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In recent years, compressed sensing (CS) has emerged as an effective alternative to conventional wavelet based data compression techniques.
This is due to its simple and energy-efficient data reduction procedure, which makes it suitable for resource-constrained wireless body area
network (WBAN)-enabled electrocardiogram (ECG) telemonitoring applications. Both spatial and temporal correlations exist simultaneously
in multi-channel ECG (MECG) signals. Exploitation of both types of correlations is very important in CS-based ECG telemonitoring systems
for better performance. However, most of the existing CS-based works exploit either of the correlations, which results in a suboptimal
performance. In this work, within a CS framework, the authors propose to exploit both types of correlations simultaneously using a sparse
Bayesian learning-based approach. A spatiotemporal sparse model is employed for joint compression/reconstruction of MECG signals.
Discrete wavelets transform domain block sparsity of MECG signals is exploited for simultaneous reconstruction of all the channels.
Performance evaluations using Physikalisch-Technische Bundesanstalt MECG diagnostic database show a significant gain in the
diagnostic reconstruction quality of the MECG signals compared with the state-of-the art techniques at reduced number of measurements.

Low measurement requirement may lead to significant savings in the energy-cost of the existing CS-based WBAN systems.

1. Introduction: The emerging field of compressive sensing (CS)
[1] is a novel sensing/sampling paradigm that enables sparse
signal recovery from a small set of linear projections called
measurements. The CS framework of data reduction consists of a
simple matrix—vector multiplication, which makes signal
encoding quite simple and energy efficient. There are several
resource-constrained applications such as wireless body area
network (WBAN)-enabled electrocardiogram (ECG)
telemonitoring [2—6], which have efficiently employed the CS
framework to address various challenges faced in the area, such
as energy efficiency, computational complexity, memory usage
and so on.

ECG signals are recorded from different locations of the body in
order to capture the three-dimensional (3D) view of the human
heart. In general, they are recorded in twelve channel format,
which is termed as multi-channel (or multi-lead) ECG (MECG).
Due to the presence of pathological information in multiple leads,
cardiologists prefer MECG for detailed diagnosis [7]. The ECG
signals from three channels/leads are shown in Fig. 1. It can be
observed that, in addition to temporally correlated information
within a single channel, different channels also have spatially corre-
lated information. ECG signals in different channels are narrow
angle projections of same electric heart vector. This generates inher-
ent inter-channel (spatial) correlations in MECG signals in addition
to intra-channel (temporal) correlations (Fig. 1). Therefore, in
CS-based ECG compression techniques, spatiotemporal (spatial +
temporal) correlation must be considered for optimal performance.
However, most of the existing works reported in the literature have
exploited either temporal correlation [2, 3, 5, 6], or spatial correlation
[4, 8]. No CS-based work is reported in the literature that has
exploited both types of correlations in MECG signals simultaneous-
ly. In this work, we have targeted to exploit spatiotemporal correla-
tions during joint CS (JCS) reconstruction of different channels.

The inherent correlated structure of MECG signals becomes
more visible in wavelet domain. Fig. 2 shows a joint amplitude
plot of wavelet coefficients in different channels. Similar structural
variations within the channel and across the channels can be clearly
observed. This motivated us to explore a new CS model where this
correlated structure of MECG signals can be exploited, which, in
return, is expected to boost the joint recovery performance. A
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spatiotemporal sparse CS model [9] is employed for this purpose
in place of traditional single/multiple measurement vector (SMV/
MMYV) CS models. The SMV/MMV CS models were used in
earlier studies. A JCS-based MMV approach was proposed in [4]
for power efficient joint MECG compression. Recently, we have
shown that the performance of the above JCS-based approach can
be enhanced substantially by emphasising the important ECG
features using a weighted mixed-norm minimisation-based joint re-
covery algorithm [8]. The MMV-based recovery approaches al-
though target spatial correlations, they ignore the temporal
correlations within the channels itself. The SMV models, on the
other hand, targets temporal correlations only as they process
each ECG channel individually [2, 3, 5, 6]. The CS model
employed in this work exploits the spatial as well temporal correla-
tions simultaneously by modelling the MECG signals in a block
structure form. Block structure is present in real MECG signals
(Figs. 2 and 3), which can be exploited for a better JCS recovery.
The proposed recovery approach adaptively learns and exploits
both types of correlations while reconstructing signals from all
the channels simultaneously. The significant reduction in output
distortion is achieved at a reduced number of measurements
(higher compression ratio) while preserving important diagnostic
ECG features (P wave, QRS complex, ST segment, and T wave).

