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In this Letter, the authors present a unified framework for fall event detection and classification using the cumulants extracted from the
acceleration (ACC) signals acquired using a single waist-mounted triaxial accelerometer. The main objective of this Letter is to find
suitable representative cumulants and classifiers in effectively detecting and classifying different types of fall and non-fall events. It was
discovered that the first level of the proposed hierarchical decision tree algorithm implements fall detection using fifth-order cumulants
and support vector machine (SVM) classifier. In the second level, the fall event classification algorithm uses the fifth-order cumulants and
SVM. Finally, human activity classification is performed using the second-order cumulants and SVM. The detection and classification
results are compared with those of the decision tree, naive Bayes, multilayer perceptron and SVM classifiers with different types of time-
domain features including the second-, third-, fourth- and fifth-order cumulants and the signal magnitude vector and signal magnitude
area. The experimental results demonstrate that the second- and fifth-order cumulant features and SVM classifier can achieve optimal

detection and classification rates of above 95%, as well as the lowest false alarm rate of 1.03%.

1. Introduction: Automatic detection of fall events is one of the
important and challenging research areas in many ubiquitous
context-aware applications including fall alarm and fall injury
prevention, ambulatory patient monitoring, physical rehabilitation
and monitoring the health and well-being of the elderly and
patients with cognitive disorders [1-7]. Many fall detection (FD)
systems have been developed based on the use of body
movement, environmental and physiological signals acquired
from a single sensor and or multiple sensors (including
accelerometers [2—12], gyroscopes [3], barometric pressure sensor
[11, 12], microphone sensors and floor vibration sensors [13],
floor electric field sensors [14], physiological sensors [5, 15], and
video-based cameras and Microsoft Kinect sensors [16-20]).
There are two major types of fall monitoring systems: (i)
wearable sensing-based method [2—12]: falls are detected using
the acquired signals from body-worn sensors attached to different
positions on subject’s body; and (ii) non-wearable sensing-based
method [16-20]: falls are detected using the acquired signals
from sensors distributed in a predefined space environment. In the
non-wearable computer vision-based methods, the FD is
performed based on the visual features extracted from short video
clips recorded using the calibrated or uncalibrated single camera
or multiple cameras placed in a predefined space. By using the
traditional video cameras and Microsoft Kinect sensors [16-20],
many computer vision-based FD methods were proposed based
on the human body silhouette extraction, the motion and body
silhouette features such as ellipse, shape and structure, position,
lighting, flow features and the machine learning techniques.

Both methodologies have their own pros and cons and have po-
tential practical applications. The computer vision-based methods
have the following advantages: (i) they are more comfortable [4];
and (i) multiple subjects can be monitored simultaneously.
However, the method also has some drawbacks: (i) it demands
camera view calibration and privacy issues [13, 21]; (ii) it is difficult
to achieve higher accuracy with the method due to clutter, lighting
under different settings and the presence of multiple moving
objects; (iii) it demands extensive resources and complex process-
ing; (iv) it requires background model learning process for body
foreground extraction; (v) it is not cost effective as it requires at
least one calibrated camera in each room [5, 6, 15]; and (vi)
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scalability is poor in outdoor monitoring environments. The advan-
tages of wearable FDs are that (i) sensed data have no influence on
environmental conditions [6]; (ii) they are compact and portable [4];
(iii) processing data does not demand more resources and comput-
ing platform; (iv) sensor data are subject-specific; (v) they have low
power consumption and are of low cost and (vi) scalability can be
done for wide area monitoring. In the next subsection, we briefly
summarise the components of wearable sensor-based fall detectors.

1.1. Existing FD methods: The wearable FD methods generally
include preprocessing, feature extraction and classification. Most
of the methods were developed based on time-domain features
including signal magnitude vector (SMV) [4-6], signal magnitude
area (SMA) [5, 6, 9, 22], tilt angle [5, 9, 22], averaged negative
entropy [15], sum of the variance of accelerations, autocorrelation
coefficient of tilt angle, root mean square [23], frequency domain
features (spectral peak, spectral energy and spectral entropy) [4,
23], autoregressive model features [22] and wavelet-domain
features [4]. As for the classification techniques, many classifiers
such as simple heuristic thresholding rules [2, 3], naive Bayes
(NB), multilayer perceptron (MLP), support vector machine
(SVM) and finite state machine [4], cascade-AdaBoost-SVM
classifier [6], hidden Markov model (HMM) [7], nearest
neighbours [8], fuzzy logic [24] and combining classifiers have
been investigated for improving the accuracy. Many wearable FD
systems use multiple kinematic sensors, sound and floor vibration
sensors and electrophysiological sensors.

