Identifying radiotherapy target volumes in brain cancer by image analysis
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To establish the optimal radiotherapy fields for treating brain cancer patients, the tumour volume is often outlined on magnetic resonance (MR)
images, where the tumour is clearly visible, and mapped onto computerised tomography images used for radiotherapy planning. This process
requires considerable clinical experience and is time consuming, which will continue to increase as more complex image sequences are used in
this process. Here, the potential of image analysis techniques for automatically identifying the radiation target volume on MR images, and
thereby assisting clinicians with this difficult task, was investigated. A gradient-based level set approach was applied on the MR images of
five patients with grades II, III and IV malignant cerebral glioma. The relationship between the target volumes produced by image
analysis and those produced by a radiation oncologist was also investigated. The contours produced by image analysis were compared
with the contours produced by an oncologist and used for treatment. In 93% of cases, the Dice similarity coefficient was found to be
between 60 and 80%. This feasibility study demonstrates that image analysis has the potential for automatic outlining in the management

of brain cancer patients, however, more testing and validation on a much larger patient cohort is required.

1. Introduction: Radiotherapy is the core treatment modality in the
management of high- and low-grade glioma but the radiation doses
required to optimise local control have the potential to affect
adjacent normal tissues [1-3]. Consequently, accurate delineation
of the radiotherapy target is particularly important. A number of
studies have been performed that highlight the challenges of
delineation of the gross tumour volume (GTV) and clinical target
volume (CTV) in patients with brain cancer [4-8]. Not only does
the abnormality on the radiotherapy planning computerised
tomography (CT) and registered magnetic resonance (MR)
images need to be accurately defined, but also the areas of likely
anatomic spread need to be appreciated. The level of difficulty
faced by clinicians in carrying out this task is evident in Fig. 1.
This shows the extent of grade II, (left), grade III (middle) and
grade IV (right) gliomas on MR images where disease can be
identified and on CT where it is more difficult to identify. At
present, clinicians must use their experience to define the GTV or
CTV from analysis of both datasets, a process that is complicated
by the fact that the size and shape of the GTV may appear
different, sometimes quite significantly, depending on the
imaging modality used to visualise the tumour [9, 10]. As a
result, significant variability has been reported in the manual
segmentation of brain tumours: intra-rater, 20 &+ 15%; inter-rater,
28+ 12% [11].

Image analysis approaches have the potential to assist clinicians
with this difficult task by improving the consistency of target
delineation and providing solutions for automatic segmentation of
intra-cranial structures on MR image volumes. This has received
considerable attention over the past two decades with comprehen-
sive coverage of the important contributions in the field prior to
2007 available in [12]. Contributions thereafter until the present
day can be found in [13]. One commonly used method for segment-
ing intra-cranial MR image structures is to register to an anatomical
atlas that contains information on the general shape and form of the
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structures of interest. By projecting the MR image structures avail-
able from the atlas onto the MR image volume under investigation,
segmentation is performed [14, 15]. Prastawa et al. [16] adopted
this approach by first registering to an atlas of healthy brains in
their framework for automatically segmenting brain tumours on
MR image volumes. Cuadra et al. [17] used a similar approach
by first registering to an atlas and including a model of lesion
growth. The method proved useful in the segmentation of grossly
deformed cerebral structures. Wang et al. also used prior probabil-
ities from the International Consortium for Brain Mapping together
with normalised Gaussian mixture models of grey and white matter
and cerebrospinal fluid to establish a Gaussian Bayesian classifier
(GBC). The GBC was used to initialise a three-dimensional (3D)
fluid vector flow algorithm, which was used for brain tumour seg-
mentation [18]. The approach was validated on publicly available
datasets and the Tanimoto distance metric used to assess perform-
ance. The findings reported closely matched those of Corso et al.
[19].

When a suitable atlas is not available, as is generally the case
with tumour segmentation, pixel- or voxel-based methods such as
level sets [20] or active contour-based approaches [21] can be
used. However, these methods require careful initialisation to
avoid propagation across weak or missing boundaries, as shown
in Fig. 2 (left) [22]. Here, we present the preliminary findings of
a pilot study investigating a level set-based approach, which uses
limited prior information, for the segmentation of the significant
tumour volume, or GTV, on the MR images of five brain cancer
patients. Using this approach, the GTV could then be mapped to
the corresponding CT for radiotherapy planning.