The remaining of this Letter is organised as follows: Section 2
discusses the proposed methodology. Performance evaluations
and comparative study are presented in Section 3 followed by
conclusions in Section 4.

2. Methods: CS-based data reduction approach consists of a simple
matrix—vector multiplication. The resulting compressed data also
called measurements is sent to the remote healthcare centres,
where the original MECG signals are recovered back in wavelet
domain using a Bayesian learning-based joint sparse recovery
technique. Detailed steps are explained in the following
subsections.

2.1. CS framework of multi-channel data compression

2.1.1 Problem formulation: Let us arrange the L channels of
N-dimensional MECG signals in the columns of a data matrix
X =[x, %, X3, ..., x,] € RY*L Furthermore, if we use the
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Fig. 1 Spatiotemporal correlation structures in MECG signals. ECG
signals from three different channels/leads of dataset s0146lrem exhibiting
anterior myocardial infarction are shown in a, b and c. Encircled heart
beats indicate the spatially and temporally correlated information across
the channels and within the channel

same orthonormal wavelet basis W = [, ¥,, Y53, ..., Ysy] to rep-
resent the ECG signals from all the channels, then the joint
representation is given by X = WA, where 4 = [, o, a3,
o) E R¥*L contains the wavelet coefficient vectors of all
the channels. Due to the spatiotemporal correlation among the
channels, most of the diagnostically relevant information in all
the ECG channels lies in low frequency wavelet subbands only.
High frequency wavelet subbands are mostly noise dominated
and carry very small (negligible) ECG information (Fig. 2).
Therefore, X can be assumed to be having a block structure in
wavelet domain, wherein few non-zero blocks only contain most
of the ECG information (Fig. 3). Under this block sparsity assump-
tion, the compressed measurement vectors corresponding to all the
ECG channels in X can be obtained by

Y=WX+V (1)
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where ® is a sensing matrix, V' is a noise matrix, and ¥ is a meas-
urement matrix of L measurement vectors. Wavelet domain is used
as the sparsifying transform W in (1) during JCS recovery at the
decoder as

Y=0dWA+VL204+V )
where @ = ®W. We used a binary sparse random sensing
® € RV which satisfies a modified restricted isometric property
(RIP), referred to as RIP, [2]. Sparse matrices are memory-efficient
and have least computational complexity, which helps minimise the
energy cost of the encoder [6].

2.2. Spatiotemporal Bayesian learning-based MECG recovery:
Bayesian learning-based sparse recovery algorithms are known
for superior joint sparse reconstruction due to their specific
feature that global minimum is always the sparsest solution unlike
£, minimisation-based algorithms [10]. Also, they are having
fewer local minima than some classic MMV algorithms. We
employed a spatiotemporal sparse Bayesian learning
(STSBL)-based algorithm [9] for JCS reconstruction of MECG
signals. It is proposed recently for joint sparse recovery in a
multi-channel scenario when signals share spatiotemporal
information. STSBL model assumes that signals in ensemble
possess inter-signal as well as intra-signal correlations. It
processes signals ensemble in the form of groups/blocks
containing spatially and temporally correlated signal samples. For
MECG signals in X, following block structure is assumed in
wavelet domain:

Ay
Apy

Al

where 4[; € R%*" is the ith block of A containing d; samples from
each L ECG channel and )% | d; = N. So, each block A4, now
contains correlated MECG signal samples from across the
channels (in rows) and from within the channels (in columns).
Each block is either a non-zero block or almost a zero block. An
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Fig. 2 Variation of amplitudes of wavelet coefficients in various subbands (cA7, cD7-cD1) of eight fundamental ECG channels

Healthcare Technology Letters, 2017, Vol. 4, Iss. 2, pp. 50-56
doi: 10.1049/htl.2016.0049

51

This is an open access article published by the IET under the
Creative Commons Attribution-NonCommercial License (http:/
creativecommons.org/licenses/by-nc/3.0/)