In [2], Yuan e al. presented power-efficient interrupt-driven
algorithms for FD and classification of activities of daily livings
(ADLSs) using wrist-worn wearable device integrated with acceler-
ometers. In [3], vertical velocity-feature-based pre-impact FD
method is proposed using both the accelerometer and gyroscope
signals from a wearable inertial sensor attached on the anterior
side of the waist. In [4], pocket-based fall accident detector is pro-
posed using the angles acquired by the electronic compass and
waveform sequence of the triaxial accelerometer on the smart
phone around the chest of the user. The FD is performed using fea-
tures such as SMV and angles, high-frequency energy, Haar
wavelet analysis and cascade classifier. In [5], an enhanced FD
system is proposed based on body-worn smart sensing module
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including triaxial accelerometer, heartbeat pulse pressure, tempera-
ture and humidity sensors and operating through consumer home
networks. The SMA and truck angle features are used for detecting
body movements and fall events, respectively. The method
achieved an accuracy of 97.5%, sensitivity and specificity being
96.8 and 98.1%, respectively, on a group of 30 healthy subjects.
In [6], the triaxial accelerometer-based FD method is proposed
based on the SMV and SMA features and the cascade-AdaBoost-
SVM classifier that combines AdaBoost classifier and SVM. The
performance of the method is evaluated for the accelerometers on
the chest, waist, left ankle and right ankle. The experimental
results show that the triaxial accelerometers worn on the chest
and waist have the optimal performance. In [7], Tong et al. pre-
sented a HMM-based human FD and prediction method using a tri-
axial accelerometer placed at the upper trunk, which is below the
neck and above the waist. In [8], a data mining method is presented
for FD by using acceleration sensor and k-nearest neighbour algo-
rithm under wireless sensor network environment. The method
had an accuracy rate of 89.4% and the true positive rate of 100%,
and the precision is almost 85% on the test case. In [9], the normal-
ised SMA and title angle features are used to determine user activ-
ity, rest and postural orientation, respectively. In [11], Tolkiehn et
al. presented a direction-sensitive fall detection using a triaxial ac-
celerometer and a barometric pressure sensor. The fall detection
was performed using features such as moving-window standard de-
viation, standard deviation of the vector magnitude, ratio of the
polar angle, difference of the polar angles and the thresholding
rules. The method achieved the directional fall identification rate
of 94.12%.

Recently, numerous methods were developed for distinguishing
fall and non-fall activities using a single triaxial accelerometer
sensor. In addition to FD, it is very important to determine the dir-
ection of a fall. This has significant potential in effectively identify-
ing the most serious dangers of fall injuries due to particular joints
and fractures. It can also enable immediate rehabilitation treatment
depending on the type of serious fall injuries including head and
neck injuries, shoulder and forearm fractures, spine and foot frac-
tures, and pelvic and hip fractures [8]. Therefore, in this Letter,
the primary aim of the proposed framework is to detect a fall and
then classify the detected falls into four classes: fall front (FF),
fall back (FB), fall right (FR) and fall left (FL) using higher-order
cumulants description, which can provide more discriminative char-
acterisations of the different types of ACC signals composed of
Gaussian and non-Gaussian process plus constant.

1.2. Contribution of the Letter: We present a FD and classification
framework using the cumulant features extracted from the ACC
signals acquired wusing a single waist-mounted triaxial
accelerometer. The main contribution of this work is to identify a
set of robust and discriminative cumulant features and classifiers
for developing effective and efficient FD, fall event and ADL
classification algorithms. To improve overall processing speed,
the hierarchical decision tree (HDT) structure is presented for
performing FD, fall direction determination and ADL
classification tasks in a sequential manner. In this Letter, we
investigate the effectiveness of different detection and
classification methods that are constructed using cumulants of
order 2-5 and the SMA and SMV features, and classifiers
including the decision tree (DT), NB, MLP and SVM.
Performance evaluation results show that the SVM-based method
with fifth-order cumulants can provide promising results in
distinguishing fall and non-fall activities and classifying fall
events into FF, FB, FR and FL classes. Further, the results show
that the second-order cumulants with a SVM classifier can
achieve better classification of ADLs.

