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Haemorrhages (HAs) presence in fundus images is one of the most important indicators of diabetic retinopathy that causes blindness. In this
regard, accurate grading of HAs in fundus images is crucial for appropriate medical treatment. The purpose of this Letter is to assess the relative
performance of statistical features obtained with three different multi-resolution analysis (MRA) techniques and fed to support vector machine
in grading retinal HAs. Considered MRA techniques are the common discrete wavelet transform (DWT), empirical mode decomposition
(EMD), and variational mode decomposition (VMD). The obtained experimental results show that statistical features obtained by EMD,
VMD, and DWT, respectively, achieved 88.31% ± 0.0832, 71% ± 0.1782, and 64% ± 0.0949 accuracies. It also outperformed VMD and
DWT in terms of sensitivity and specificity. Thus, the EMD-based features are promising for grading retinal HAs.
1. Introduction: Diabetic retinopathy (DR) is a disease that causes
blindness; moreover, early and appropriate detection is necessary
for better medical treatment. In this regard, several works have
proposed automated diagnosis systems of fundus images to assist
ophthalmologists in the diagnosis of the disease; either by
detecting microaneurysms (MAs) [1–3], exudates [4–6],
haemorrhages (HAs) [1, 7, 8], or by vessel segmentation-based
approaches [4, 9].

The purpose of this Letter is to compare the ability of three
multi-resolution-based techniques in grading HAs in fundus
images. In particular, the discrete wavelet transform (DWT) [10],
empirical mode decomposition (EMD) [11], and variational mode
decomposition (VMD) [12, 13] are employed to analyse fundus
image for better characterisation. We rely on grading HAs in
fundus images for two reasons. First, they present a serious risk
of blindness. Indeed, detecting low-grade HAs is essential for
early treatment to avoid blindness. Second, only a limited and
related works have paid attention to such issue within the context
of DR detection [1, 7, 8].

The contribution of the work follows. First, since multi-
resolution analysis (MRA) is appropriate to reveal hidden patterns
in textural images, we compare the effectiveness of each MRA ap-
proach in tackling the hard problem of retina HA grading. This is
the first work to focus on performance of MRA techniques in
grading HAs in retina. Indeed, accurate and early detection of low-
grade HAs is crucial for appropriate medical treatment to avoid
blindness. In this regard, non-adaptive (DWT) and adaptive techni-
ques (EMD and VMD) are considered in our work. Second, the per-
formance of the VMD which is a new MRA technique is employed
for the first time to check its effectiveness in grading HAs in retina.

The remaining of our Letter follows. A succinct review of
methods is given in Section 2. The classification results are pre-
sented in Section 3. Finally, we conclude this Letter and suggest
directions for future research in Section 4.

2. Methods: In this Letter, each multi-resolution technique is
employed in the first stage to obtain fundus image in
high-frequency domain. This is a useful step to highlight
biological changes and discontinuities due to the presence of
HAs. Then, in order to characterise texture, three statistics are
computed to describe distribution of pixels including the mean,
third moment, and smoothness. In particular, these statistics are
computed only from diagonal frequency component obtained by
DWT (high–high-frequency sub-band: HH), first bi-dimensional
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intrinsic mode function (BIMF), and first VM as they all
correspond to high-frequency elements of the original image. The
extracted statistical features are given to the support vector
machine (SVM) [14] to classify data. For instance, the SVM is
employed to grade HAs: low versus high severity. In our Letter,
the SVM classifier is chosen for several attractive features.
Indeed, it is constructed following statistical learning theory to
execute the principle of structural risk minimisation. In addition,
it is capable to generalise results when dataset is not large. In
addition, it tolerates large dimension sets and imperfect data [15].
The block diagram of the experiments is illustrated in Fig. 1.
2.1. MRA techniques: The DWT [10] uses a predetermined wavelet
function to analyse an input image into four sub-bands that
characterise it for different orientations: the approximation [low–
low (LL)], the horizontal detail (low–high), the vertical detail
(high–low), and the diagonal detail sub-band (HH). As a result,
the DWT provides horizontal, vertical, and diagonal information
about the frequency spectrum of the original input image. The
DWT decomposition procedure can be replicated simply by
decomposing LL sub-band. In our Letter, popular Daubechies-4
wavelet function is used for image analysis at first, second, and
third levels of decomposition. Thus, statistical features used to
describe distribution of pixels are computed from HH sub-bands
at first, second, and third levels of decomposition: HH1, HH2,
and HH3.

