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Cervical cancer (CxCa) is often the result of underestimated abnormalities in the test Papanicolaou (Pap test). The recent advances in the study
of the human papillomavirus (HPV) infection (the necessary cause for CxCa development) have guided clinical practice to add HPV related
tests alongside the Pap test. In this way, today, HPV DNA testing is well accepted as an ancillary test and it is used for the triage of women with
abnormal findings in cytology. However, these tests are either highly sensitive or highly specific, and therefore none of them provides an
optimal solution. In this Letter, a clinical decision support system based on a hybrid genetic algorithm – Bayesian classification
framework is presented, which combines the results of the Pap test with those of the HPV DNA test in order to exploit the benefits of
each method and produce more accurate outcomes. Compared with the medical tests and their combinations (co-testing), the proposed
system produced the best receiver operating characteristic curve and the most balanced combination among sensitivity and specificity in
detecting high-grade cervical intraepithelial neoplasia and CxCa (CIN2+). This system may support decision-making for the improved
management of women who attend a colposcopy room following a positive test result.
1. Introduction: Worldwide, cervical cancer (CxCa) is ranked as
the third most common cancer type and the fourth leading cause
of cancer death in females. These cases and deaths occur mostly
in developing countries (more than 85%) due to the lack of
organised screening programmes that allow the detection of
precancerous lesions and CxCa in early stage. In reality,
organised CxCa screening is applied in rather limited countries,
and in many developed countries it is a matter of opportunistic
control. Even in well-organised programmes and despite the
advances of screening, CxCa still remains a serious problem of
public health in the developed world as well, due to the high
percentage of detection failure [1]. Cervical intraepithelial
neoplasias (CINs), a precancerous condition, is very common,
almost one in ten women will have such abnormalities at primary
screening.
The well-known Papanicolaou CxCa screening (Pap test) has

reduced CxCa rates worldwide dramatically. Nowadays, prevention
of CxCa is based on frequent and repetitive Pap tests, followed by
colposcopical examinations and if required histological examin-
ation on biopsy material (i.e. when the test Pap or colposcopy is
abnormal). Unfortunately, the evaluation of cervical cytology
smears is a difficult task and may be accomplished only by very
well trained medical personnel (cytopathologists); therefore, inter-
pretation is influenced by subjective factors and prone to diagnostic
error.
CxCa is almost caused by human papillomavirus (HPV), being

the commonest sexually transmitted infection. There are more
than 100 types of HPV infecting humans; however, only 14 are
highly oncogenic and may cause CxCa. In addition, presence of
HPV does not always lead to disease, as the infection may
regress due to human immune system. The developments in under-
standing HPV infection and the cervical neoplasia natural history
have resulted in the addition of the HPV DNA test along with the
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Pap test [2]. HPV DNA testing is nowadays used as ancillary test
to test Pap and has been proposed its utilisation for primary screen-
ing. Owing to this, recently, there are many developed countries
that included HPV DNA test in their official CxCa screening
guidelines.

There are numerous studies attempting to analyse the role of
HPV DNA test and compare it with Pap test [3–5]. A detailed ana-
lysis of these studies shows that the performance of the two tests
differ significantly. They are either highly sensitive or highly specif-
ic, unfortunately not both at the same time; thus, today, there is no
perfect test. Additionally, studies results are affected by the disease
incidence and the prevalence and the HPV infection in the studied
population; therefore, the application of a single test, despite it
offers a level of protection, cannot determine reliably the real risk
of individual women participating in CxCa screening programmes.

The meta-analysis of published studies [3–5] shows that the sen-
sitivity (SN) of Pap test when combined with the HPV DNA test is
higher than the SN of each individual method. Thus, the two tests
complement effectively each other. In contrast, Pap test specificity
(SP) when combined with HPV DNA test was lower than the
specificities of each of the two methods. Regarding the positive
predictive value (PPV), there are equivocal findings: some studies
report PPV values similar for each method separately as well as
when combined. Other studies report smaller values of PPV for
the two methods combination. As expected, the negative predictive
value (NPV) of the combination of the two tests is high, actually
several studies report values of almost 100%.