The remaining structure of the Letter is as follows: Section 2
describes an overview on the architecture of the proposed fall
event monitoring system. Section 2.1 presents a noise reduction
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scheme to filter out abnormal spikes in the acquired acceleration
(ACC) signals. Section 2.2 addresses the extraction of proposed
cumulant features and the commonly used features for performance
comparisons. The fall event detection and classification system will
be given in Section 2.4. Section 3 presents the experimental results
of the detection and classification methods that are developed using
the cumulant features and different classifiers. Finally, conclusions
are drawn in Section 4.

2. Cumulants-based detection and classification methods: Fig. 1
depicts an overall architecture of the proposed wearable single
triaxial accelerometer-based fall monitoring system. As can be
seen in Fig. 1, the proposed system is mainly composed of six
functional blocks: (i) preprocessor; (i) fall activity detector; (iii)
fall event recogniser; (iv) human activity recogniser; (v) fall
injury impact analyser which integrates both the fall direction
information such as FF, FB, FR, and FL, magnitude and duration
of fall activity and the past activity information such as standing,
sitting, walking and running; and (vi) fall pattern behavioural
predictor which generates a history of repetitive falling patterns
of a person for enabling effective diagnosis of person-specific fall
injury. The proposed framework implements FD, fall direction
determination and activity classification in a sequential manner by
considering the computational and power consumption burden of
the system.

2.1. Experimental setup: A waist-mounted Android phone with a
triaxial accelerometer sensor is used for real-time implementation
of the proposed fall monitoring system including the following
features: fall event detection and classification using cumulants,
fall alarm, SMS notification to personal contacts of caregivers
with fall geolocation and voice notification. The ACC signal
database of different fall events and ADLs is created using our
waist-mounted belt prototype. The ACC signals of a single
waist-mounted triaxial accelerometer are sampled at the rate of
40 Hz. The ACC signals along the x-axis, y-axis and z-axis are
denoted as a,[n] (left/right), a,[n] (up/down) and a.[n] (front/
back), respectively, at the sampling index 7.

2.2. Preprocessing: The major preprocessing performed on the
acquired ACC signals includes two steps: noise reduction and
signal blocking. The real-time ACC signals of a waist-worn
triaxial accelerometer contain abnormal noise spikes that need to
be suppressed before performing the fall event detection and
classification task [1]. The noise reduction unit includes a
three-point median filter to filter out the abnormal spike outliers.
The filtered ACC signal is divided into smaller segments
(windows) of fixed length before extracting the features. The size
of window is fixed between 0.25 and 1.4 s in the fall event
detection problem [9]. In this Letter, sliding window size of 0.25
s and window shift of one sample is considered for detection,
localisation and classification of fall activity in the acquired ACC
signals.

2.3. Higher-order cumulants for ACC signals: The time-domain
higher-order cumulants are extensively used for characterising the
random signals and can serve as new statistical features for
detecting and quantifying the non-linear characteristic signals
[25-27]. In practice, the ACC signals obtained for daily activities
under both resting and ambulatory recording conditions may be
composed of Gaussian and non-Gaussian process plus constant.
Many studies show that the higher-order cumulants can serve as
an effective time-domain analysis tool for characterising the
non-stationary and non-Gaussian signals [26, 27]. In this Letter,
we investigate the application of higher-order cumulants to
achieve reliable FD, fall direction determination and ADL
recognition.
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Let us consider x(n) is a real-valued kth-order stationary random
process, and 0 =[w;, w,, @3, ..., " and x= [x(n), x(n+ 7), x(n
+7), ..., x(n+1'k,1)]T, where 7y, 75, T3, ..., Tx— are time shifts.
Then, the kth-order moment of x(n), my, is defined as the coefficient

in the Taylor expansion of the moment generating function (MGF) [26]

P(w) = E[exp(jo'x)] (1
where E[.] is the expected value operator. In practice, the kth-order

moment can be computed by taking an expectation over random
process multiplied by (k— 1) lagged version of itself [25-27]

myy = E[x(n)]

m2x(71) = E [x(n) x(n + 7'1)]

m3, (1), Tp) = E[x(n) x(n + 1) x(n + 7)]

