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In this Letter, the authors propose an efficient and robust method for automatically determining the VT and VF events in the electrocardiogram
(ECG) signal. The proposed method consists of: (i) discrete cosine transform (DCT)-based noise suppression; (ii) addition of bipolar sequence
of amplitudes with alternating polarity; (iii) zero-crossing rate (ZCR) estimation-based VTVF detection; and (iv) peak-to-peak interval (PPI)
feature based VT/VF discrimination. The proposed method is evaluated using 18,000 episodes of different ECG arrhythmias taken from
6 PhysioNet databases. The method achieves an average sensitivity (Se) of 99.61%, specificity (Sp) of 99.96%, and overall accuracy (OA)
of 99.92% in detecting VTVF and non-VTVF episodes by using a ZCR feature. Results show that the method achieves a Se of 100%,
Sp of 99.70% and OA of 99.85% for discriminating VT from VF episodes using PPI features extracted from the processed signal. The
robustness of the method is tested using different kinds of ECG beats and various types of noises including the baseline wanders,
powerline interference and muscle artefacts. Results demonstrate that the proposed method with the ZCR, PPI features can achieve
significantly better detection rates as compared with the existing methods.
1. Introduction: Life-threatening arrhythmias such as ventricular
fibrillation (VF) and rapid ventricular tachycardia (VT) are
dangerous arrhythmic events leading to sudden cardiac death
(SCD) problems [1–21]. If VT persists for a certain period of
time, it may induce VF event, which is the main cause of SCD
problems. Therefore, early detection of VT/VF events is most
essential for an automatic external defibrillator (AED) which can
timely deliver an electric shock therapy, and remote monitoring
of cardiac patients by means of simple, robust and accurate
automated methods.
Numerous VT/VF detection methods have been proposed based

on the combination of signal processing and machine learning tech-
niques such as morphological and spectral parameters [3], auto-
correlation function [4], time-delay methods [8], threshold-crossing
sample counts (TCSC) [9], threshold-crossing intervals (TCls)
[10], sequential hypothesis testing algorithm [10], mean signal
strength and empirical mode decomposition (EMD) functions
[11], leakage/complexity measure [12], dynamic sample entropy
[13], non-linear prediction [17], band-pass filter and electrocardio-
gram (ECG) peak detection [18], multifractal singularity spectrum
[19], wavelet transforms (WTs) [6, 20] and the machine learning
techniques such as neural networks [2, 22], support vector machines
(SVMs) [3] and fuzzy neural networks [19]. Some methods use the
feature selection (FS) techniques such as genetic algorithm (GA)
[5], linear discriminant analysis (LDA) [6], and non-overlap area
distribution measurement (NADM) [23].
In [2], a VT/VF classification method is presented using the total

