Image denoising in bidimensional empirical mode decomposition domain:
the role of Student’s probability distribution function
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Hybridisation of the bi-dimensional empirical mode decomposition (BEMD) with denoising techniques has been proposed in the literature as
an effective approach for image denoising. In this Letter, the Student’s probability density function is introduced in the computation of the
mean envelope of the data during the BEMD sifting process to make it robust to values that are far from the mean. The resulting BEMD
is denoted tBEMD. In order to show the effectiveness of the tBEMD, several image denoising techniques in tBEMD domain are
employed; namely, fourth order partial differential equation (PDE), linear complex diffusion process (LCDP), non-linear complex
diffusion process (NLCDP), and the discrete wavelet transform (DWT). Two biomedical images and a standard digital image were
considered for experiments. The original images were corrupted with additive Gaussian noise with three different levels. Based on peak-
signal-to-noise ratio, the experimental results show that PDE, LCDP, NLCDP, and DWT all perform better in the tBEMD than in the
classical BEMD domain. It is also found that tBEMD is faster than classical BEMD when the noise level is low. When it is high, the
computational cost in terms of processing time is similar. The effectiveness of the presented approach makes it promising for clinical

applications.

1. Introduction: The bi-dimensional empirical mode decomposition
(BEMD) is the two-dimensional (2D) version of the original empirical
mode decomposition of Huang er al [1] which is an adaptive
multi-resolution analysis technique that decomposes a given signal
into a finite sum of components called intrinsic mode functions
(IMFs), plus a residue. The empirical mode decomposition
algorithm is based on a sifting process that successively estimates
the mean envelope of an unknown signal as the average of the
upper and lower envelopes, minus a residual component. In
particular, low order IMFs represent fast oscillations (high
frequency modes), and high order IMFs represent slow oscillations
(low frequency modes). The IMFs are local and auto-adaptive to the
input data. Hence, the merit of using the EMD is that it is driven by
the input data. Unlike the wavelet transform, the EMD does not
require a-priori basis function selection, since the IMFs are
automatically derived from the input signal. In addition, the EMD is
effective for the analysis of both stationary and non-stationary
signals, and it is a non-linear decomposition technique.

To address the problem of mean sensibility to outliers during the
sifting process, an adjusted empirical mode decomposition method
built on Student’s probability density function (PDF) denoted by
tEMD [2] where the data was transformed with the Student PDF
prior to computation. Because Student’s PDF has longer tails
than the normal distribution, it is more robust to values that are
far from the mean. In particular, it is less susceptible to signal vari-
ance fluctuations, which may lead to more representative mean en-
velope curves when applying the EMD algorithm. The tEMD was
found to be more effective than the traditional EMD in modelling a
simulated signal, an electrocardiogram (ECG) record, and the
S&P500 closing prices [2].

Following our previous promising results when using EMD for
biomedical image classification [3, 4] and ECG denosing [5], and
tEMD for physiological signal modelling, we recently extend the
one-dimensional tEMD to 2D tEMD for the analysis and classifica-
tion of pathological retina images [6] by developing a computer
aided diagnosis tools for automatic retina pathology grading.
Tests comparing the 2D-EMD and 2D-tEMD indicated that the
latter outperformed the former for blot hemmorage grading and
subretinal exudate grading in digital retinal images.
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The purpose of this study is to test the effectiveness of 2D-tEMD
against the classical 2D-EMD in image denoising as the latter has
gained interest in this area [7-10]. In these previous works, the
BEMD was applied to the noisy image to obtain a set of its
bi-dimensional intrinsic mode functions (BIMFs). Then, the discrete
wavelet transform (DWT) or partial differential equations (PDE) were
applied to each of the BIMFs for denoising purpose. Finally, the
denoised image is reconstructed based on the denoised BIMFs.
Similarly, we apply the DWT [11-13], fourth-order PDE (FOPDE)
[14], and linear and non-linear complex diffusion processes (NLCDP)
[15] to each extracted tBIMF (BIMFs where Student’s PDF is incor-
porated in mean envelope computation) for denoising purpose. The
denoised image is recovered by summing up all the denoised tBIMFs.