My, T 1) = E[(n) X+ 1) x(n+ 1) x(n + 73)]
4

ms(m, T 1) = El). I x(n+ 7))

@

Similarly, the kth-order cumulants of x[n], denoted by ci (71, 7,
.., Ti—1) can be computed from the cumulant generating function
(CGF), which is defined as

x(w) = InD(w) = InE [exp(jo'x)] A3)
From the above-mentioned Taylor expansion of MGF and CGF, it
is obvious that cumulants can be expressed in terms of moments
and vice versa by combining (1) and (3). The kth-order cumulant
is defined as the joint kth-order cumulant of the random variables
x(n), x(n+ 7)), x(n+ 1), ..., x(n+ 7,_;). For a given random real-
valued discrete-time signal x(n), the second-, third- and fourth-order
cumulants can be computed as [26]

Clx = my,
CZ‘C(TI) = mZx(Tl) - m%x
(71, ™) = my (1), )
=y [my (7)) 4 My (1) + my (7, — )]+ 2m3,
C3(T1, Ty, T3) = my (T, Ty, T3) — My (1)), (T3 — T5)

=My, (Ty)my (T3 — 1) — My (T3)My (T — 7y)
—my [my (1) — 7y, T3 — 7))+ M3 (Ty, T3)
iy (Ty, 74) + My (), )] 4 mi [, (7))
+my, (7y) + My (73) + my (T3 — 7)) A

+my (T3 — ) + My (T, — )] — 6my,

The above expressions establish the correlation between the original
signal and its associated time-shifted versions. The kth-order cumu-
lant is the kth degree of similarity among the aforementioned
signals. With zero-mean assumption, the second- and third-order
cumulants are the same as the second- and third-order moments, re-
spectively [26]. Higher-order cumulants are used in this paper for
two reasons: they are (i) insensitive to additive Gaussian noise inter-
ference and (ii) well suitable to analyse non-stationary and
non-Gaussian signals. In this Letter, the cumulants up to five will
be computed from each of the ACC signals. The cumulants are
used as new representative features individually for recognition of
different fall events and human activities. For illustrating the effect-
iveness of the higher-order cumulants, the histograms of the cumu-
lants and the commonly used SMA and SMV features are shown in
Fig. 2 for ACC signals such as a[n], a,[n] and a.[n] along the
x-axis, y-axis, and z-axis, respectively. The feature distributions
show that the third-, fourth- and fifth-order cumulants extracted
from the ACC signal of the z-axis can achieve better FD rates
when compared with the SMA and SMV features. Since the fall
monitoring system must be capable of detecting fall events in all
the directions, the distributions of the cumulant features of ACC
signals from the x-axis (FL and FR) and z-axis (FF and FB) are
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Figure 1 Architecture of the proposed triaxial accelerometer-based fall
monitoring system including major functional modules: fall detector; fall
event recogniser; human activity recogniser and fall injury impact predictor

analysed for the detection of fall events. From the plots of feature
distributions, it is observed that the fifth-order cumulant features
can effectively distinguish the fall and non-fall activities as com-
pared with the other features.

2.4. HDT classifier: In this Letter, we present a HDT structure that
implements the detection and classification tasks in a sequential
manner by considering the complexity of the aforementioned
primary functional tasks. In our framework, the HDT structure
first distinguishes fall and non-fall activities that can be easily
distinguished, instead of using conventional classification of
ADLs including standing, sitting, walking, running, lying, falling
and climbing classes as first step processing of the fall
monitoring system. In the second level, the detected falls are
classified into four classes: FF, FB, FR and FL using higher-order
cumulants extracted from three ACC signals. In the third level,
the acceleration windows from the instances of the fall are used
for determining activities of daily living as followed in the
existing methods. The HDT framework is empirically beneficial
to improve the FD accuracy and to reduce processing power,
instead of considering multiclass problem as the first step
processing. Furthermore, since the fall events of interest differ
depending on the activities of daily living, the recognition
accuracy of the ADL may be improved based on the direction of
the fall and contextual information. The levels in the hierarchical
structure are carefully designed to place the easier classification
task at the top level. The proposed structure helps us to find
significant relevance of activities for effectively predicting the
impacts of fall injuries. At each level of HDT structure, the
feature extraction module extracts a selected higher-order
cumulants and the decision module uses the specific features to
perform detection and classification tasks using a predefined
classifier.