9 | | | i I | carecorecos
. . . . [ . cbs
@ 100/ i . [ [} . . cD4
— . - cD3
5 l [ ] 1] . . .
S 200 ! | | |
E i - . <02
S 300 ! ' ' ' . '
2 -
g H
= 400 3 . L | | | s
500| ' ¢ 1 I
! | ' ' [ !
Lead| Leadll V1 v2 v3 va Vs V6

Multichannel ECG

Fig. 3 Best K-term joint sparse approximation of MECG signals in wavelet
domain. Indices of non-zero wavelet coefficients are represented by blue
dots

example of such block structure in real MECG signals is shown in
Fig. 3. The STSBL model (1) assumes each block A; having
parameterised Gaussian distribution:

p(vec(dpy); v, B, C) = N0, (v,C)®B), i=1,....g ()

where B € R and € € R%*% are the unknown positive definite
matrices capturing the inter-channel (spatial) and intra-channel
(temporal) correlations in A, respectively, and ® is the
Kronecker product. The 7y is a hyperparameter controlling the
block sparsity of A, i.e. a block is zero or not. The VCC(A?;]) is a
column vector formed by the vectorisation of 2D block A4, (by
stacking its columns in a vector). Assuming blocks A, i =
1,2, ..., g to be mutually independent, the distribution of matrix
A is given by p(vect(4'); B, {y., 4;};) = N(0, [] ®B), where []
is a block diagonal matrix with ith element y,C,(V;). Similarly,
noise matrix V is assumed to have similar distribution with
mutually independent rows: p(vect(VT), A, B) = N(0, Ml ® B),
where A is a scalar. Using these priors, maximum a posterior
(MAP) estimation of wavelet coefficient matrix A is estimated as
the mean of the posterior. An expectation maximisation-based
approach is adopted to estimate the parameters vy, C, B, and A.
More details about the parameter estimation and learning can be
found in [9]. The estimated coefficient matrix A4 consists of
wavelet domain MECG signals which can be transformed back
into time domain using X = vy,

3. Results and discussions: The proposed method is evaluated
using MECG signals from Massachusetts Institute of Technology
Beth Israel Hospital (MIT-BIH) and Physikalisch-Technische
Bundesanstalt (PTB) databases [11, 12]. MIT-BIH is a 2-channel
arrthythmic database carrying ECG signals from 47 subjects with
sampling frequency f, = 360 Hz and 11-bit resolution. PTB is a
15-channel database carrying various diagnostic MECG signals
from 290 patients sampled at f; = 1kHz with 16-bit resolution.
All the two channels of MIT-BIH database and eight fundamental
channels of PTB database are used for the experiments. ECG
signals are processed in the form of segments of length N = 512
samples [5]. Daubechies-4 (db4) wavelets are used as the
sparsifying bases during CS recovery [8]. A random sparse
binary sensing matrix @ with binary entries, i.e. Os and 1s is used
in the joint sensing operation [6]. The experiment is run for 50
iterations to calculate the average results with the different
realisation of @ each time.

3.1. Performance metrics used: The performance of the proposed
method is evaluated using different quality measures, such as
percentage-root mean square difference (PRD), joint PRD,
compression ratio (CR), and QS [4, 9, 5]. They are defined as
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follows:

PRD (%) = <M> x 100 @)
lll ’
Joint PRD (%) = HX:LHF x 100, 5)
%l

where x and X are the original and reconstructed ECG signals from a
single channel, respectively. The data compression efficiency of the
proposed method is measured using CR, which is defined in
following ways:

CR (%) = Dorig = beomp x 100, CRI = borig (6)
bcomp comp

where b, and b, are the bits required to represent original and
compressed signals, respectively. The QS defines the trade-off
between CR1 and corresponding PRD and is given by:
QS = CR1/PRD. However, keeping in view the less acceptability
of the above defined distortion measures from clinical point of
view [2], we have also -calculated wavelet energy-based
diagnostic distortion (WEDD) as a diagnostic distortion measure.
The WEDD is defined as follows [13]:

N, 2
S+1 LW
WEDD (%)= Y wWPRD; where w, = % )
=1 im1 2kt Wik

where S is the number of wavelet subbands or levels and WPRD is
the PRD value at the jth subband. A reconstructed signal is
considered to be of good quality if the values of metrics PRD
and WEDD are below 9 and 11.12%, respectively [14, 2].