Today, despite the advances in CxCa screening, there is no con-
sensus for the optimal management of women when there are ab-
normal test results. A percentage of women that have atypical
squamous cells of undetermined significance (ASCUS) or low-
grade squamous intraepithelial lesion (LSIL) in cytology may in
reality have high-grade CIN [i.e. CIN grade II (CIN2) or III
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Table 1 Cases distribution

Histology Pap test result Total

WNL ASCUS LSIL HSIL CxCa

clinically negative 196 0 0 0 0 196 (26.5%)
negative 35 60 22 5 0 122 (16.5%)
CIN1 31 66 142 22 0 261 (35.3%)
CIN2/3 3 13 27 93 0 136 (18.4%)
CxCa 0 1 2 7 15 25 (3.4%)
total 265 140 193 127 15 740
(CIN3)]. These women are at very high risk to develop CxCa.
Therefore, CIN2 is the decision threshold beyond which a case sur-
gically treated. In contrast, women with CIN grade I (CIN1) are
monitored strictly. Moreover, it is not infrequent that women with
high-grade lesion (HSIL) in cytology; may in reality have CIN1
or even a normal histology. Therefore, the management options
of ASCUS or LSIL Pap smears that are widely accepted are:
either immediate colposcopy or cytological surveillance by
frequent Pap tests.

The policy to immediate referral to colposcopy can easily result
in colposcopy clinics overload, as well as, in over-intervention and/
or over-treatment in the case of subtle colposcopic findings. Thus,
women are exposed to the physical and psychological sequelae of
unnecessary treatment, which in nulliparous women incorporates
the danger of pre-term delivery. On the other hand, repeated Pap
tests incorporate the risk of missing HSILs, increases non-
conformance rates, increases the CxCa organised screening pro-
grammes (OSPs) cost, increases the social and psychological
burden of women, and eventually the credibility of OSPs’
becomes questionable.

Therefore, it is essential to correctly identify women who are at
real risk of developing CxCa, and simultaneously to reduce un-
necessary colposcopies and repeated smears. Clearly, there are
required effort for a screening method presenting simultaneously
high SN and high SP for the threshold of CIN2 or worst (CIN2+).
On the basis of this requirement, in this Letter we present a clinical
decision support system (CDSS) based on a hybrid genetic
Table 2 Description of the available features

Variable name, feature Descriptio

Pap test the result of the cytological exam
according to Bethesda system

HPV DNA arrays for the subtypes: 6, 11,
16, 18, 26, 31, 33, 35, 39, 40, 42, 43, 44,
45, 51, 52, 53, 54, 56, 58, 59, 61, 62, 66,
68, 70, 71, 72, 73, 81, 82, 83, 84, 85, 89

the existence of individual subty
HPV DNA examination

HPV DNA (positive or negative) positive if one or more subtypes
DNA test

HR-HPV DNA positive if one or more HR subt
DNA testHR genotypes: 16, 18, 26, 31, 33, 35, 39,

45, 51, 52, 53, 56, 58, 59, 66, 68, 70, 73,
82, 85

Very high-risk (VHR) HPV positive if one or more of the ve
VHR genotypes: 16, 18, 31, 33, 45

LR-HPV DNA positive if one or more LR subty
DNA testLR genotypes: 6, 11, 40, 42, 43, 44, 54, 61,

62, 71, 72, 81, 83, 84, 89
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algorithms (GAs) – Bayesian classification framework, which
presents balanced SN and SP in detecting CIN2+, by intelligently
combining the results of Pap test and HPV DNA test.
2. Clinical data: For the purposes of the study, there were collected
anonymised data from enrolled women. The study was headed by
the Department of Cytopathology of the Medical School of
Athens’ University (Attikon University Hospital). The
Institution’s Ethical Review Board had approved the study and all
procedures, and the participating women signed an informed
patient consent form, permitting anonymous use of their data for
the research.