of 14 metrics extracted from 5 s ECG signal, GA-based FS and the
SVM classifier. A method for detection of life-threatening events is
reported based on the total of 13 parameters including temporal
(morphological), spectral, and complexity features of the ECG
signal, combination of filter-type FS procedures, and the SVM
classifier [3]. The performance of combining previously defined
11 ECG parameters such as TCI, standard exponential, modified
exponential, complexity measurement, VF filter (VFleak), spectral
algorithm (M and A2 parameters), median frequency, mean abso-
lute value (MAV), phase space reconstruction (PSR) and Hilbert
transform (HT) for the detection of life-threatening arrhythmias
using the SVM classifier [5]. Results showed that the VFleak,
HT, and PSR features result in best detection rates. A wavelet
Healthcare Technology Letters, 2016, Vol. 3, Iss. 3, pp. 239–246
doi: 10.1049/htl.2016.0010
based method is presented to discriminate the ventricular arrhyth-
mias using the number of islands, average time-width features
extracted from the scalogram and LDA classifier [6]. A life threa-
tening arrhythmia detection algorithm using the 14 features
extracted from the detail coefficients at levels of 3 and 4 of the
Haar transform [7]. The optimal features were selected using
NADM based on the neural fuzzy network. A time-delay
methods is proposed for detecting VF events using the mean
subtraction, moving averaging filter, drift suppression and
Butterworth filter with a cut-off frequency of 30 Hz eliminates
frequencies higher than 30 Hz [8]. The detection performance of
four techniques such as TCI, peaks in the ACF, VF-filter, and
signal spectrum shape is studied using 4 s long 70 segments and
40 segments from the VF and VF-like recordings, respectively
[15]. The TCI algorithm had a sensitivity (Se) of 93% and specifi-
city (Sp) of 60%. The spectrum, VF filter, and ACF algorithms had
overall sensitivity values of 80, 93, and 87%, and overall specificity
values of 60, 20, and 0%, respectively. In [17], a reduction of the
sensitivity and specificity was studied under noisy environments.
Results showed that the TCSC and MAV features may not result
in better detection rates under different ECG noises and time-
varying PQRST morphologies with tall P- and T-waves, and wide
QRS complexes. A real-time ventricular arrhythmias algorithm is
presented based on the Karhunen–Loev transform and sequential-
hypothesis testing and a total of four parameters including
average to peak ratio, TCI, duty cycle, and delta zero-crossing inter-
val [21]. In our previous work, detection of life-threatening arrhyth-
mias is studied using random noise and zero crossing information
[24]. The limitations of the existing methods are summarised as
follows:

(i) Computationally expensive signal decomposition techniques
such as WT, EMD are used for characterising the ECG wave-
form from the noise and artefacts, and extracting the represen-
tative features.

(ii) Most methods use sets of ECG features to discriminate
non-VTVF from VTVF events and detect of VT/VF events.

(iii) Machine learning-based VT/VF detection methods highly
demand a large collection of all possible ECG beats and
VT/VF events to find the optimal model parameters.
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Fig. 1 Illustrates the different ECG morphological patterns
a–e Represents non-VTVF episodes taken from MIT-BIH arrhythmia database records 103, 109, 201, 212, 210, respectively
f–h Represents VT and VF episodes taken from CU VT database, respectively
(iv) Performance of the existing detection methods is not rigorous-
ly studied under different types of ECG noise sources and
different PQRST morphological patterns.

In this Letter, we present an efficient and effective automated
method for detection of VF and VT episodes under both noise and
noise-free environments. The proposed method consists of four
major stages: (i) discrete cosine transform (DCT)-based noise sup-
pression; (ii) addition of bipolar sequence; (iii) ZCR estimation-based
VTVF detection; and (iv) peak-to-peak interval (PPI) feature-based
VT/VF discrimination. The proposed method is evaluated using
18,000 VTVF and non-VTVF episodes taken from six PhysioNet
databases. Results show the promising results in identifying VTVF
from non-VTVF episodes, and discriminating VT from VF episodes
under both clean and noisy ECG signals corrupted with baseline
wanders, PLI, MA, and other high-frequency noises.

The rest of this paper is organised as follows. Section 2 briefly
describes the characteristics of the VT/VF events. Section 3
presents the proposed VT/VF detection method. In Section 4, the
performance of the proposed method is evaluated using different
types of ECG arrhythmias and various kinds of noise. Finally,
conclusions are drawn in Section 5.

2. Life threatening arrhythmias: The VT and VF events are the
most life threatening ventricular arrhythmias [3]. The VT is a
very fast heart rhythm that begins in the ventricles. The
characteristics of VT are [25] wide QRS complexes; heart rate
more than 100 bpm (usually vary between 120 and 250 bpm); at
least three heartbeats in a row although there may be some
beat-to-beat variation; and the QRS axis is usually constant. The
VT episodes can be classified as sustained (>30 s) or
non-sustained VT (<30 s) and monomorphic or polymorphic. The
VF is the most important shockable cardiac arrest rhythm. The
characteristics of VF episodes are chaotic deflections of varying
amplitude; no identifiable P/T waves and QRS complexes; rate
varying between 250 and 500 bpm; and amplitude decreases with
duration (coarse VF −> fine VF). The recent development and
increased application of AEDs have prescribed very strong
requirements towards detection of VF and fast VT (>180 bpm)
episodes from the surface ECG signal.
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From different kinds of ECG beats including the normal, left
bundle branch block, right bundle branch block, atrial premature
(AP), aberrated atrial and junctional premature beats, premature
ventricular contraction, fusion of ventricular and normal, atrial
and junctional escape beats, paced beat, fusion of paced and
normal beats, atrial flutter, atrial fibrillation and blocked AP beat,
it is noted that the most of the ECG arrhythmias are having the
short and long PR and TP pause segments within cardiac cycles
expect for the VT and VF episodes. Figs. 1a–h illustrate the
characteristics of different types of ECG arrhythmias and VTVF
episodes.