3.2. Evaluation of joint reconstruction performance: First 4096
samples of the original MECG signals extracted from Lead I,
aVL, and V1 of PTB dataset s0009 exhibiting bundle branch
block (BBB) are shown in the first column of Fig. 4. The
corresponding reconstructed signals using the proposed approach
at CR = 74.32% are shown in the second column of the figure. It
is evident from the reconstructed waveforms that the diagnostic
information of the BBB signals such as QRS complex duration,
secondary R-wave (RSr’ complex) and slurred S-wave (encircled
and indicated by arrows) are well preserved without any
noticeable alteration. For noisy signals like Lead I and aVL
signals, the noise level gets reduced in the reconstructed signals
without any loss of aforementioned clinical features. The
corresponding PRD and WEDD values in three leads of Fig. 4
are found to be 0.510, 0.883, 1.851%, and 2.59, 3.76, 6.26%,
respectively. Slightly higher PRD/WEDD value for Lead V1 is
due to the marginal loss in amplitudes of R-waves in the
reconstructed signal, which is also reflected in the error plot.
Recovery results for specific pathological cases where normal
sinus rhythm is not present, such as premature ventricular
contraction (PVC) and ventricular fibrillation (VF), are also
evaluated. Reconstruction result (overlapped with the original
signal) in case of VF recovery is shown in Fig. 5 for data record
419 of MIT-BIH Malignant Ventricular Arrhythmia Database
(VFDB) at CR = 73.82%. It is observed that in the case of PVC,
diagnostic ECG features, i.e. PVC beats are well preserved except
a nominal loss in their positive amplitudes. However, in the case
of VF, some distortions are observed in the reconstructed
waveforms, especially at the edges/notches of the fibrillatory
waves (pointed out by the arrows in Fig. 5), resulting in
relatively higher PRD value (=9.22%). This may be due
fibrillatory nature of ECG, which makes it almost non-sparse and
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Fig. 4 Signal reconstruction quality of the MECG signals taken from PTB dataset s0008rem exhibiting BBB using the proposed approach. Original signals from
channels I, aVL, and V1 are shown in (a), (d), (g), and the corresponding recovered signals at CR = 74.32% are depicted in (b), (e), (h). Reconstruction error is

shown in plots (c), (f), (i). Diagnostic features are encircled and indicated
a Lead I original signal

b Lead I reconstructed signal

¢ Reconstruction error

d Lead aVL original signal

e Lead aVL reconstructed signal

f Reconstruction error

g Lead V1 original signal

h Lead V1 reconstructed signal

i Reconstruction error

hence challenging to recover. It can be noted that STSBL-based
JCS compression/recovery is performed directly on raw MECG
signals without any pre-processing steps. This can be observed in
Fig. 4, where the original signals contain different types of noise
such as baseline wandering, power-line noise and so on. In such
a noisy scenario also, the proposed method works satisfactorily.
This establishes the ability of the proposed approach to perform
equally well in noisy scenarios also without the need of any
pre-processing/noise cancellation module. Pre-processing steps
such as filtering, peak detection, dynamical thresholding and so
on are not favoured in resource-constrained WBAN applications
in order to reduce circuitry complexity and hence energy cost [9].
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Fig. 5 Reconstruction results of the proposed method for ECG signals from
data record 419 of VFDB database exhibiting VF at CR = 73.82%. Arrows
indicate the points of distortion in the reconstructed signals
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STSBL algorithm exploits both types of correlations present in
the MECG signals that results superior reconstruction even at the
low number of measurements (M) or at higher CR. Average joint
PRD variation across the PTB database with M is shown in
Fig. 6. It can be observed that reconstruction error in terms of
PRD decreases as more CS measurements are used for the recovery
and vice-versa. For noisy MECG signals, we used a little higher
value or hyperparameter y( = 0.01) in STSBL algorithm. As the
MECG signals are repetitive in nature, we used fixed block size

d,i=1, ...,g) over the length of the signal. Its value is
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Fig. 6 Average joint PRD variation with the number of measurements

53

This is an open access article published by the IET under the
Creative Commons Attribution-NonCommercial License (http:/
creativecommons.org/licenses/by-nc/3.0/)



