Build a local spatial frequency domain having size 2 log,N %
2 logyN by iterating over all values (py, p,) for each pixel of the
image.

The frequency domain contains positive and negative compo-
nents from DC, (vy, v,)=(0, 0) to the Nyquist frequency Ny,
(vy, v,)=(N/2, N/2). Thus, all the components in the frequency
domain are mapped to the M-space frequency coefficients. In this
way, a N x N ROI generates N x N DOST coefficients and each co-
efficient is included in the feature vector (FV). Combination of K
FVs is represented in a feature matrix FM. The details feature ex-
traction process is described in Algorithm 1. The FM becomes an
input to the feature selection phase.

Algorithm 1 Feature Extraction

Require: X : Total number of ROIs taken for the experiment
Ensure: FM[1:M, 1:K]: Feature matrix
R: Total number of reduced features
Function dost() computes DOST coefficients of ROIs. Function
resize() sets the dimension of each ROI as per required.

1: Create an empty matrix CM[1:N, 1:N] and an empty vector FV
{CM is used as DOST coefficient matrix and FV is used as
feature vector

2: Initialise N in terms of pixel, i < 1

: M < N x N {Total number of features is to be extracted from

a ROI}

:for k < 1to K do

Get ROIk

ROI, < resize(ROI, N)
CM,[1:N, 1:N] < dost(ROI,)
for p < 1toN do

w

e A A

9: for g < 1toN do
10: FV,[i, 1] < CM,[p, q]
11: i<—i+1

12:  Reseti <1
13:  for m < ltoM do
14: FM([m, k] < FV,[m, 1]
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2.2. Feature selection and classification: In the feature selection
phase, an optimal set of relevant features is selected from the
extracted feature matrix. Here, a statistical null-hypothesis test
using ‘two-sample #-test’ method [15] is used to select features.
The null-hypothesis test is carried out on two normally
distributed populations of samples, say BE and MA, containing
benign and malignant feature data, respectively. The test decision
specifies whether the null-hypothesis is correct or incorrect,
which in turn triggers the data from two populations and
determines whether they are significantly different or not. The
incorrect null-hypothesis is rejected and specifies that the data
from two populations are significantly different from each other
and independent. Whereas, a correct null-hypothesis is not
rejected and there is no significant difference between the data
from two populations.

Let instances of two populations b, €BE, i=1, 2, ..., n; and
m;€MA, j=1, 2, ..., n, be FVs. The corresponding means and
standard deviation of two populations BE and MA are ugg, tima,
and ogg and oy, respectively. Now, the null-hypothesis test is per-
formed in the following steps:

1. Specify the desired value of significance level (o) between 0 and
1. The significance level is the probability of null-hypothesis being
incorrect.

2. Compute the t-test

t= (|/J“BE - MMAD/ <—+— 2

3. Calculate the degrees of freedom

d:<ﬁ+@>2/<n d o) o

n, n, %(nl -1 n%(nz -1

4. Compute the p-value using the cumulative distributed function
of t-test statistics

“4)

! I'((d+1)/2) P —((@+1)/2)
p :j _\ar e ( d)

—w/TxdxT(d)2) '

where I' is a Gamma function. The p-value is the probability of the
t-test with degrees of freedom d given that the null-hypothesis is
correct.

5. Set the decision value for the null-hypothesis test

L
h_{o’

6. For h=1, the null-hypothesis is incorrect and rejected for the
specified value of a.

ifp<a
if p>a

®)

We have taken the label values 0 and 1 for representing the sample
as benign and malignant classes, respectively. The farget vector con-
tains the label values of all ROI samples that are used in the scheme.
With the help of the farget vector, the two populations BE and MA
are generated. From the null-hypothesis testing, the returned decision
value is a vector, defined as, 4,,€{0, 1}, m=1, 2, ..., M, where M
represents the total number of extracted features. Then, a feature
Jfm € FM is to be selected as a relevant one, if and only if 4,, equals 1.
Thus, all the selected relevant features are collected from the
feature matrix (FM) to form a reduced FM (RFM) for K number
of ROIs. The total number of reduced feature(s) denoted as R is
decided according to the value of «a specified in the hypothesis
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testing. Further more, a training dataset X is created for K number
of ROIs using the RFM and target vector, which is used in the clas-
sifier to design an effective classifier model. Algorithm 2 describes
the feature selection process in details.

Algorithm 2 Feature Extraction

Require: FM[1:M, 1:K], target[1:K]
« : Significance level
Ensure: RFM[1:R, 1:K]: Reduced feature matrix
R: Total number of reduced features
Function nhtest()s computes statistical null-hypothesis deci-
sion value using two vectors at different values of « using two-
sample t-test method.