In this work, we exploit the long and short pause intervals for
detecting the VT/VF events by adding bipolar sequence with alter-
nating positive and negative polarities of amplitudes to an ECG
signal. Figs. 2a and b illustrate the distributions of the ZCR
values estimated for the different ECG arrhythmias before and
after adding the bipolar sequence w[n] to the ECG signals, respect-
ively. From the ZCR distribution as shown in Fig. 2a, it is noted
that the noise-free ECG signals have the lesser ZCR values that
are not separable whereas Fig. 2b shows that the VTVF episodes
are having the much lesser ZCR values than that of the other
arrhythmia episodes that are separable after adding the bipolar
sequence to the ECG signal. This is the basis for the proposed
method of discriminating the VTVF episodes from non-VTVF
episodes.

3. Proposed VT/VF detection method: In this work, we present
an efficient and robust automated method for accurately detecting
the VT/VF episodes under noise and noise free conditions. The
proposed method consists of four major stages: (i) DCT-based
filtering method for simultaneously removal of BW, PLI noises
and smoothing out high-frequency noises; (ii) addition of bipolar
sequence; (iii) ZCR estimation for discriminating VTVF episodes
from non-VTVF episodes; and (iv) PPI feature-based VT/VF
discrimination.

3.1. DCT-based noise suppression: The detection performance
highly degraded under ECG signals corrupted with BW, PLI, and
MA noises. Therefore, many signal processing techniques such as
digital filters, adaptive filter, WT, and EMD are implemented to
Healthcare Technology Letters, 2016, Vol. 3, Iss. 3, pp. 239–246
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Fig. 2 Illustrates the distribution of ZCR values estimated for different arrhythmias
a Before adding the bipolar sequence
b After adding the bipolar sequence. The ZCR for the VTVF episodes is less than 0.15
remove ECG noises. Most methods use a high-pass filter (HPF)
with cut-off frequency of 1 Hz to remove the baseline wanders
and the Butterworth filter with a cut-off frequency of 30 Hz to
remove PLI and muscle noises. It is difficult to design an HPF
filter response with sharp attenuation to effectively remove
baseline wanders with frequency less than 1 Hz without
reducing the magnitude of the VT and VF signals with frequency
range of 2–10 Hz. The DWT has spectral leakage problem. A
selection of intrinsic mode functions is difficult under noise
conditions. Since the baseline wander and PLI noise signals can
be adequately captured using the elementary discrete sinusoids.
Therefore, in this work, we present the DCT-based filtering
approach to simultaneously remove baseline wander and PLI
noises from the ECG signals. Further, we implement a hard
thresholding rule with adaptive amplitude threshold to smooth out
high frequency noises. As compared with the existing filtering
approaches using the DWT and EMD, the DCT filtering approach
is simple.
Fig. 3 Illustrates the variations of DCT coefficients for the
a Noise-free ECG signal
b ECG plus BW
c ECG plus PLI
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Let x[n] be the input ECG sequence with length of N samples.
The DCT of the x[n] is computed as

c[k] = w[k]
∑N
n=1

x[n] cos
p(2n− 1)(k − 1)