2. Materials and methods

2.1. Case selection, image acquisition and treatment: Five brain
cancer patients (glioma grades II, III and IV), previously treated
at the Edinburgh Cancer Centre were selected for this study. To
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Fig. 1 Extent of grade I, (left), grade Il (middle) and grade IV (right) glioma on registered CT (top) and T2-weighted axial MR (bottom) images. The green
contour visible on the CT images is the body contour used for radiotherapy planning. The outer red contour is the PTV, which takes account of variations in size,

shape and position, and the inner red contour is the GTV [9, 10]

ensure geometric reproducibility, patients were immobilised with a
thermoplastic mask that was used during CT acquisition and at each
fraction during treatment. All CT data was acquired on a single slice
General Electric (GE) HiSpeed Fx/i CT scanner (GE Medical
Systems, Milwaukee, WI, USA). Pixel resolution in the transaxial
plane was 0.977 mm with a 12-bit grey-level range. All MR

images were acquired on a Siemens Symphony 1.5 Tesla scanner
(Siemens, Munich, Germany) at 5 mm slice thickness and a
12-bit grey-level range. Using an intensity-based method, the CT
images were rigidly registered to the MR images with the Mirada
Medical Systems registration platform (Mirada Medical Ltd.,
Oxford, UK) and the registration accuracy independently assessed

Fig. 2 Left: Gaussian filtered MR image in which there is significant leakage of the level set contour (red line) at the meninges. Right: coherence enhanced
diffusion filtered image and the resulting level set generated contour (red line) described in Section 2.4. The green contour was used as the initial front for
level set evolution and in both images the blue contour is the GTV defined by an oncologist
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Table 1 Clinical characteristics of the patient cohort and the properties of the MR and CT data available for each patient

Case Age/sex Grade Dose (Gy)/fractions MR CT

Series Date Slices Date
1 46/M I 60/30 T2 tse axial 17/07/2007 65 06/08/2007
2 46/F 11 60/30 T2 tse axial 18/07/2007 59 20/08/2007
3 54/M v 60/30 T2 tse axial 20/07/2007 63 13/08/2007
4 43/M v 60/30 T2 tse axial 27/08/2007 66 27/08/2007
5 50/M 1I 60/30 T2 tse axial 20/09/2007 66 11/01/2008

by a clinical scientist (physicist) and a clinical oncologist. Patients
were treated on a Varian 21EX linear accelerator with a prescription
of 60 Gy in 30 daily fractions [23]. Table 1 shows the key clinical
parameters of the patients included in this study.

2.2. Radiotherapy contouring: Contouring of the GTV and organs
at risk (OAR) was performed by an experienced radiation
oncologist using the Varian Eclipse™ (v6.5) treatment planning
system (Varian Medical Systems, Inc. Palo Alto, CA, USA).
Fig. 1 shows MR and CT images of grades II, III and IV brain
tumours in the cohort. The CT images, which lack contrast and
are difficult to interpret around the site of the tumour, show the
GTV contour (inner red contour) and the planning target volume
(PTV) (outer red contour). The GTV, CTV and OARs were
defined according to the European Organisation for Research and
Treatment of Cancer (EORTC) guidelines used in
EORTC-26052. In these, the GTV is the resection cavity plus any
residual enhancing tumour as seen on the radiotherapy planning
CT images, which provide electron density information necessary
for dose calculation, and pre- and post-operative MR images [24].
Since the registered MR was reconstructed in the same resolution
and geometry as the corresponding CT, the resulting MR volume
had the same number of image slices as the CT volume. As a
result, the CT and MR image sets were used interchangeably to
define the GTV, CTV and OARs [9, 10].

2.3. Noise removal and image smoothing: The acquisition of
high-quality MR image data is limited by patient comfort during
scanning. This result in a trade-off between resolution and
signal-to-noise ratio for image acquisition in a clinically
acceptable time frame, however, the effect can be reduced by
post-processing noise reduction techniques [25-27]. The level set
approach used in this work required conspicuous edge
information because it uses gradient flow to evolve the image
contours [28]. To remove noise, smooth small gaps in lines and
curves, and to prevent boundary leakage at points of weak
gradient, a coherence enhanced diffusion filter with optimised
rotation invariance was used [29]. The advantage of this approach
over Gaussian smoothing is that edges are better preserved while
smoothing is limited. The significance of this is presented in
Fig. 2, which shows the difference between a Gaussian and
coherence enhanced diffusion filtered image and the resulting
leakage using the level set approach described in Section 2.4.