The two-dimensional (2D) EMD is a fully adaptive multi-
resolution technique employed to partition a signal into an ensem-
ble of IMFs based on a sifting algorithm [11]. For instance, the
EMD decomposes an image f (x, y) of size M ×N into a set of n
BIMFs. Therefore, the image is represented as follows

f x, y
( ) = ∑n

ℓ=1

BIMF1 x, y
( )+ res x, y

( )
(1)

where BIMF(x, y) represents the image at different scales and res
(x, y) is a residue. For simplicity, the number n of desired BIMF
is fixed to four to speedup the sifting process.

The goal of the VMD is to breakdown an input signal into k dis-
tinct VMs, so as each mode is limited within a bandwidth in spectral
domain [12, 13]. Therefore, each mode k is typically compact in the
region of a centre pulsation ωk calculated during decomposition [12,
13]. For example, the 1D signal f is represented by several modes uk
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Fig. 1 Block diagram of experiments
based on a constrained optimisation problem given by [12]

min
uk , vk

∑
k

∂t d t( ) + j
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(2)

Subject to

∑
k

uk = f (3)

where f is the signal, u is its mode, ω is the frequency, δ is the Dirac
distribution, t is the time script, k is number of modes, and * indi-
cates convolution. The mode u with high-order k indicates low-
frequency elements. In the case of an image, the solution to
obtain optimal uk (sub-images) in Fourier domain by using
Lagrange multipliers λ is expressed as follows [13]

ûk = argmin
ûk

l j v−vk

( )
1+ sgn v ·vk

( )( )
ûk v( )[ ]∥∥ ∥∥2

2

+ f̂ v( ) −∑
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2
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2

2

(4)

More details are found in [12, 13]. To speedup the VMD algorithm,
the parameter k is fixed to four.
Table 1 Average and SD of each feature

MRA Grade μ γ η

EMD low 121.55 ± 6.36 0.18 ± 0.05 2.47 ± 2.66
EMD high 122.02 ± 10.80 0.19 ± 0.01 2.28 ± 4.75
VMD low 122.98 ± 18.91 0.19 ± 0.01 1.29 ± 7.98
VMD high 138.73 ± 59.90 0.15 ± 0.07 2.64 ± 8.60
DWT-HH1 low 78.01 ± 6.08 0.14 ± 0.01 14.51 ± 0.61
DWT-HH1 high 78.76 ± 9.73 0.14 ± 0.02 13.89 ± 0.84
DWT-HH2 low 90.56 ± 5.35 0.16 ± 0.01 13.42 ± 0.97
DWT-HH2 high 90.29 ± 7.59 0.16 ± 0.02 13.39 ± 1.51
DWT-HH3 low 102.42 ± 3.54 0.18 ± 0.01 10.65 ± 1.23
DWT-HH3 high 103.31 ± 5.41 0.18 ± 0.01 10.20 ± 1.87
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2.2. Features extraction, SVM, and performance measures: In this
Letter, three statistical measures are employed to characterise
retina texture; namely, the mean (μ), third moment (γ), and
smoothness (η) obtained from an image f (x, y) of size M ×N.
They are given by [16]

m =
∑L−1

i=0

zip zi
( )

(5)

g =
∑L−1

i=0

zi − m

d

( )3
(6)

h = d2

1+ d2
(7)

where

d =
∑L−1

i=0

zi − m
( )2

(8)

and z is the pixel intensity, p is the probability density of the ith
pixel in the histogram, and L is the total number of intensity
levels. These extracted statistical features are employed to train
the SVM classifier used to distinguish between low- and
high-grade HAs.