2N

( )
, (1)

where w[k] = 1/
���
N

√
k = 1,

�����
2/N

√
, 2 ≤ k ≤ N , c[k] is the kth

DCT coefficient [26]. In this work, we implement the DCT filtering
approach for simultaneous removal of BW and PLI noises with the
BW frequency range of 0–1 Hz and the grid power-line frequency
range of 48–52 Hz. Fig. 3 illustrates the variation of the DCT coef-
ficients (zoomed version up to 1000) for the noise-free ECG signal,
the ECG plus BW and the ECG plus PLI signals. From the results, it
can be observed that the ECG plus BW signal has the first few DCT
coefficients having a very large amplitude as compared to noise-free
ECG signal. Meanwhile, the ECG plus PLI signal has the middle
DCT coefficients having the significant amplitude as compared to
noise-free ECG signal. By discarding the those DCT coefficients,
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Fig. 4 Illustrates the removal of BW and PLI noises from ECG signals using the DCT filtering approach: (a1) and (b1) are noisy normal ECG and VT signals;
(a2) and (b2) are the extracted BW and PLI noises using DCT-based approach; (a3) and (b3) are the denoised ECG signals
the BW and PLI noise signals can be removed from the ECG
signals.

In this work, the DCT coefficient indexes for the predefined
frequency ranges of the BW and PLI signals are computed as k =
(2 × N × fk)/Fs, where Fs is the sampling rate of a signal and fk is
the frequency of the kth DCT coefficient index. The removal of
BW and PLI noise signals is implemented by zeroing the DCT coef-
ficients of those frequency components. In practice, the ECG signal
may be corrupted with an instrument noise. Therefore, we imple-
ment a hard thresholding rule with an adaptive threshold to
smooth out high-frequency noise. The hard thresholding rule is
defined as

ĉ[k] = c[k], |c[k]| . ha

0, otherwise, k = 1, 2, 3, . . . , K,

{
(2)

where ηa is the amplitude threshold that is computed as the standard
deviation of the DCT coefficient vector c, and ĉ is the thresholded
DCT coefficient vector. Then, the reconstructed signal is obtained
by taking the inverse DCT of the thresholded coefficients. Fig. 4
illustrates the effectiveness of the DCT-based filtering approach
for suppression of BW, PLI, and HF noises. From the filtering
results, it is noted that the BW and PLI noises are significantly
removed from the noisy ECG signals. In this work, the
DCT-based smoothing is implemented to increase the robustness
in estimating the zero-crossing rates as well as to obtain robust
temporal features.

3.2. VTVF/non-VTVF discrimination using ZCR measurement: In
this work, we exploit a total number of zero-crossings in the pause
intervals between the local waves (including, Pend−Qon, Send−
Ton, and Tend− Pon of the filtered ECG signal s[n] is used for
discriminating the VTVF episodes from the non-VTVF episodes.
In order to reduce the effect of low-amplitude fluctuating
components, we add bipolar sequence w[n] of amplitudes with
alternating polarities to the processed ECG signal. The feature
signal z[n] is computed as the additive mixture of the filtered
ECG signal s[n] and the bipolar sequence w[n] with length of N
samples that has higher zero-crossings of N− 1. The feature
signal z[n] is obtained as

z[n] = s[n]+ w[n]. (3)
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For the feature signal z[n], the ZCR is computed as

ZCR = 1

N

∑N
n=0

|sgn(z[n])− sgn(z[n− 1])|, (4)

where N denotes the number of samples [27]. In this work, the ZCR
value obtained for a 3 s ECG signal is used to discriminate the
VTVF episodes from the non-VTVF episodes. For a total number
of 1170 VTVF and non-VTVF segments with a segment duration
of 3 s, the global ZCR values estimated for different kinds of the
ECG arrhythmias are shown in Figs. 5a and b before and after
adding the bipolar sequences to the filtered ECG signals. From
the ZCR distribution as shown in Fig. 5a, it is observed that the
noise-free ECG segments have the zero-crossing rates that are not
separable. After adding the bipolar noise sequence to the
noise-free ECG segments, the distribution of global ZCR values
as shown in Fig. 5b show that a ZCR value of 0.17 is the best
ZCR threshold for discriminating the VTVF episodes from the
non-VTVF episodes. From the ZCR distribution as shown in
Fig. 2b obtained for 98 segments of all types of arrhythmias, it is
noted that the global ZCR value is capable of discriminating the
VTVF episodes from the other ECG arrhythmias.