3. Results and discussion: In this section, we evaluate the
performance of the proposed FD, fall event classification (FEC)
and ADL classification methods that are constructed using
cumulants of order 2-5 and the SMA and SMV features, and
classifiers including DT, NB, MLP and SVM.

3.1. Data collection: The datasets for our experiment are collected
in an unsupervised study using designed prototype of a
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Figure 2 Histograms of the third-, fourth- and fifth-order cumulants and the commonly used SMA and SMV features that are computed for the triaxial ACC
signals of fall and non-fall activities. It can be observed that the fifth-order cumulant features can distinguish the fall and non-fall activities as compared with

other features

waist-worn belt model with a triaxial accelerometer. Our study
included six healthy subjects, that is, three females and three males
with different hip sizes, that is, small, medium and large, and
heights varying from 148 to 162 cm. For each subject, the datasets
were collected for specific activities such as sitting, standing,
walking, bending and running with consecutive falls in different
orientations. The fall events were FF, FB, FL and FR. A sample
sequence of the activities performed for our experimental study
was: sitting — standing, standing — walking, walking — running,
running — walking, standing — sitting, sitting — FF, sitting —
FB, sitting — FR, sitting — FL, standing —FF, standing — FB,
standing — FR, standing — FR, walking —FF, walking — FB,
walking — FR, running —FF, running — FR, sitting — bending,
standing — bending. For each activity case, a total of ten datasets
for each subject collected to validate the performance of detection
and classification methods. The subjects were provided with
approximate time duration for each activity. In our experimental
study, 70% of the ACC segments in the database were randomly
selected and used as a training sample set for training the classifiers,
and the remaining 30% were used as a testing set to measure the
performance of FD and classification methods.

3.2. Performance evaluation metrics: To investigate the
performance of the proposed FD and classification method, we
computed three benchmark parameters [4, 6]: (i) accuracy rate
(AR) which is defined as the percentage of all correctly detected
fall and non-fall segments divided by the number of total
segments; (ii) detection rate (DR) which is defined as the
percentage of the number of correctly detected fall segments
divided by the number of falls; and (iii) false alarm rate (FAR)
which is defined as the percentage of the number of non-fall
segments detected as a fall divided by the number of fall
segments. The AR, DR and FAR are computed as follows
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TP + TN
AR = — N 100% 4)
NF + NNF
TP
DR = N 100% 5)
FP
FAR == x 100% (6)

NF

where TP, TN and FP denote the true positive, the true negative and
the false positive, while Ng and Nyr denote the number of falls and
non-falls, respectively. A larger AR, DR and a smaller FAR would
be considered for assessing the effectiveness of the fall event detec-
tion system.

3.3. Performance of cumulant-based fall detector: In the first
experiment, we investigate the effectiveness of each of the
cumulants (order 2-5) in distinguishing the fall and non-fall
activities. Table 1 summarises the experimental results of the FD
algorithms that are constructed with commonly used classifiers
such as NB, MLP, decision tree (DT) and SVMs. At this stage,
the performance of each combination of cumulant and classifier is
evaluated using the AR, DR and FAR metrics. The detection
results show that the NB-based and MLP-based algorithms
achieve the AR of 93.14%, DR of 87.70% and FAR of 5.02%,
and the AR of 96.91%, DR of 91.40% and FAR of 1.24%,
respectively, for the second-order cumulants. The DT-based and
SVM-based algorithms achieve the AR of 95.98%, DR of
89.98% and FAR of 2.01%, and the AR of 97.32%, DR of
92.43% and FAR of 1.03% for the third-order cumulant and
fifth-order cumulant features, respectively. The evaluation results
demonstrate that the proposed cumulant features significantly
improve the overall accuracy as compared with the SMA and
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Table 1 Comparison of FD and non-FD results

Table 3 Comparison of HAR results

Signal feature Metric, % Classifier
NB SVM MLP DT

second-order AR 93.14 93.82 96.91 95.29
cumulant DR 87.70 95.59 91.40 90.44
(¢c2) FAR 5.02 6.77 1.24 3.08
third-order AR 92.00 94.92 92.22 95.98
cumulant DR 86.66 83.25 87.57 89.98
(c3) FAR 6.20 1.18 6.21 2.01
fourth-order AR 92.15 96.36 92.22 95.60
cumulant DR 85.95 90.02 87.57 87.70
(cq) FAR 5.76 1.15 6.21 1.74
fifth-order AR 91.56 97.32 92.70 95.34
cumulant DR 81.92 92.43 90.73 88.40
(cs) FAR 5.19 1.03 6.63 2.33
SMA + SMV AR 91.38 94.54 95.11 94.21
DR 83.42 90.36 85.37 86.58
FAR 5.95 4.05 1.62 3.22