The biological material was collected in ThinPrep® vials (liquid-
based cytology). Participating women were referred to colposcopy
because: (a) they had an abnormal Pap test or (b) they volunteered
to participate in the study and accepted a colposcopical examination
and the application of the test on their biological material, even if
they had a normal Pap test (e.g. HPV positive women). In
women that had a negative Pap test followed by negative colpos-
copy, there was no biopsy taken and those cases are considered
as clinically negative.

The collected data had HPV DNA test and Pap test results, histo-
logical examination outcome (when available), patient demograph-
ic, and identification details. These data were stored in a database
implemented for the study purpose. About, 740 cases with full
tests’ series were extracted from the database and used as anon-
ymised data for further analysis (Table 1). Each data series
(woman case) included: Pap test and the HPV DNA test results.
The later was performed using the CLART® HPV 2 test
(GENOMICA, Spain) that simultaneously detects 35 different
high-risk (HR)- or low-risk (LR) HPV subtypes [2].

The cytological result for each woman was interpreted according
to the Bethesda classification system formulated according to the
Bethesda classification (TBS2001 system) [6] which assigns each
case to the following categories (ranked): (a) within normal limits
(WNLs), (b) ASCUS, (c) LSIL lesion, (d) HSIL lesion, and (e)
squamous cell carcinoma (SCC) or adenocarcinoma (Adeno-Ca).
If Pap test revealed ASCUS or higher cytological categories
(ASCUS+) and there was a visible lesion during colposcopy, a cer-
vical biopsy was performed. For those cases having a histological
n Value range

ination expressed 1: WNL
2: ASCUS
3: LSIL
4: HSIL
5: Cancer

pes according to the 0 if the specific subtype is not found
1 if the specific subtype is found

found by the HPV 0 if none subtype found (negative test)
1 if one or more subtypes found (positive test)

ypes found by the HPV 0 if none of the HR types found
1 if at least one of the HR types found

ry HR subtypes found 0 if none of the very HR types found
1 if at least one of the very HR types found

pes found by the HPV 0 if none of the LR types found
1 if at least one of the LR types found
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outcome, the histological diagnosis was used as the golden stand-
ard. No biopsies were obtained in clinically negative cases, which
are defined as cases with negative cytology and negative colpos-
copy, as in these cases it is not ethical to obtain biological
samples for histological examination.
For the formulation of the histological diagnosis (the golden

standard), it was used the CIN grading system. The categories,
ranked according to severity, are: (a) without evidence of malig-
nancy (negative), (b) CIN1, (c) CIN2 or CIN3, and (d) SCC or
Adeno-Ca.
Summarising, for each of the 740 women, a feature set consisting

of 40 indicators, which derived from the applied tests, was created.
The result of the cytological examination has been used according
to the TBS2001. The results of the HPV DNA test examination
were expressed as 35 individual variables (either positive or nega-
tive), one for each HPV DNA genotype. Additionally, other vari-
ables expressing the HPV DNA test results were added, for
instance, the existence of HR or LR types was expressed as either
positive or negative. The 40 used variables/features collected for
each case are presented in Table 2.

3. Hybrid GA – Bayesian classification feature selection
framework
3.1. Overview: Our purpose is to create a classification system that
will effectively combine the results of the Pap test and the HPV
DNA test. However, our focus is not on the classification’s
accuracy per se, but rather the creation of a system that yields the
most balanced results in terms of SN and SP, as this is the
requirement of the clinical context. To achieve this balanced
outcome, a feature subset must be found, which, when fed to a
classifier, would satisfy this goal. Therefore, the problem we face
is more of a feature subset selection problem rather than one of
classification.
In the present Letter, a hybrid GA – Bayesian classification

[GA-Naïve-Bayes (NB)] framework is adopted in order to
perform the task of feature subset selection. For this purpose, a
GA and a NB classifier are intergraded in a wrapper manner.