In this work, classification of VTVF and non-VTVF episodes is
performed by comparing the measured global ZCR value for the 3 s
VTVF and non-VTVF episodes with a predefined ZCR threshold
value of 0.17. The VTVF detection rule is defined as

Output = VTVF episode, ZCR , ZCRth

non-VTVF episode, otherwise.

{
(5)

3.3. PPI-based VT/VF discrimination: In this stage, the detected
VTVF episodes are processed for discriminating VF from VT
events. In most scenarios, it is noted that the heart rates are
different for the VT (100–250 bpm) and VF (250–500 bpm)
segments and shapes of the positive and negative half cycles are
different. In this work, the temporal features including mean
estimates of the positive PPI (PPPI) and negative PPI (NPPI) are
extracted from the filtered ECG signal. The steps involving in
finding the above features include: (i) find positive and negative
zero-crossings; (ii) find the minimum between positive and
negative zero-crossings and the maximum between negative and
Healthcare Technology Letters, 2016, Vol. 3, Iss. 3, pp. 239–246
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Fig. 5 Illustrates the distribution of ZCR values estimated for VTVF and non-VTVF episodes
a Before adding the bipolar sequence
b After adding the bipolar sequence. It shows that the capability of ZCR value in discriminating the VTVF episodes from the non-VTVF episodes
positive zero-crossings; (iii) find the mean of the PPP intervals as
well as NPP intervals to obtain the representative features
including the PPPI and NPPI. Fig. 6 illustrates the representation
of temporal features for the VT and VF segments. The
effectiveness of the those features is illustrated in Figs. 7a and b
using 500 VT/VF segments with segment duration of 3 s. Results
show that the distributions of the mean estimates of the PPPI and
NPPI features (in ms) estimated for the VT and VF segments. It
is observed that the mean estimates of the PPPI and NPPI
features are capable of separating the VT from VF segments. In
this work, the 3 s VTVF segments are classified as VT and VF
events by comparing the estimated mean PPPI and NPPI values
with a predefined interval threshold of 250 ms as shown in
Figs. 7a and b. The VT/VF discrimination rule is defined as

Output = VF episode, PPPI , Tth and NPPI , hI

VT episode, otherwise.

{
(6)

4. Results and discussion: In this section, we evaluate the
effectiveness of the proposed method using 18,000 VTVF and
non-VTVF episodes taken from 6 Physionet databases [28]:
MIT-BIH arrhythmia database (MITADB), the Creighton
Fig. 6 Illustrates the measurement of temporal features such as PPPI and NPPI
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university VT database (CUVTDB), the MIT-BIH malignant VT
database (MITMVTDB), the normal sinus rhythm database
(NSRDB), noise stress test database (NSTDB), the ST change
database (STCDB). The duration of episode is 3 s. The test ECG
databases include different kinds of PQRST morphological
patterns (such as, sharp and tall P and T waves, negative QRS
complex, small QRS complex, and wider QRS complex), regular
and irregular rhythms, short and long pauses and different kinds
of noise such as baseline wanders, powerline interference, and
muscle artefacts. Our test databases include the following types
of non-VT–VF beats: normal beat; left bundle branch block; right
bundle branch block; atrial premature complex (APC); aberrated
atrial premature; nodal ( junctional) premature; premature
ventricular contraction; fusion of ventricular and normal beats;
fusion of paced and normal beats; blocked APC; and the
ventricular tachycardia; and ventricular fibrillation episodes.