Technically, the SVM [14] nonlinearly maps the training points
to a high-dimensional feature space by employing a kernel function.
In particular, a hyper-plane is built to separate data. The nonlinear
SVM classifier S(x) for input data x and output data y is given by

S x( ) = sign
∑
i=1

yiai Kkx, xil+ b

( )
(9)

where α is the Lagrange multiplier, K is a kernel function, and b is a
fixed parameter. In this Letter, a polynomial kernel function is
employed. Its expression follows

K x, xi
( ) = s x · xi

( )+ 1
( )d

(10)

where d is the polynomial degree fixed to two in our work in order
to accelerate convergence of the SVM.

Finally, accuracy, sensitivity, and specificity statistics are
employed to assess performance of EMD-SVM, VMD-SVM,
HH1-SVM, HH2-SVM, and HH3-SVM models. In our Letter,
Fig. 2 Retina image with low-grade HA
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Fig. 3 Example of first BIMF for low-grade HA Fig. 5 Example of DWT resulting HH1 of low-grade HA
low-grade HAs correspond to positive samples, whilst high-grade
HAs correspond to negative samples.

3. Experimental results: We used 24 colour images (150 × 130
pixels) found in the STructured Analysis of the Retina (STARE)
[17] database: 12 low-grade fundus with HAs and 12 fundus
images with high-grade HAs. Finally, all experiments are
performed with leave-one-out method to better generalise the
results as dataset size is small. The experiments are executed on a
computer with Intel(R) Core(TM) i5-2500, central processing unit
at 3.30 GHz, 4 G random access memory, and MATLAB© 2014.
The average and standard deviation (SD) of each feature is
provided in Table 1. An example of retina image with low-grade
HA is illustrated in Fig. 2. Examples of its high-frequency
components obtained by EMD, VMD, and DWT are,
respectively, exhibited in Fig. 3–5. Similarly, an example of
retina image with high-grade HA is illustrated in Fig. 6, and its
resulting high-frequency components obtained by EMD, VMD,
and DWT are, respectively, exhibited in Fig. 7–9.

Table 2 summarises the obtained experimental results. For in-
stance, the SVM achieved 88.31% ± 0.0832 accuracy, 83.71% ±
0.0983 sensitivity, and 93.60% ± 0.0922 specificity when it is
trained with EMD-based features to distinguish between low- and
high-grade retina HAs. Besides, the SVM classifier achieved
71% ± 0.1782 accuracy, 76.03% ± 0.1355 sensitivity, and 66% ±
Fig. 4 Example of first VM for low-grade HA
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0.2609 specificity when it is trained with VMD-based features.
Finally, the best performance of DWT-based features was achieved
by those extracted from HH3 sub-band as the SVM yielded to 64%
± 0.0949 accuracy, 77% ± 0.1423 sensitivity, and 55% ± 0.1387
specificity. Therefore, the EMD-based features performed the
best, followed by VMD-based features. Thus, features obtained
from standard DWT performed the worst. In particular, the SVM
underperformed when trained with DWT-based statistical features
for all levels of decompositions. Recall that the highest specificity
(correct detection of low-grade retina HAs) is obtained with features
extracted from EMD resulting high-frequency image: 83.71% ±
0.0983. This is an interesting result as ophthalmologists are more
concerned with detecting low-grade HAwith appropriate treatments
in order to avoid potential blindness.