3.2. Feature subset selection using GAs: GAs appear to be a robust
technique in the field of feature selection due to their heuristic
nature and their prominent ability in solving optimisation
problems [7, 8]. GAs, as a search strategy ‘wrapped’ around a
classifier, have been extensively researched and applied to many
feature selection problems [9–12]. In wrapper type approaches,
feature subset selection is performed by ‘wrapping’ around a
learning method: the usefulness of a feature subset is directly
judged by the estimated performance of a trained classifier. That
is, for each feature combination, the performance of a classifier is
estimated and the combination resulting to the best performance
is selected as the best subset.
In GAs, a candidate solution (in this case a possible feature

subset) is represented as a chromosome made up of genes (features)
[7–12]. Each chromosome is defined as an individual of a popula-
tion. There are three stages in a standard GA: initialisation, selec-
tion, and reproduction [7–12].
A GA starts by randomly creating an initial population (initialisa-

tion stage) of Np individuals (candidate feature subsets).
Afterwards, each individual is evaluated using a fitness function
and assigned a fitness value: typically, a classification metric is cal-
culated to measure the performance of a candidate feature subset by
using it as input to a classifier. In the selection stage, the fitter
individuals, according to their fitness value, are selected to form
a new population (the next generation) through reproduction.
Reproduction includes operators such as cross-over, mutation,
and elitism [7–12], which are designed in a way so that the
‘offspring’ will inherit properties of the parents. The new formed
population is used in the next iteration of the algorithm and the
whole process is repeated for a number of Ng generations. The
Healthcare Technology Letters, 2016, Vol. 3, Iss. 2, pp. 143–149
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GA terminates when a specific criterion or a combination of criteria
is satisfied [7–12]. In the end, GA returns the solution (feature
subset) with the highest fitness value.
3.3. Multivariate multinomial NB classification [13, 14]: NB is a
classification algorithm that applies the Bayes’ theorem with the
‘naive’ assumption of class-conditional independence between
every pair of features. Using the training data, the method
estimates the parameters of a probability distribution, assuming
features are conditionally independent given the class. Then, NB
classifies a new sample by estimating the posterior probabilities
of that sample belonging to each class according to Bayes rule,
and by assigning the sample to the class yielding the maximum
posterior probability. To estimate the posterior probability for
each class, the classes’ prior probabilities and the features’
distributions must be estimated. A class’ prior may be calculated
by estimating the class probability from the training set.
Regarding the distributions of categorical features such as the
ones encountered in this problem, the most appropriate
distribution is the multivariate multinomial distribution.

Important reasons behind the choice of the NB as the classifier of
the presented framework are as follows:

(a) NB is a non-parametric classifier, meaning that it is not required
to perform parameter selection inside the GA. This fact is very im-
portant since a parameter selection process would increase the com-
plexity of the search problem.
(b) NB is one of the fastest classifiers (both for training and classi-
fying new data), which is very important for a heuristic search
algorithm.
(c) Moreover, the fact that the NB calculates the posterior probabil-
ities of each class is of great significance to the problem in hand,
because they can be used to estimate the risk assessment odd of a
woman having CIN2+.

3.4. Framework implementation: The detailed implementation
(Fig. 1) is achieved as follows. At first, an initial population of
1200 chromosomes (candidate feature subsets) is randomly
created. To represent the selected feature subsets, integer
encoding is used [7]: a chromosome is set as a vector consisting
of a set of integers that represent the index numbers of the
selected features. That is, each gene takes an integer value (1–40,
where 40 is the number of all available features), which
represents an index to a specific feature.

Following, the fitness evaluation of each chromosome is taking
place by employing an NB classifier and applying five-fold cross-
validation (Fig. 1). The mean SN and SP over all folds are com-
puted in order to create the fitness value of each chromosome.