2.4. Gradient-based level set method: Segmentation methods based
on active contours or deformable models have been widely used in
medical image analysis [30, 31]. The active contour (also known as
a snake) evolves the initial contour by balancing two energy forces,
the internal energy to impose a smoothness constraint and the
external energy to push the contour towards desired features [30].
However, this formulation has difficulty in progressing into
concave regions and unable to solve topological changes. Models
of active contours within the framework of level sets have been
developed to overcome these difficulties. Two such models, the
Chan Vese (CV) [32] region-based model and the Chunming Li
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(CL) [28] model have obtained promising results in the
segmentation of multi-modality medical image data [33-36].
Level set methods, which were first introduced by Osher and
Sethian for capturing moving fronts, implicitly represent contours
Cy as the zero level set of an Lipschitz function ¢ defined in a
higher dimension, usually referred as the level set function [37].
This is normally initialised as a signed distance function

¢ >0 inside C,
¢ <0 outside C, §9)
¢=0 onC

u(x) =

From this, the level set function can be represented by

z=¢(x,y, t =0), 2)

Differentiating with respect to time it follows that the implicit
function that defines the motion of the curve is

3 B
5 Fu V=0, 3)

where u is the speed function defined in the normal outward
direction. There are certain forms of speed function for different
target segmentation tasks. As an alternative, the evolution partial
differential equation of the level set function can be directly
derived from the active contour formulation by minimising the
energy function. This type of active contour, known as variational
level set methods, is more convenient for incorporating
information from edges or contours. The CV model is a typical
region-based level set method, which handles local statistics and
is therefore well suited for discontinuous contour segmentation.
However, its performance in handling complete brain images has
been unconvincing [34, 36]. The CL model is a gradient-based
level set method, which finds edges evolving from the initial
contour. It has inherent advantages when dealing with aggressive
gliomas. Additionally, in traditional level set methods, a periodic
reinitialisation of the level set function to a signed distance
function must be done during evolution by solving the following
reinitialisation equation [38, 39]

9 — sen(@n)1 - 1v9). @

However, this process can be eliminated by incorporating a third
energy term that penalises the difference between the level set
function and the signed distance function. This was defined by Li
et al. [28] as

1
P($) = j 5 (V| = 1) dxdy. )
Q

Since a signed distance function must satisfy the property of
[Vl =1, by minimising the energy function in 5 it is
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Table 2 Comparison of the clinical volumes defined by a radiation oncologist and the automatic volumes generated by the level set algorithm

Case 1 Case 2 Case 3 Case 4 Case 5
clinical volume, cm® 80.84 302.42 157.49 143.25 286.13
automatic volume, cm’ 72.69 265.93 157.38 114.38 213.65
volume difference, cm® 8.15 36.49 0.11 28.87 72.66
difference, % 10.08 0.07 20.15 25.38
Dice coefficient (u + o) 0.83+£0.07 0.74£0.07 0.66+£0.1 0.74+0.12 0.75+£0.07
Dice coefficient range (min, max) 0.71, 0.92 0.58, 0.82 0.51, 0.86 0.56, 0.94 0.71, 0.92
Hausdorff distance (u + o), cm 0.95+0.29 1.15+£0.47 1.39+0.44 1.37+£0.63 1.86 £0.71
computation time, s 552 1301 907 913

straightforward to maintain this condition. In addition, an energy
function may contain other terms that attract the contour such as
a region-based [32] or shape-based prior [40]. In the CL model, a
gradient is used to indicate edges by

1

= 6
14 |VG, xI|? ©

g

where / is the image grey level, and G, is the Gaussian kernel with
standard deviation o. The external energy that drives the zero level
set to a target contour for a function @(x, ) iS €cxtemal(@) = ALg(9) +
VAg(¢), where Lg(¢) keeps the contour tight and A4.(¢) expands or
shrinks the contour depending on the sign of this term. These are
given by

L) = j eIV drdy, ™)

4,($) = j - DIy ®)

From (5) (7) and (8) the total energy function for the level set
evolution is (d¢/0f)= — (de/dp), which more formally may be
written as

9 _ ,,,[Ms —div (%)] A P)div

(gv—"’) T vgd(h.

ot
)

Vol

This gradient flow is the evolution equation of the level set function
in the proposed method [28].

3. Experimental results: The methodology detailed in Section 2
was applied to the MR images of each patient to automatically
determine the extent of the tumour. On each slice, the Dice
coefficient and Hausdorff distance were calculated between the
automatic and clinical contours used for treatment, the results of
which are presented in Table 2. The mean Dice coefficient was
found to be between 0.66 and 0.83, which indicates the range of
geometric agreement between the clinical and automatically
generated contours (Dice=0 represents no agreement, 1
represents complete agreement). The mean Hausdorff distance
was found to be between 0.95 and 1.86 also indicating good
overall agreement between the clinical and automatically
generated contours. Fig. 3 shows examples of typical contours
produced by the algorithm (red line) and the corresponding
contours produced by the clinical oncologist (blue line). Table 2
presents a comparison of the clinical volume and the volume
produced by the algorithm. The clinical acceptability of the
contours was also assessed with 7% graded as excellent, 60% as
good and 33% as acceptable. None of the contours produced by
the algorithm were found to be unacceptable.