1: Create two empty vectors BE and MA

2: Initialize a with 0 < a < landi <« 1,7 « 1,1 « 1
3:form < 1toM

4:  Clear contents of vector BE and vector MA
5: fork < 1toKdo

6: if target[i] = 1 then

7 target[k] = 1

8: MA[L, i] < FM[m, k]

9: i<—i+1
10: else
11: BE[1,j] < FM[m, k]
12: j<—j+1

13: Reseti < 1 and i < 1

14: h[i] = nhtest(BE, MA, «)

15:  if A[m] = 1 then

16: for k < 1 to K do

17: REMIL k] < FM[m, k]
18: [« I1+1

An AdaBoost algorithm has been used with the random forest
classifier as a base or weak learner for the benign-malignant mam-
mogram classification. Random forest is an ensemble classification
technique developed by Breiman, which shows an adequate per-
formance with respect to the accuracy rate [16]. Random forest
uses the bagging technique in which each individual classifier is
built by bootstrap input samples. In this method, a number of fea-
tures randomly selected and used to make a decision at the node
split. The error rate of the random forest depends on the number
of features used in the decision node. This method is the combination
of many tree predictors in which each tree depends on the values of
random vector sampled independently and with the same distribution
for all the trees in the forest. Using the training set and random
vector, a tree is built. After a number of trees are generated, a clas-
sifier hypothesis is generated based on the voting for the class.

AdaBoost algorithm is the most popular version of the boosting
procedure. It has the highest flexibility for adding many weak classi-
fiers having high error rates to generate a combined hypothesis
whose training error rate is small [17—19]. For the two class classifi-
cation problem, the AdaBoost algorithm takes the training dataset X
=, ), i=1,2, ..., K, where x; is a vector containing features and
v; € {0, 1} is the label of class. As mentioned earlier, the label value 0
and 1 represent negative class (benign) and positive class (malignant)
ROIs, respectively. In the algorithm, each training example is
assigned by a weight that determines the probability of that
example being selected for the training set for a classifier. Initially,
the algorithm gives equal weights to all training examples. Then,
the weak classifier is trained repeatedly on the weighted versions
of training examples for a series of rounds. In each round, a weak hy-
pothesis of lower error rate is generated, and at the same time, the
weights of misclassified examples are increased. The examples
with higher weights are selected to train the classifier in the next
round. Thus, the final decision is obtained by the linear combination
of the weak hypothesis generated in each round. The detailed
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description of the AdaBoost procedure with random forest classifier
is given in Algorithm 3.

Algorithm 3 Classification with AdaBoost-RF

Require: Dataset having K instances, X = x; fori = 1, 2, ..., K with
levels y;, € {0, 1}
Random forest classifier as weak learner
N: Total number of iteration
T: Total number of trees
Ensure: classifier_decision
1: Initialise weight W,(i) < 1/K, Vi
2: for n < 1 to N do
3 for t < 1to T 'do
4 Generate a vector V, with W, (i)
S: X, < bootstrap(X)
6 ctree, <— buildtree(X,, V,)
7 return hypothesis /
8:  Obtain class hypothesis, 4,(x;) = y; € {0, 1}
9:  Compute the error of 4,,(x;),

error, < Z w, (i)
Ehy (1) %
1. (1 —error,
10:  Set a constant ¢, < ~In{ ——=
. 2 error,
WD) o,
n

N
12: h_/inal(x) <~ Z:I Cnhn(x)

13: classifier_decision < signlh g,,,/(x)]

11 W, () < () {Z, is a normalising constant}

The performance of the classification algorithm is evaluated with
the help of confusion matrix, ROC curve with AUC score, and other
parameters like F-measure and Matthews correlation coefficient
(MCC). A confusion matrix is a table that provides information
about the predicted and actual class classification performed by the
classifier. The confusion matrix for two classes (benign and malignant)
and performance measures are given in Tables 1 and 2, respectively.

The TPR (true positive rate) and FPR (false positive rate) are two
important measures for performance evaluation. The TPR calcu-
lates malignant ROIs correctly classified out of the total number
of malignant ROIs. The FPR parameter calculates benign ROIs in-
correctly classified out of the total number of benign ROIs. The
F-measure and MCC play an important role in the quality evalu-
ation of binary classification. The F-measure is computed as the
harmonic mean of ‘precision’ and ‘recall’ and given by

2 x recall x precision
F—measure =

(6)

recall + precision

The MCC is a correlation coefficient between the observed and pre-
dicted classification and given by

(TP x TN) — (FP x FN)

Mee= (TP + FN)(TN + FP)(TP + FP)(TN + FN)

O

The F-measure ranges from 0 to + 1 and MCC ranges from —1 to+1.
Larger values of both F-measure and MCC indicate higher