As presented, in this problem the accuracy is not as important as
the SP and the SN in terms of diagnostic value. The performance of
a diagnostic test or a classifier can be quantified by the measures of
diagnostic accuracy such as SN and SP, predictive values, likeli-
hood ratios, the area under the receiver operating characteristic
(ROC) curve, Youden’s index (YI) and diagnostic odds ratio.
Different diagnostic metrics relate to the different aspects of diag-
nostic procedure: some metrics are used to assess the discriminative
property of the test, and others are used to assess its predictive
ability. Since the objective of the Letter is a balanced combination
of SN and SP, we chose to use as a fitness function the Youden’s J
statistic (also called YI) (1), which is a single statistic index that
captures the performance of a diagnostic test by combining SN
and SP. It is considered as a global measure of a diagnostic test’s
performance and it is used for comparison between tests. The
GA, by trying to maximise the YI, is in fact attempting to find
that combination of features which leads to the most balanced SP
145
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Fig. 1 GA flowchart

146
& The Institution of Engineering and Technology 2016

Healthcare Technology Letters, 2016, Vol. 3, Iss. 2, pp. 143–149
doi: 10.1049/htl.2015.0051



Fig. 2 CDSS’s architecture
and SN

J = sensitivity+ specificity− 1 (1)

After a fitness value is assigned to each chromosome of the current
population, the fitter chromosomes are chosen for reproduction
using tournament selection (of size four).
To create the population of the next generation, three basic

genetic operators are used (Fig. 1): elitism, cross-over, and mutation
[7–12]. All the genetic operators are modified so as to be used with
integer encoded chromosomes. Initially, an elitism operator is per-
formed with an elite count of 120 (10% of the population): the 120
chromosomes of the current population with the highest fitness
values are copied as they are, without any modifications, directly
to the next population. For the cross-over operation, uniform cross-
over is used with exchange probability of 0.5. The cross-over rate is
set to 0.7 and it specifies the fraction of each population, other than
elite children, that is created by the cross-over operator. With this
value of the cross-over rate, in each generation there are 120 elite
children, 756 cross-over children, and 324 mutation children.
Subsequently, the mutation procedure is carried out using
uniform mutation. Uniform mutation is applied at the genes of
the chromosomes selected for mutation, with a probability rate of
change equal to 0.2. Finally, the termination criterion that is used
is a combination of two criteria. The GA terminates: (a) after 50
generations or (b) after 12 stall generations (i.e. the fitness value
remains the same for 12 generations).
In integer encoding, the length of a chromosome is equal to the

number of features that are selected to form the candidate feature
subset. Thus, aiming to find the optimal feature subset, we executed
the GA algorithm for every different chromosome length, i.e. for
subsets with 2–39 features. Eventually, GA returns the best
feature subset for each different chromosome length. Therefore,
we can determine the optimal chromosome length which produces
the feature subset with the highest fitness value for the specific
problem.

4. Decision support system’s architecture: An NB classifier in
conjunction with the optimal feature subset have been integrated
together to create a CDSS. The schematic diagram of the
proposed CDSS is presented in Fig. 2. As depicted in Fig. 2,
the examinations’ results of each woman are used as inputs to the
Fig. 3 Fitness values of the best feature subsets for each different feature subset
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CDSS. First, the medical information is transformed to data
appropriate for processing by the NB classifier, i.e. the complete
feature set (40 features) is created. From this feature set, we
length
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select the features corresponding to the optimal feature subset,
which emerged by the GA-NB framework, in order to create the
input vector of the NB classifier. Following, the input vector is
promoted to the trained NB classifier and the latter provides the
classification outcome along with the posterior probabilities of
each class, i.e. the probability of CIN1− and the probability of
CIN2+. In this way, the CDSS provides risk estimates of CIN2+
development for each individual woman. The CDSS has been
developed using the MATLAB® platform and was integrated into
the previous constructed and presented web-based information
system CxCaDSS [15].
Fig. 4 Comparison of ROC curves for Pap test, HPV DNA test and the
GA-NB CDSS in detecting CIN2+
5. Results: The available dataset (Table 1) was divided into two
sets using stratified sampling: the two thirds (2/3) of the data
(494 instances) was used for the feature subset selection process
and the training of the CDSS, while the rest one third (1/3) of the
data (246 instances) was used as a test set for the evaluation of
the developed CDSS. Stratification was performed in order to
ensure that each class is represented with approximately equal
proportions in both subsets.