The performance of the VTVF detection method is evaluated in
terms of three benchmark parameters: the sensitivity (Se), specifi-
city (Sp), overall accuracy (OA) that are computed as

Se (%) = TN

TN+ FP
× 100 (7)
for discriminating the VT episode from the VF episode
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Fig. 7 Illustrates the distributions of the temporal features extracted from VT and VF episodes
a PPPI features
b NPPI features

Table 1 Performance of the method for different ZCR thresholds

ZCRth NS FP FN TP TN Se, % Sp, % OA, %

0.15 1200 78 0 600 522 87 100 93.5
0.16 1200 35 0 600 565 94 100 97.08
0.17 1200 3 0 600 597 99.5 100 99.75

NS: number of segments; VTVF: 600 and non-VTVF: 600
Sp (%) = TP

TP+ FN
× 100 (8)

OA (%) = TP+ TN

TP+ TN+ FP+ FN
× 100 (9)

where true negative (TN) denotes VTVF episode being classified as
VTVF and false positive (FP) denotes VTVF episode being
miss-classified as non-VTVF episode, true positive (TP) denotes
non-VTVF episode being classified as non-VTVF episode and
false negative (FN) denotes non-VTVF episode being miss-classified
as VTVF episode.

In the first experiment, we study a selection of optimal ZCR
threshold using the 1200 VTVF and non-VTVF segments.
Table 1 summarises the detection results for the ZCR thresholds
of 0.15, 0.16, and 0.17 that are obtained from the ZCR distribution
as shown in Figs. 2b and 5b. From the results, it is noted that the
method has better detection results for ZCR threshold of 0.17.
The reference ZCR threshold line is shown in Figs. 2b and 5b. In
this work, a ZCR threshold of 0.17 is chosen for further
Table 2 Results of the non-VTVF/VTVF episode discrimination

Database NS FP FN T

MITDB 13,000 4 0 12
CUDB and VFDB 2000 4 0
NSRDB 1000 0 0 1
STDB 1000 0 0 1
NSTDB 1000 0 6 9
overall 18,000 8 6 15
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performance comparison. Table 2 summarises the detection
results of the proposed method for the VTVF and non-VTVF epi-
sodes taken from six standard ECG databases. From the results, it
is noted that the method has a Se of 99.61% for a total of 2058
VTVF episodes taken from the CUDB, VFDB, and MITDB. The
method has an average Se of 99.61%, Sp of 99.96%, and OA of
99.92% for a total of 18,000 episodes including the 15,942
non-VTVF episodes and 2058 VTVF episodes. From the results,
it is noted that the method fails to detect the short-duration VTVF
episodes which are less than 2 s that are mixed with the
non-VTVF events in the 3 s ECG signal.

In the second experiment, we study the robustness of the method
using the 600 VTVF segments and 600 non-VTVF segments for the
ECG noises including BW, MA and PLI and additive white
Gaussian noise (AWGN) with signal-to-noise ratios (SNRs)
ranging from 30 to 10 dB. Table 3 summarises the detection
results of the proposed method. It is noted that the method can
achieve a Se of 99.33%, Sp of 100%, and OA of 99.67% for
VTVF and non-VTVF episodes with SNR of 10 dB. Table 4
summarises the performance of the method in discriminating the
VT from VF episodes for a total of 2000 VT/VF episodes taken
from the Creighton university and MIT-BIH malignant VT
databases. The method achieves a Se of 100%, Sp of 99.70%,
and OA of 99.85%.

Based upon comparison results as shown in Table 5, it is noted
that the proposed method outperforms the other detection
methods based on the sets of features extracted in time-domain,
frequency-domain and decomposed signals and the machine learn-
ing approaches. Furthermore, it is noted that the proposed method
employs a simple DCT filtering approach and single ZCR feature
P TN Se, % Sp, % OA, %

,942 54 93.10 100 99.97
0 1996 99.8 – 99.8
000 0 – 100 100
000 0 – 100 100
94 0 – 99.40 99.40
,936 2050 99.61 99.96 99.92
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Table 4 VT/VF classification performance of the proposed method

Event NS FP FN TP TN Se, % Sp, % OA, %

VT 1000 0 – – 1000 100 – 100
VF 1000 3 – 997 – – 100 99.70
overall 2000 0 3 997 1000 100 99.70 99.85