4. Discussion: Accurately targeting radiotherapy to encompass
infiltrated brain and at the same time limiting damage to
important functional areas (e.g. hippocampus) is essential to
reduce the risk of neurological deficit in glioma patients.
However, accurately identifying the true extent of the tumour and
important functional areas is extremely difficult. This is hampered
by the fact that the GTV may appear different depending on the

Fig. 3 Comparison of clinical contours (blue) with typical contours produced by the algorithm (red), which were graded by an experienced clinician as ex-

cellent (left), good (middle) and acceptable (right)
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imaging sequences used [9, 10] and that in up to 50% of patients the
tumour can grow during the interval between MR image acquisition
and the start of radiotherapy [41]. In practical radiotherapy planning
a margin of 2.5 cm is included around the tumour, however, with
appropriately timed imaging and the availability of proven image
analysis techniques for estimating the tumour volume this margin
could potentially be reduced. It must also be borne in mind that
significant clinical experience and judgement is required to
determine the location of the GTV from the available MR and
radiotherapy planning CT image data, which has limited soft
tissue contrast. Furthermore, the addition of MR images to
CT-based delineation may not reduce inter-observer variability. It
is therefore important to use a combination of both when
outlining brain tumours [42].

The difference between the automatic and clinical tumour
volume was most significant in case 4, where a 20.15% difference
corresponding to 28.87 cm® was recorded, and in case 5, where a
25.38% difference corresponding to 72.66 cm® was recorded. In
both cases, the automatic volume was smaller than the clinical
volume, a characteristic noted in all cases investigated. For case
5, the volume difference can be explained by the exceptionally
long period of time, 114 days, between the MR and CT data acqui-
sition. During this time, there was a significant change in the tumour
burden of the patient, which although highlighted by the radiation
oncologist on CT, was clearly not present at the time of MR acqui-
sition. As a result, the level set approach was unable to evolve using
tumour-specific grey-level information. Furthermore, unlike cases
1-4 in which a GTV was defined, a CTV was defined for this
patient. The definition of a CTV on an image is a medical decision
that is based on clinical judgement and experience and not simply
on image information from different modalities, which is the ap-
proach used primarily to establish the GTV [9, 10]. As a result,
the CTV contains the GTV and takes into account subclinical ma-
lignant disease relevant to the tumour site and treatment regime.
The choice of microscopic infiltration outside of the GTV relies
on integrating the biological and clinical behaviour of the region
combined with knowledge of the surrounding anatomy. These
characteristics, which are not taken into account in the method pre-
sented here, could be incorporated into future versions of the algo-
rithm as an evolutionary constraint on the level set function.

One of the major advantages of this approach is that it is compu-
tationally efficient because the level set does not require reinitialisa-
tion during detection of the tumour boundary; a step that is often
associated with slow convergence. The method relied on calculation
of the gradient flow during evolution towards the tumour boundary.
With the widespread variation in tumour intensity with glioma
grade, and the difficulty in establishing gradients at the interface
between tumour and normal tissue, there is a need to investigate
level set evolution using the statistics of the region such as in the
CV approach [32]. Furthermore, the performance of the approach
could be improved by modelling the MR intensity variations
using non-Gaussian statistical methods, particularly Rician
methods, which have been widely used in MR analysis [25]. The
approach presented used a posteriori information on tumour and
organ at risk intensity to establish an adaptive active thresholding
basis for level set evolution. Estimating the intensity range of a
tumour and fitting to a model is difficult because tumour intensities
may vary with tumour grade. Hence, more data is required to
improve the efficacy of the approach in this area.

The importance of reducing PTV margins in glioblastoma multi-
forme (GBM) and the use of a more pragmatic definition of tumour
volume that includes the imageable volume plus postoperative
cavity was highlighted recently in a special issue of Clinical
Oncology devoted to significant developments in neuro-oncology
[8, 43, 44]. However, this depends on the ability to visualise the
tumour, interpret radiological anatomy and recognise areas of
tumour involvement. From the preliminary results presented, this
image analysis approach, with further development, has the
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potential to assist clinicians with this task. However, more compre-
hensive analysis involving a much larger dataset is required. This
will also help to address important issues surrounding the inclusion
of MR data in the radiotherapy planning process, which does not
necessarily reduce inter-observer variability and has been shown
to result in larger tumour volumes than those produced using CT
alone [42].

5. Conclusions: The proposed algorithm allows the tumour volume
for radiotherapy to be estimated automatically and has the potential
to be used by clinicians as an aid in outlining. The pilot results
presented on five patients demonstrate the efficacy of the
approach, however, full validation is required on a much larger
dataset and using multiple observers to assess the automatically
generated contours. The ultimate aim of this work is to develop
an approach to assist clinicians define tumour volumes in a
reliable and repeatable manner. This will not only save time but
may reduce the radiotherapy fields used to treat brain cancer
patients, which may be larger than necessary because of poor
image information at the time of radiotherapy planning. This
Letter reports our progress towards this aim and our ongoing
work in this area.
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