At first, utilising the first set (494 instances), we performed the
GA-NB framework presented above in order to find the optimal
feature subset. As described previously, we executed the GA algo-
rithm for every different chromosome length, i.e. for subsets with
2–39 features, in order to determine the optimal chromosome
length and eventually detect the optimal feature subset.

Fig. 3 depicts the fitness values of the best feature subsets for
each different chromosome length. As it is shown in Fig. 3, the
value of the fitness function is increasing while the number of fea-
tures used is increased, and reaches its maximum value for a feature
subset consisting of 14 features. As feature subsets, with more than
14 features, are created, the performance is getting worst, which
means that the addition of more features does not provide useful in-
formation to the classifier. This fact means that only 14 from the 40
features contain important information and are complementing each
other in order to obtain a classifier with balanced SN and SP,
whereas the rest may be considered as irrelevant or redundant to
the problem. These 14 features are as follows: Pap test, HPV
DNA (positive or negative), VHR HPV, HPV 6, HPV 33, HPV 44,
HPV 45, HPV 51, HPV61, HPV 62, HPV 66, HPV 68, HPV 82,
and HPV 84.
Table 3 Performance of Pap test, HPV DNA test and the CDSS in
detecting CIN2+

SN,
%

SP,
%

PPV,
%

NPV,
%

YI AUC

Pap test 98.1 47.2 34.2 98.9 0.45 0.73
(cut-off ASCUS+)

Pap test 90.7 72.0 47.6 96.5 0.63 0.81
(cut-off LSIL+)

Pap test 70.4 95.9 82.6 92.0 0.66 0.83
(cut-off HSIL+)

HPV DNA test 94.4 66.8 44.3 97.7 0.61 0.80

HR HPV DNA 90.7 72.0 47.6 96.5 0.63 0.81

VHR HPV DNA 79.6 84.5 58.9 93.7 0.64 0.82

HPV 16/18 63.0 89.1 61.8 89.6 0.52 0.76

Pap test (ASCUS+) or
HPV 16/18

98.1 46.1 33.8 98.9 0.44 0.72

Pap test (ASCUS+) and
HPV 16/18

63.0 90.2 64.2 89.7 0.53 0.77

GA-NB CDSS 83.4 88.1 66.2 95.0 0.72 0.95
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The utilisation of irrelevant or redundant features increases the
dimensionality of the feature space and as a result the complexity
of the classification problem without any performance gain.
Moreover, as stated in the so-called ‘curse of dimensionality’ (a
major problem of pattern classification) [13]: for a fixed number
of training samples, as the dimensionality increases, the classifica-
tion rate of a classifier decreases after a peak, due to over-fitting. By
observing Fig. 3, we can clearly state that the classifier suffers from
over-fitting when a feature subset of more than 19 features is used.
Moreover, it is worth noting that the fitness value achieved when
only two features are used is much better compared with the
values achieved when 38 or more features are used. These findings
emerge the importance of the feature selection process in the con-
struction of a classification system.

After the derivation of the optimal feature subset by the GA-NB
framework, an NB classifier was trained with the 494 instances,
using the specific feature subset. It should be noted that according
to the work of Singhi and Liu [16], the practice of using the same
dataset for feature selection and learning in classification problems
is not inappropriate and the supposedly selection bias does not
degrade the classification performance significantly. The trained
NB classifier was eventually used as the classification module of
the CDSS.