Table 3 Performance of the method under BW, MA, and PLI noises and
different SNRs

Noise type NS FP FN TP TN Se, % Sp, % OA, %

PLI+BW 1200 3 4 596 597 99.5 99.33 99.42
MA 1200 2 0 600 598 99.67 100 99.83
30 dB 1200 3 0 600 597 99.5 100 99.75
20 dB 1200 3 0 600 597 99.5 100 99.75
10 dB 1200 4 0 600 596 99.33 100 99.67

Table 6 Computational time of the signal processing techniques

Signal processing method Coding, ms

WT 10.2
variational mode decomposition 305.5
EMD 35871.9
DCT 0.78125
in detecting the VTVF episodes and two temporal features for dis-
criminating the VF episodes from the VT episodes. The proposed
method is implemented using MATLAB with Intel i3 Processor,
1.90 GHz, 4 GB RAM. The computational time for the most
widely used signal processing techniques such as WT, variational
mode decomposition, EMD, and DCT. Based on the computational
Table 5 Performance comparison of detection methods

Ref. Techniques Performance Database

[2] Baseline wander and
PLI removal, SVM,
14 features, GA

AC = 96.3%,
Se = 98.4%,
Sp = 98.0%

MITDB,
CUDB,
AHADB

[3] Mean subtraction,
moving average filter,
HPF, LPF, SVM, 13
features, FS-filtering

Shockable: Se = 95%,
Sp = 99.0%,VFib:

Se = 92%, Sp = 97%

CUDB,
MITDB

[5] Mean subtraction,
moving average filter,
HPF, LPF, SVM, 11

features

VF against non-VF:
AUC = 0.96%,

Se = 81%, Sp = 85%.
shockable against

non-shockable: AUC =
0.99%, Se = 96%, Sp =

99%

MITDB,
CUDB,
VFDB

[6] Bandpass filter,
CWT, scalogram,
two features, LDA

Classification: VF as
VF = 75% and as

VT–VF = 25%, VT–VF
as VT–VF = 75% and
as VF = 25%, VT
as VT = 75% and
as VT–VF = 25%

MITDB

[7] Haar wavelet, 14
features, NFN with
WFM functions

AC = 92%, Se = 93% CUDB

[8] Bandpass filter and
time-delay method

Se = 79%, Sp = 97.8% MITDB

[29] Wavelet, DCT, PCA,
PNN

Se = 98.69%,
Sp = 99.91%,
AC = 99.52%

MITDB

our
method

DCT-based noise
removal, ZCR and

PPI features

VTVF/non-VTVF
Detection: Se = 99.61%,

Sp = 100%,
OA = 99.61%. VT/VF
detection: Se = 100%,

Sp = 99.70%,
OA = 99.85%

MITDB,
CUDB,
VFDB
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results summarised in Table 6, the proposed method has an encod-
ing time of 0.781 ms that is much lesser than the other methods. In
future directions, we extend a further in-depth study on reducing
computational load by implementing the proposed method on real-
time signal processor hardware platforms.

5. Conclusion: In this Letter, an efficient and robust method for
automatically detecting VTVF episodes and discriminating the
VT episodes from the VF episodes using bipolar sequence with
alternating polarities of amplitudes and temporal features such as
ZCR, positive and negative peak to peak intervals. In this work,
we present DCT-based filtering approach for simultaneously
removal of BW and PLI and high-frequency noises. The
proposed method is evaluated using a total of 18,000 VTVF and
non-VTVF episodes taken from the 6 standard ECG databases
such as MITADB, CUVTDB, MITMVADB, NSRDB, NSTDB,
and STCDB. The method achieves an overall Se of 99.61%, Sp
of 99.96%, and OA of 99.92% in discriminating the VTVF
episodes from the non-VTVF episodes. The method achieves an
overall Se of 100%, Sp of 99.70%, and OA of 99.85% in
discriminating the VF episodes from the VT episodes. Evaluation
results show that the proposed method can achieve significantly
better detection rates as compared with the existing methods.
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