SMV features. Further, the results show that the best detection
performance of a FD method can be achieved by selecting a
suitable cumulant feature and a classifier. Our experimental study
shows that the second-order cumulants with MLP classifier and
fifth-order cumulant with SVM classifier can achieve promising
FD results when compared with the other FD methods.

3.4. Performance of cumulant-based fall event classification: In
practice, falls can be grouped based on the major ADL scenarios
of fall occurrences: fall from sleeping; fall from sitting; fall from
walking; fall from running, fall from standing; and fall from
climbing. Falls are of three basic types based on the height and
body movements: same floor level falls, elevated falls and vehicle
ambulatory falls. Certain ADLs may increase the risk factors of
falls and the severity of injury resulting from falls. Therefore, in
addition to FD, it is very important to determine the direction of
a fall, which could further indicate the weakness in particular
joints and fractures [8]. In our framework, the second level of the
HDT structure performs a classification of detected falls into
semantically meaningful events: FF, FB, FL and FR.

Table 2 Performance of FEC methods (FF, FB, FR and FL)

Classifier Activity Classification accuracy, %
type type
Cumulant features SMA +
SMV
(&) C3 Cyq Cs

NB running 9573 99.53 99.53 95.02 95.02
sitting 85.69 83.23 8470 81.48 81.77
standing 98.55 92.52 92.82 97.99 98.09
walking 4727 1949 33.63 64.37 60.51
SVM running 100.00 89.10 92.18 89.10 97.87
sitting 90.54 88.29 86.44 88.68 86.46
standing 98.88 9532 97.89 96.67 99.57
walking 9293 74.66 89.32 89.52 90.80
MLP running 83.89 79.15 79.62 83.89 72.99
sitting 83.47 8248 82.14 83.37 81.48
standing 99.18 98.71 98.62 87.45 98.32
walking 92.03 85.85 8598 7595 89.90
DT running 79.38 80.81 79.38 80.57 79.15
sitting 83.56 84.51 83.56 84.79 83.56
standing 98.91 98.78 9891 98.78 98.88
walking 83.41 87.52 8341 84.12 83.34

In the second experiment, we evaluate the performance of differ-
ent event classification methods that are constructed using the
cumulant features (second-, third-, fourth- and fifth-order cumu-
lants) and the SMA and SMV features and the classifiers (including
MLP, DT, NB and SVM). Table 2 summarises event classification
performance for four classes such as FF, FB, FR and FL. On the
basis of our evaluation results, it is observed that the cumulant fea-
tures can provide very promising results for the classification
methods with MLP, DT, NB and SVM when compared with com-
monly used SMA and SMV features. Furthermore, the fifth-order
cumulants with SVM classifier-based method outperformed all
the other classifiers and features tested for classification of fall
events.

3.5. Performance of cumulant-based activity recognition:
Human-activity recognition has significant potential in effectively
identifying the most serious dangers of fall injuries due to particular

Classification accuracy, %

Classifier type Fall events Total frames Cumulant features SMV + SMA
Cy C3 Cy Cs

NB front 1549 91.20 97.43 95.76 91.90 86.70
left 2284 94.68 88.96 91.64 91.60 90.24
right 2215 90.33 58.83 66.14 84.09 89.07
back 1548 98.38 12.58 35.18 73.29 85.79

SVM front 1549 69.22 94.79 95.24 97.04 86.77
left 2284 96.66 93.44 95.25 95.25 95.14
right 2215 81.50 90.66 92.69 95.47 92.78
back 1548 87.67 92.40 96.76 96.51 89.34

MLP front 1549 85.93 78.08 80.46 85.56 84.76
left 2284 84.25 92.92 91.29 91.42 92.86
right 2215 78.63 88.81 88.67 90.71 92.69
back 1548 94.52 99.50 99.13 99.32 84.43