The developed CDSS was evaluated utilising the test set (246
cases). Table 3 presents the performance (on the test set) of the pro-
posed system compared with the medical tests applied, in terms of
SN, SP, PPV, NPV, YI, and area under the ROC curve (AUC), on
the basis of detecting CIN2+. Fig. 4 presents the ROC curves for the
CDSS and the medical tests in detecting CIN2+. The ROC curve of
the CDSS was constructed using the provided posterior probabil-
ities for CIN2+ for the cases of the test set. In comparison with
the Pap test and the HPV DNA test (taking into consideration dif-
ferent positivity thresholds for these tests), the proposed architec-
ture produced the most balanced results in terms of SN and SP,
the best YI, the best AUC, and the best ROC curve. When
ranking the tests by the maximal YI, which gives equal weight to
SN and SP, the CDSS ranked highest, outperforming the medical
tests.
6. Conclusions: Test Papanicolaou, despite being the most
successful cancer prevention method, nowadays competes with
HPV DNA typing. There are many reasons for this: test Pap
requires experienced health professionals (cytopathologists or
Healthcare Technology Letters, 2016, Vol. 3, Iss. 2, pp. 143–149
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cytotechnologists) to analyse glass slides through the microscope;
this is a task requiring time and is prone to human errors.
Additionally, if cell sampling is not performed correctly
inadequate specimens are produced; therefore, women have to
visit the health facilities one more time. On the other side, HPV
DNA test can be performed in a batch manner, is less sensitive to
human errors, requires less experienced personnel and eventually
can cost less than test Pap. Today, developing countries choose to
perform one of the two tests at frequent intervals. While in
advanced economies performing both tests is usual and justified
by the health economics, the process is facilitated because the
two tests can be performed from biological material obtained in
one visit.
Today, cases with HSIL cytology are prompted to immediate col-

poscopy, as the test Pap presents very high SP when the cut-off is
HSIL+. However, the real question is the optimal management of
the women with ASCUS or LSIL cytology or the HR-HPV positive
women. According to the results, test Pap has very high SN when
the cut-off is on ASCUS+ or LSIL+, while HPV DNA test has
higher SP when the cut-off is on the existence of VHR or 16/18 sub-
types. In both approaches this comes at the cost of SP for test Pap
and SN for HPV DNA test. This is reflected to unnecessary referrals
and missed positive cases, respectively. Obviously, a combinatorial
approach is of great interest, as there is a promise of more balanced
performance. However, simple algorithms for triage such as to refer
for additional tests (such as colposcopy) when both tests are posi-
tive (logical ‘AND’) or when a single test is positive (logical
‘OR’) are not effective because the combination performance is
still not optimally balanced (see Table 3 when we combined the
cytologic approach which presents the best SN (Pap test with
cut-off ASCUS+) with the HPV DNA approach with the best SP
(HPV 16/18)). As one can observe from Table 3, a gain in SN is
at the expense of SP and vice versa. Similar results have been pre-
sented in [17], where more combinations have been explored.
In comparison with the medical tests and their combinations

(co-testing), the presented CDSS produced the most balanced
results in terms of SN and SP, the best YI, the best AUC, and the
best ROC curve.
These balanced outcomes make the proposed system a useful

method for the everyday routine of the cytopathology laboratory or
the gynaecological clinic. This system, by providing risk estimates
for CIN2+ development, may be used as a ‘third’ opinion for
women referred to colposcopy because of an ASCUS or LSIL
cytology or an HR-HPV positive result. In this way, this CDSS
may guide personalised management and therapeutic decisions, and
reduce unnecessary colposcopies and treatments. By integrating the
CDSS into the web-based information system CxCaDSS [15], it
may serve as a web-based decision support system to physicians
and medical researchers for the personalised management of
women who attend a colposcopy room following a positive test result.

7. Funding and declaration of interests: This study was funded
by the Greek Ministry of Development [General Secretariat for
Healthcare Technology Letters, 2016, Vol. 3, Iss. 2, pp. 143–149
doi: 10.1049/htl.2015.0051
Research and Technology (GSRT)], Project ‘HPVGuard’,
Cooperation 2011–2013 (code: 11ΣYN_10_250) http://www.
HPVGuard.org. Conflict of interest: none declared.