Table 1 Confusion matrix for two classes

Actual class Predicted class

Positive Negative
positive TP (true positive) FN (false negative)
negative FP (false positive) TN (true negative)
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Table 2 Different measures of classification performance

Measure Definition

TPR or recall TP/(TP +FN)
FPR FP/(FP +TN)
precision TP/(TP +FP)
ACC (TP +TN/K)

TPR: true positive rate, FPR: false positive rate, K: total number of
samples, ACC: accuracy.

classification quality. The evaluation of a classifier performance can
also be achieved by means of receiver operating characteristics
(ROC) curve. ROC curve is represented in a 2D graph which plots
TPR against FPR. The ROC curve has an important index value
known as the area under the curve (AUC), which determines the clas-
sifier’s performance. The AUC of value 1.0 is an ideal performance of
the classifier.

3. Experimental results and discussion: In order to validate the
proposed scheme, we have taken 115 digital mammographic
images from Mammographic Image Analysis Society (MIAS)
database [20] and 250 images from Digital Database for
Screening Mammography (DDSM), which are collected from
Image Retrieval in Medical Applications (IRMA) project [21].
All these images belong to two classes of abnormality such as
benign and malignant. Both MIAS and DDSM databases provide
appropriate information based on the background tissues and the
class of abnormalities. Out of 115 MIAS images, 64 images are
benign type and 51 images are of malignant type. Similarly, the
number of benign and malignant DDSM mammograms are 121
and 129, respectively, collected from the IRMA project. In this
work, all the mammographic ROI have been cropped to 128 x
128 pixels in size, and are used in the feature extraction
experiment. In the feature extraction phase (Algorithm 1), 128 x
128 DOST coefficients are extracted from each ROI and a feature
matrix is built by keeping all corresponding coefficients of each
ROI in rows and ROI indices in columns.

Next, the significant features are selected using the feature selec-
tion algorithm (Algorithm 2). The RFMs are generated by using dif-
ferent values of significance level (). Using these RFMs and the
class vector (target), a number of datasets are generated and used
in the classifier. We have employed a ten-fold cross-validation tech-
nique for each experiment for a number of rounds. In the ten-fold
cross-validation experiment, the whole dataset is partitioned into
ten number of folds. In each round, nine folds are combined to
form one set and the remaining fold forms another set. Thus, two
disjoint sets are formed containing 10 and 90% data that are used
separately for training and validation process, respectively. This
process is repeated ten times with random selection of training
and testing data by the classifier. For the classification job, we
have taken random forests with 10, 20, 40, 80 and 100 trees, with
maximum depth of two, which is used as the base learner in the
AdaBoost algorithm. It has been observed that the best performance
is achieved using a random forest with 20 trees. Thus, with optimal
structure of the classifier, a number of datasets having various sizes
are used for the classification of benign—malignant mammograms.
The results are articulated in Table 3. The optimum performance
has been achieved with 98.3 and 98.8% accuracies using MIAS
and DDSM databases, respectively, with p-value less than a=
7x107*. The other parameters such as F-measure, MCC and
AUC are also maximum at that optimal @=7x 107* At this
value of significance level, the root relative square errors (0.239 —
MIAS, 0.1194 — DDSM) are also minimum than that of at other
values of a as shown in Table 3. The fold-wise results in terms
of confusion matrix for optimal dataset (at a=7x10"% in
ten-fold cross-validation experiment is also presented in Table 4.
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Table 3 Comparative analysis at different values of o

Significance level () Performance measures

MIAS DDSM

TPR FPR F-measure MCC AUC ACC, % TPR FPR F-measure MCC AUC ACC, %

6x107° 0.882 0.109 0.874 0.772 0.930 88.7 0930 0.124 0.909 0.808 0.905 90.4
5x1073 0.922 0.031 0.940 0.894  0.979 94.8 0.953 0.124 0.921 0.834  0.916 91.6
4x1073 0.953 0.118 0.931 0.842 0.956 922 0969  0.116 0.933 0.858 0.933 92.8
3x107° 0.922 0.031 0.940 0.894  0.979 94.8 0.984  0.099 0.948 0.890  0.982 94.4
2x107° 0.961 0.047 0.951 0.912 0.992 95.6 0946  0.066 0.942 0.880  0.941 94.0
1x1073 0.941 0.016 0.960 0.930  0.994 96.5 0.977 0.041 0.969 0936  0.996 96.8
8x107* 0.961 0.016 0.970 0.947 0.996 97.4 0.977 0.025 0.977 0.952 0.998 97.6
7x107* 0.961 0 0.980 0.965 0.998 98.3 0.984  0.008 0.988 0976  0.999 98.8
6x107* 0.961 0.047 0.951 0.912 0.992 95.7 0.953 0.116 0.925 0.841 0.921 92.0
5x107* 0.294 0 0.455 0.434  0.636 68.7 0.783 0 0.878 0.797 0.895 88.8