The wavelet thresholding technique is commonly used for image
denoising given the ability of wavelet analysis to separate noise
from the image signal [11-13]. In this study, it is used as the
main reference denoising approach against three advanced denois-
ing techniques in BEMD and tBEMD domains; namely the
FOPDE and the linear and NLCDP denoted, respectively, linear
complex diffusion process (LCDP) and NLCDP. The FOPDE is
employed as it avoids blocky effects while achieving good tradeoff
between noise removal and edge preservation [14]. The LCDP and
NLCDP combine the diffusion equation with the free Schrodinger
equation [15]. The main advantages of complex diffusion processes
follow [15]. First, there exists a stable diffusion process over the
wide range of the angular orientation. Second, the real function
behaves like a real linear diffusion process, whereas the imaginary
part approximates a smoothed second derivative of the real part, and
serves as an edge detector. Third, the complex diffusion enables
better performance in different non-linear tasks such as ramp
denoising and regularisation of shock filters. In our study, the per-
formance of each denoising approach is evaluated based on the
well-known peak-signal-to-noise ratio (PSNR).

The rest of the Letter follows. Section 2 presents the BEMD,
tBEMD, PDE, LCDP, NLCDP, and DWT. Section 3 presents the
results. Section 4 concludes our study.

2. Methods: As mentioned in introduction, we rely on BEMD and
tBEMD to denoise original images corrupted with Gaussian noise.
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In particular, classical DWT, FOPDE, and LCDP and NLCDP are
employed to denoise each obtained BIMF/BIMF. The resulting
denoised image is obtained by summing up all denoised BIMFs/
tBIMFs. In our study, the optimal threshold is determined
according to the adaptive threshold selection using principle of
Stein’s unbiased risk estimate.

2.1. Bi-dimensional empirical mode decomposition: The sifting
process of a 2D image /(x, y) is given as follows [10]:

(1) Initialisation: res(x, y) = I(x, ).

(2) Identify all minima and maxima of I(x, y).

(3) Compute the lower Eqy(x, ¥) and upper E,,(x, ) envelopes by
interpolation of minima and maxima.

(4) Compute the envelope mean as: M, (x, y) = (Eqw(x, )+ Eyp

(x, »)/2
(5) Subtract M,(x, y) from res(x, y) as follows

Mod(x, y) = res(x, y) — Mg, (x, )

(6) If Mod(x, y) is not BIMF, res(x, y) = Mod(x, y), turn to step 1.
(7) Obtain BIMF: BIMF(x, y) =Mod(x, y)

(8) res(x, y) =res(x, y) — BIMF(x, y)

(9) Repeat steps 1-8 until the residue res(x, y) satisfies a stopping
condition.

Finally, the image /(x, y) can be expressed as follows

N
063 =Y BIMF(, y) + res(, ) (1)

i=1

where N is the number of BIMFs. In this Letter, the stopping con-
dition is the number of BIMFs set in advance; for instance, three
BIMFs plus a residue for simplicity.

In this study, the algorithm to compute the mean envelope is
modified to obtain the 2D-tEMD

M (x.3) = (S(Eo (v ) + S(Ep(x0))) 2 @

where S(°) is the Student PDF. For instance, the Student PDF for a
real valued pixel p is given by

1 F((V—f— 1)/2) (1 +p_2)_(v+l)/2 3)
Jom?  T(v/2)

1%
where v is a positive scalar used to capture the distribution tails and
I'(*) is the gamma function. In our work, the parameter v is set to
one to better capture heavy tails in the pixels distribution.

The main popular interpolation techniques used to build the
upper and the lower envelopes in BEMD are the radial basis func-
tion and the triangular interpolation technique. The former gener-
ates a smoother surface with high computational cost since all
given points are needed to determine a value at any point. In the
latter interpolation scheme, a triangular grid for scattered data
points is created and a subsequent piecewise interpolation on trian-
gles is used to create an approximated surface. It produces a less
smooth surface than radial basis function interpolation technique;
but, its computational cost is much lower because it uses only
neighbouring points while neglecting all points distant from the
centre. The triangular-based linear interpolation is adopted to
speed up image decomposition process.