DT front 1549 85.35 85.35 85.35 88.62 83.80
left 2284 93.58 93.58 93.58 94.02 92.47
right 2215 87.14 87.14 87.14 90.33 89.75
back 1548 91.41 91.41 91.41 92.65 94.19
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Table 4 Coding delay for extracting specific cumulant and performing FD, FEC and HAR for each of the classifiers (NB, MLP, DT and SVM)

Classifier Coding delay for computing cumulants [c,, ¢, ¢4, ¢s] Testing coding delay Overall accuracy of methods
FD method FEC method HAR method 5 FEC, HAR, FD, FEC HAR
cumulant (time) cumulant (time) cumulant (time) ms ms ms % CA, % CA, %
NB ¢2(3.53 ms) ¢2(3.53 ms) ¢5(18.3 ms) 0.0240  0.0342 0.0295 AR=94.14, FAR=5.02 93.64 84.71
DT ¢3(8.9 ms) ¢5(18.3 ms) ¢3(8.9 ms) 0.0042 0.0132 0.0098  AR=95.98, FAR=2.01 91.40 87.90
MLP ¢5(3.53 ms) ¢5(18.3 ms) ¢2(3.53 ms) 0.0031 0.0118 0.0056  AR=96.91, FAR=1.24 91.75 89.64
SVM ¢5(18.3 ms) ¢s5(18.3 ms) ¢2(3.53 ms) 2.764 4.333 6.832 AR=97.32, FAR=1.03 96.06 95.58

joints and fractures, and also enabling immediate rehabilitation
treatment based on the type of serious fall injuries including head
and neck injuries, shoulder and forearm fractures, spine and foot
fractures and pelvic and hip fractures. In this Letter, we present an
automated activity recognition method for recognising daily
physical activities such as sitting, standing, walking and running
using the cumulants extracted from the ACC signals. In the third
experiment, we investigate different sets of cumulants and
classifiers to find a proper combination that can achieve promising
classification results. Table 3 summarises the classification accuracy
(CA) of the developed methods. The experimental results show that
the NB-based method achieves higher average CA of 84.71% for
the fifth-order cumulants extracted from the ACC signals. The
MLP- and SVM-based methods yield higher average CA of 89.64
and 95.58%, respectively, for the second-order cumulants. The
DT-based method achieves higher average CA of 87.90% for
the third-order cumulants. From the results, it is noted that the
cumulant-based activity recognition methods outperform the SMA-
and SMV-based methods. On the basis of our experimental results,
the SVM-based method with second-order cumulants can achieve
promising classification results when compared to the results of
other activity classification methods reported in Table 3.

3.6. Computational burdens of the proposed methods: In this
subsection, we investigate the computational speed of the
proposed detection and classification methods developed using a
different combination of cumulant features and classifiers that
gives promising results as summarised in Tables 1-3. The coding
delay required for each method is summarised in Table 4. As can
be seen in Table 4, the execution time required for implementing
detection and classification based on the fifth-order cumulants
and SVM classifier is high when compared with the other
methods. However, the SVM-based methods had optimal
detection and classification rates as well as the lowest FAR. The
overall computation time required for executing all the three
levels of HDT-based system is 54.05 ms, which is much smaller
than the duration of three-axis ACC signals used in our
experimental study. However, in the future, we will further
study the computational speed by implementing the proposed
detection and classification algorithms on real-time processors.
On the basis of our results, we believe that the proposed
framework has great potential in context-aware fall injury impact
prediction system.

4. Conclusion: In this Letter, we present a unified framework for
waist-mounted triaxial accelerometer-based fall monitoring
system including the FD, fall direction determination and human
activity recognition (HAR) for effectively predicting the impact
of fall injury. We investigate the effectiveness of higher-order
cumulants combining with classifiers for better characterisations
of different types of ACC signals. By considering the processing
power and speed, the HDT structure implements FD, fall event
and ADL classification tasks in a sequential manner. The FD and
FEC methods are proposed using the fifth-order cumulants and
support vector machine (SVM). The proposed FD method
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achieves the AR, DR and FAR of 97.32, 92.43 and 1.03%,
respectively. The FEC method achieves an average CA of
96.06%. The HAR is implemented using the second-order
cumulants and SVM. For daily physical activities, the proposed
HAR method yields an average CA of 95.58%. The experimental
results demonstrate the superiority of the proposed methods using
the cumulants and SVM classifier.

5. Funding and declaration of interests: Conflict of interest: none
declared.
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