Table 4 Performance analysis on different databases (fold-wise) at =7 x 10~

Performance evaluation parameters

MIAS DDSM
Folds Testing instances TP FP TN FN AUC Testing instances TP FP N FN AUC
fold 1 12 6 0 6 0 1 25 12 1 12 0 1
fold 2 12 4 0 7 1 0.995 25 13 0 12 0 1
fold 3 12 5 0 7 0 1 25 12 0 12 1 1
fold 4 12 5 0 7 0 1 25 13 0 12 0 1
fold 5 12 6 0 6 0 1 25 13 0 12 0 1
fold 6 11 4 0 6 1 0.985 25 12 0 12 1 0.992
fold 7 11 5 0 6 0 1 25 13 0 12 0 1
fold 8 11 5 0 6 0 1 25 13 0 12 0 1
fold 9 11 5 0 6 0 1 25 13 0 12 0 1
fold 10 11 4 0 7 0 1 25 13 0 12 0 1
We have compared the performance of the present classifier with 01~ =
two other classifiers such as SVM and K-NNs and is shown in :2 e
Table 5. It may be observed that the AdaBoost-RF classifier per- - P ,
forms better than others. § P
We have also compared ROC curves achieved by the Fosi ..- wd
AdaBoost-RF classifier with that of SVM and K-NN; these are pre- §°-‘*
sented in Fig. 3. The optimal AUC values are 0.9985 and 0.9992 B :: Threshold
obtained by the AdaBoost-RF classifier for MIAS and DDSM data- o} RN (AGG 0 650)
A R . —— adaboost-RAF (AUC=0,9985)
bases, respectively. Table 6 presents the comparative analysis of ot e
various performance measures of the present scheme with the exist- false positive rate
ing schemes. It may be observed that the suggested scheme outper- g
forms its competent ones. 0.1 —y
a8 0 et :¢"
of e oo 4
Table 5 Performances comparison of different classifiers at =7 x 10™* E :; L= i
Database classifier Performance measures %Ej
<03
F-measure MCC AUC ACC, % 02 e T
01 =" K=NN{AUC = 0.8953)
—— adaboosi-HF (AUC=0.9992)
MIAS Adaboost-RF 0.980 0.965 0.998 98.3 2 02 04 08 08 01
K-NN 0.771 0.696  0.803 83.5 s o
SVM 0.603 0.545 0.682 74.8
DDSM AdaBoost-RF 0.988 0.976 0.999 98.8 Figure 3 ROC curves obtained by three classifiers at optimum significance
K-NN 0.883 0.804  0.895 89.2 level, a=7 x 10~
SVM 0.684 0586 0.760 75.2 a MIAS database
b DDSM database
50 Healthcare Technology Letters, 2015, Vol. 2, Iss. 2, pp. 46-51
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Table 6 Classification performance comparison between the proposed
work and existing approaches

Approach Technique Database Measurement
Verma BI-RADS DDSM ACC=97.5%
et al. [5] descriptor feature,
SCBDL classifier
Buciu and Gabor wavelets MIAS AUC=0.78
Gacsadi PCA and SVM
(7]
Xiaoming geometry and DDSM AUC=0.9615
and Tang texture features
[9] SVM-RFE with
NMIFS filter
Gorgel SWT, SVM MIAS, Istanbul ACC=93.59%
etal [11] University
Zanchetta ~ DWT, polynomial DDSM AUC=0.95%
et al. [10] classifier
Ganesan trace transform, Singapore ACC=92.48%
et al. [13] GMM Anti-Tuberculosis
Association
CommHealth
(SATA)

proposed DOST, MIAS, DDSM ACC=98.3%,
work null-hypothesis AUC=0.9985

test with (MIAS) ACC=

t-statistics 98.8%, AUC =

AdaBoost-RF 0.9992
(DDSM)

4. Conclusion: This Letter proposes an efficient scheme to classify
mammographic images as benign or malignant to support breast
cancer detection. The scheme utilises the DOST method to
extract features from the mammographic images. A feature
selection algorithm using the ‘two-sample #-test’ method is
utilised to select the most discriminant features from the
high-dimensional feature matrix. An AdaBoost algorithm is
applied to classify the mammograms taking the random forest
classifier as the base learner. The classification algorithm with the
selected relevant features achieves the best performance at
significance level, =7 x 10™*. The optimal results achieved with
respect to accuracy and AUC of ROC are 98.3% and 0.9985 for
MIAS database. Similarly for DDSM database, the parameters are
98.8% and 0.9992, respectively. However, the extra feature
selection is the additional overhead in the proposed scheme.
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