S(p, v) =

2.2. DWT approach: Wavelet thresholding involves threes steps
[11-13]. First, the image is processed with a DWT [15] for
decomposition purpose. As a result, the image is decomposed
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into low-low, low-high, high-low, and high-high sub-band. Then,
a non-linear thresholding is performed on each DWT sub-band
coefficient. In particular, if the DWT coefficient is smaller than
the threshold it is set to zero. Otherwise, it is kept as such or
modified. Finally, an inverse DWT is performed to recover the
denoised image. In this Letter, the optimal threshold is
determined according to the adaptive threshold selection using
principle of Stein’s unbiased risk estimate [11, 12].

2.3. Fourth-order PDE: For (x, y) € Q, let u(x, y) and ug(x, y) be,
respectively, a digital image and its observation with random
noise £ (x, y). The purpose is to find a new image by minimising
the cost functional E(u) given by [13]

B = L F(Vulydrdy @

where V2 is the Laplacian operator and /'(-) > 0 and also /* (-)>0.
With the observed image as the initial condition, the solution is
given by the following PDE as the time script tends to infinity

ou o en Viu
i -V |:f (IV2ul) |V2”’i| (5)

The minimisation of the functional is equivalent to smoothing the
image [14].

2.4. Complex diffusion processes: Consider the initial value
problem for a 1D signal

IL=cl, t>0, x,c€ER ©
I(x;0)=1, €ER,

where ¢ is a real valued diffusion coefficient. The complex
fundamental solution /A(x;t) should satisfy the following
relationship [15]

1(x; 1) = Iyxh(x; 1) (7

where * denotes convolution. By rewriting the complex diffusion
coefficient as ¢ =re’’, the fundamental solution is given by [15]

hix; 1) = g, (x; 1) €™ ®)

where g(°), o, a, and 0 are, respectively, the Gaussian function, its
standard deviation, the exponent function, and the angle. They are
given by

2 .
0 2tr
ale =" o) = | —,
4tr cos 0 9)
1 e—x2/202(t)

go(x; 1) = W

The NLCDP equation is given by [15]

I = ;(C(-)Ix), c(s) = el ]) (10)
X

Then, the general solution is given by

9/ I 1+12—2L1
[:_< xz): +xx ;xxxln (1])
w\1+)  (1+12)
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Fig. 1 Top left-hand side: original brain MRI. Top right-hand side: noisy
image with SI. Bottom left-hand side: denoised image based on
BEMD-PDE. Bottom right-hand side: denoised image based on
tBEMD-PDE

2.5. Performance measures: The effectiveness of each image
denoising approach is measured by the well-known PSNR given by

MAX
PSNR = 201og, (—f> (12)
MSE

where, MAX is the maximum signal value in the original image f of
size m x n, and MSE is the mean squared error.

3. Experimental results: The proposed image denoising
approaches were applied to two biomedical images and a
standard image widely used in image processing: Lena image
(225 x 225), brain MRI (256 x 256), and prostate tissue image

Fig. 2 Top left-hand side: original prostate tissue. Top right-hand side:
noisy image with S2. Bottom left-hand side: denoised image based on
BEMD-NLCDP. Bottom right-hand side: denoised image based on
tBEMD-NLCDP
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Fig. 3 Top left-hand side: original Lena image. Top right-hand side: noisy
image with S3. Bottom lefi-hand side: denoised image based on
BEMD-LCDP. Bottom right-hand side: denoised image based on
tBEMD-LCDP

(275 % 183). Each image was converted to greyscale format for
processing and Gaussian noise was added to it at varying levels.
For instance, the noise had a normal distribution with zero mean
and standard deviation S1=0.01, $2=0.05, and S3=0.1. For the
DWT thresholding, we considered the Daubechies-4 (db4) and
Symlet-4 (sy4) as mother wavelets, and third and fourth levels of
decomposition; denoted L3 and L4, respectively. Figs. 1-3
illustrate, respectively, the denoising results of the brain MRI
with PDE under S1, prostate tissue with NLCDP under S2, and
Lena image with LCDP under S3.