As far as we know, this is the first work to compare the perform-
ance of several MRA techniques based features in the context of
retina HA grading. Three MRA techniques were considered includ-
ing the classical DWT, the EMD, and the recently introduced VMD.
We relied on extracting textural features from MRA domain as the
latter is effective in discovering hidden patterns in the original
image; especially, sudden changes in biological tissue by focusing
on high-frequency components. The DWT was selected as it is con-
ventional but not adaptive. In contrary, the EMD and VMD are
adaptive MRA techniques. In addition, while VMD is adaptive, it
is also robust to noise that may corrupt the original signal as it is
Fig. 6 Retina image with high-grade HA
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Fig. 7 Example of first BIMF for high-grade HA

Fig. 8 Example of first VM for high-grade HA

Table 2 Experimental results

Methods Accuracy Sensitivity Specificity

VMD 71% ± 0.1782 76.03% ± 0.1355 66% ± 0.2609
EMD 88.31% ± 0.0832 83.71% ± 0.0983 93.60% ± 0.0922
DWT-HH1 57% ± 0.0609 50% ± 0.1226 65% ± 0.1981
DWT-HH2 59% ± 0.1851 71% ± 0.1485 46% ± 0.2298
DWT-HH3 64% ± 0.0949 77% ± 0.1423 55% ± 0.1387
based on Wiener filtering in Fourier domain. In fact, EMD and
VMD were successful in processing of biomedical signals [18–
21]. Besides, though the DWT provides a sparse representation of
the original image in frequency domain, it is non-adaptive and
Fig. 9 Example of DWT resulting HH1 of high-grade HA

Healthcare Technology Letters, 2016, Vol. 4, Iss. 1, pp. 20–24
doi: 10.1049/htl.2016.0067
requires a mother wavelet function to be appropriately determined
before image processing. Finally, the SVM was chosen as it is
based on structural risk minimisation algorithm. In this regard, it
achieves global minimum. Furthermore, it tolerates high-
dimensional and/or incomplete data [15]. Indeed, the SVM was
found to be effective in biomedical classification problems [5, 6,
22, 23].

Though datasets and experiments are different, the results from
some related works [1, 7, 8] are presented for indication purpose.
In other words, direct comparison is difficult. For instance, the
model in [1] achieved a sensitivity of 84.31 and 87.53% for the rec-
ognition of MAs and HAs. In addition, the obtained specificities
were 93.63 and 95.08% for MAs and HAs, respectively. In fact,
the model was designed to classify spots into MAs and HAs after
extracting optic disc, fovea, and retinal tissue, followed by segmen-
tation of dark spot lesions. In a similar problem (distinguishing
between MAs and HAs), a sensitivity of 100%, a specificity of
56.00%, and an accuracy of 83.08% were obtained in [7] where a
set of regional colour and shape features were extracted, a logistic
regression was performed for feature selection, and a radial basis
function neural network was employed for classification. Besides,
the system designed in [8] achieved an accuracy of 90% in detection
of large HAs based on splat feature classification used to distinguish
blood splats from non-blood splats. Finally, recall that the authors in
[24] only focused on finding optimal DWT sub-band in order to
detect DR based on classification of MAs. In our Letter, DWT,
EMD, and VMD are all considered and their performances are com-
pared in the context of HA grading: low versus high grade.
4. Conclusion: In summary, we compared the effectiveness of
three MRA techniques; namely, the standard DWT, the adaptive
EMD, and the new signal processing technique called VMD in
grading HAs in fundus images. Indeed, this is the first work to
conduct such work. On the basis of our experiments, the main
conclusion is that the automatic classification of fundus HAs for
evaluation of DR is possible by using EMD-based statistical
features and SVM classifier. Indeed, they were found to be
promising for grading retinal HAs. Indeed, EMD-based approach
is superior to VMD and DWT approaches in terms of accuracy,
sensitivity, and specificity. These results indicate that it is helpful
in grading retina HA and particularly in detecting low-grade HA
to appropriately and early treat them to avoid blindness. For
future work, as the results are preliminary in nature, this Letter
can be applied to any available database with large number of
fundus HA samples. In addition, other classifiers and kernels will
be employed for comparison purpose.
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