8 References

[1] Leyden W.A., Manos M.M., Geiger A.M., ET AL.: ‘Cervical cancer in
women with comprehensive health care access: attributable factors in
the screening process’, J. Natl. Cancer Inst., 2005, 97, (9), pp.
675–683

[2] Gomez-Roman J.J., Echevarria C., Salas S., ET AL.: ‘A type-specific
study of human papillomavirus prevalence in cervicovaginal
samples in three different Spanish regions’, Acta Pathol. Microbiol.
Immunol. Scand., 2009, 117, (1), pp. 22–27

[3] Mayrand M.H., Duarte-Franco E., Rodrigues I., ET AL.: ‘Human papil-
lomavirus DNA versus Papanicolaou screening tests for cervical
cancer’, N. Engl. J. Med., 2007, 357, (16), pp. 1579–1588

[4] Cuzick J., Arbyn M., Sankaranarayanan R., ET AL.: ‘Overview of
human papillomavirus-based and other novel options for cervical
cancer screening in developed and developing countries’, Vaccine,
2008, 26, (Suppl 10), pp. K29–41

[5] Naucler P., Ryd W., Tornberg S., ET AL.: ‘Efficacy of HPV DNA
testing with cytology triage and/or repeat HPV DNA testing in
primary cervical cancer screening’, J. Natl. Cancer Inst., 2009,
101, (2), pp. 88–99

[6] Henry M.R.: ‘The Bethesda system 2001: an update of new termin-
ology for gynecologic cytology’, Clin. Lab. Med., 2003, 23, (3),
pp. 585–603

[7] Mitchell M.: ‘An introduction to genetic algorithms’ (MIT,
Cambridge, Massachusetts, USA, 1996)

[8] Goldberg D.E.: ‘Genetic algorithms in search, optimization, and
machine learning’ (Addison-Wesley Publishing Co Reading,
Massachusetts, USA, 1989)

[9] Yang J., Honavar V.: ‘Feature subset selection using a genetic algo-
rithm’, IEEE Intell. Syst. Appl. , 1998, 13, (2), pp. 44–49

[10] Huang C.-L., Wang C.-J.: ‘A GA-based feature selection and para-
meters optimization for support vector machines’, Expert Syst.
Appl., 2006, 31, (2), pp. 231–240

[11] Tan K.C., Teoh E.J., Yu Q., ET AL.: ‘A hybrid evolutionary algorithm
for attribute selection in data mining’, Expert Syst. Appl., 2009, 36,
(4), pp. 8616–8630

[12] Xu L., Georgieva A., Redman C.W., ET AL.: ‘Feature selection for
computerized fetal heart rate analysis using genetic algorithms’.
Conf. Proc. IEEE Engineering in Medicine and Biology Society,
2013, pp. 445–448

[13] Mitchell T.M.: ‘Machine learning’ (McGraw-Hill Boston,
Massachusetts, USA, 1997)

[14] Sakka E., Prentza A., Koutsouris D.: ‘Classification algorithms for
microcalcifications in mammograms (Review)’, Oncol. Rep., 2006,
15, pp. 1049–1055, Spec no

[15] Bountris P., Kotronoulas G., Tagaris T., ET AL.: ‘CxCaDSS: a web-
based clinical decision support system for cervical cancer’. Sixth
European Conf. Int. Federation for Medical and Biological
Engineering, 2015

[16] Singhi S.K., Liu H.: ‘Feature subset selection bias for classification
learning’. Proc. 23rd Int. Conf. on Machine Learning, Pittsburgh,
Pennsylvania, 25–29 June 2006, pp. 849–856

[17] Bountris P., Haritou M., Pouliakis A., ET AL.: ‘An intelligent clinical
decision support system for patient-specific predictions to improve
cervical intraepithelial neoplasia detection’, Biomed. Res. Int.,
2014, p. 341483
149
& The Institution of Engineering and Technology 2016