Figs. 4-6 show, respectively, the histogram (with a greyscale
colour-bar below) of brain MRI affected with additive noise S1,
prostate tissue affected with additive noise S2, and Lena affected
with additive noise S3. It is clearly shown that for each noisy
image the distribution of pixels is not symmetric and has fat tails.
Therefore, the Student’s distribution when used to transform data
when computing the mean envelope would help capturing heavy
tails in the distribution of pixels. In addition, the Student’s PDF

1000 F T T T T =

800 - E

700 1

1 L

0 50 100 150 200 250

Fig. 4 Histogram of brain MRI affected with additive noise S1
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Fig. 5 Histogram of prostate image affected with additive noise S2

is prone to capture values that fall far from the mean of the pixels
distribution as it has longer tails than the normal distribution.
Table 1 provides the denoising results in terms of PSNR for each
type of image. It is well shown that for each level of noise (S), the
tBEMD achieved the highest PSNR against the classical BEMD.
As a result, BEMD built on Student’s distribution probability
function (PDF) is more suitable for denoising purpose thanks to
its ability to make the original BEMD sifting process robust to
values that are far from the mean. Indeed, the robustness of
Student’s PDF in capturing pixel values far from the mean help im-
proving the estimation of the envelope mean. Finally, on a computer
with Intel(R) Core(TM) i5-2500, CPU@3.30 GHz, 4G RAM, and
Matlab©2014, the average processing time of the BEMD and
tBEMD is, respectively, 9.1510 s and 7.3792 s when noise level
is set to S1. The average processing time of the BEMD and
tBEMD s, respectively, 8.3790 s and 8.4139 s when noise

Table 1 Obtained PSNR for brain MRI, prostate tissue and Lena image

1200 .

800 F .

600+ g

400} ]

0 50 100 150 200 250

Fig. 6 Histogram of Lena image affected with additive noise S3

level is set to S2. Finally, it is 8.3764 s and 8.4138 for S3. Thus,
the tBEMD is faster than the classical BEMD when noise level is
S1 with equivalent processing time when noise level is set to 52
or S3.

4. Conclusion: We compared the performance of image denoising
approaches based the PDE, LCDP, NLCDP, and DWT in BEMD
and tBEMD domains. All techniques performed better in tBEMD
than in BEMD domain. It is concluded that incorporating the
Student’s PDF into the sifting process of the classical BEMD
helps improving its ability to better denoise images when coupled
with PDE, LCDP, NLCDP, and DWT. It is concluded that
presented approach is promising for clinical applications.

5. Declaration of interests: None declared.

BEMD (S1) tBEMD (S1) BEMD ($2) tBEMD (52) BEMD (S3) tBEMD (S3)

Brain

PDE 11.41 12.24 10.11 11.64 9.02 10.95
LCDP 11.68 12.51 9.80 11.15 8.53 10.10
NLCDP 11.39 12.15 9.80 11.33 8.59 10.43
db4-L4 12.19 12.40 11.75 12.04 11.14 11.40
sy4-L4 12.18 12.40 11.74 12.04 11.15 11.41
db4-L3 12.07 12.15 11.62 11.75 11.03 11.16
sy4-L3 12.07 12.15 11.62 11.76 11.02 11.15
Prostate

PDE 3.30 3.65 3.50 3.78 3.59 3.96
LCDP 342 3.73 3.51 3.75 3.64 3.99
NLCDP 3.22 3.62 3.26 3.69 3.24 3.80
db4-L4 3.67 3.73 3.84 3.90 4.05 4.10
sy4-L4 3.66 3.72 3.83 3.89 4.04 4.09
db4-L3 3.66 3.69 3.81 3.84 4.02 4.05
sy4-L3 3.66 3.68 3.81 3.84 4.02 4.05
Lena

PDE 7.43 7.82 6.95 7.69 6.52 7.48
LCDP 7.41 7.79 6.75 7.41 6.26 7.08
NLCDP 7.41 7.80 6.66 7.53 6.07 7.18
db4-L4 7.85 7.94 7.77 7.88 7.62 7.72
sy4-L4 7.85 7.93 7.77 7.87 7.63 7.71
db4-L3 7.83 7.86 7.74 7.78 7.58 7.62
sy4-L3 7.84 7.87 7.74 7.79 7.58 7.62

Bold values indicates performance of proposed model.
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