Table 1 Average PRD values with standard deviations in different leads of ECG signals from normal and different pathological classes of PTB database at
number of measurements, M = 120. Average PRD is calculated over all the datasets of a particular class in the PTB database

Pathological No. of PRD value in different ECG channels
classes datasets

Lead I Lead 11 V1 V2 V3 V4 V5 A\
Healthy control 52 547 +4.68 4.63+285 531+324 474+3 577 +342 7.03+3.77 7.84+254 6.75+ 245
Myocardial 148 949 + 743 6.76 + 6.73 6.39 + 427 580+ 332 520+ 3.11 6.52+3.64 8.12+5.02 845+ 5.43
infarction
Hypertrophy 7 6.82 + 332 4.60 +499 3.76 +2.18 3.62 +1.60 429 +2.06 558 +2.66 573+199 4.71 + 2.80
Bundle branch 15 329 + 341 3904399 4.17+383 359 +221 396 +281 497 +280 3.78 +2.65 3.67+ 231
block
chosen experimentally and takenas d; = d, = --- = d, =25 inall by the qualitative distortion measure, i.e. MOS. The subjective

the simulations.

Average performance results across all the datasets of PTB data-
base are also calculated. To analyse the class specific performance
variance of the proposed method, it is evaluated over four major
classes of pathologies present in the PTB database, such as HC,
myocardial infarction (MI), hypertrophy (HP), and BBB. Average
PRD values with standard deviations calculated across all the data-
sets available in a particular pathological class are given in Table 1
at M = 120. Most of the PRD values in each class and in each
channel fall in good category reconstruction (PRD < 9%) even
after taking standard deviation into account. In the case of MI
and few leads of HC, high standard deviation is observed, which
may be due to the large number of patient’s data available there.
However, the overall average PRD over 222 datasets is still found
to be in good quality signal reconstruction category (Table 1).
Variance of the results obtained across different datasets is also
studied. Average WEDD variation for Lead II in all the pathological
and normal data records of PTB database is shown in the form of
box plots in Fig. 7. The edges of the box plots are 25th and 75th
percentiles with central line as median. The extreme values in indi-
vidual box plot depict the minimum and maximum WEDD values
obtained at a particular value of CR for different datasets.
Variations are observed in the WEDD values for different datasets
at the same CR level. This is because normal and arrhythmic data
records taken for evaluation consist of MECG signals with different
morphological characteristics. This leads to varying joint sparsity
profile and hence varying performances as reflected in Fig. 7. As
we start compressing the data further, the WEDD values start
increasing and vice-versa.

To verify the diagnostic information preservation, we also calcu-
lated a subjective quality measure called mean opinion score (MOS)
[14]. The visual distortions in the recovered signals are quantifies
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Fig. 7 Boxplot showing the variation of PRD values of different datasets of
PTB database at different CR values
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evaluation to calculate MOS is carried out with different evaluators
that include 5 doctors of IIT Guwahati hospital and 14 research
scholars/project engineers working in biomedical area. Different
diagnostic ECG features of different pathological cases studied in
this work are evaluated in a semi-blind test where the evaluators
are asked to find the waveform similarity given the original and
reconstructed ECG signals. Following quality rating is used for
this evaluation: 1 (bad), 2 (almost tolerable), 3 (tolerable), 4
(good), and 5 (excellent) [14]. The average MOS error in percent-
age for different pathological features of ECG signals for different
pathological classes is given in Table 2. According to standard
MOS rating [14], all the clinically important ECG features either
fall into the very good (0 <MOS < 15%) or good (15% <MOS <
35%) quality group of signal reconstruction. Moreover, MOS
error for overall ECG signal is also calculated and it is found that
ECG with BBB is having minimum MOS error of 8.89%.

3.3. Comparative study: The performance of the proposed method
is compared with two types of CS-based works reported in the
literature: one that targets temporal correlations and deals with
single channel ECG signals individually [5, 6], and second types
include those algorithms which exploit spatial correlations and
deal multiple ECG channels simultaneously [4, 8]. The
comparison results in terms of reconstruction distortion at almost
same CR values or M values (as reported in the respective works)
are given in Table 3. The quantitative results suggest that
exploiting both types of correlations simultaneously can
substantially improve the recovery results of CS-based works. In
[5, 6], weighted [/, (WLM) and iterative hard thresholding
(MMB-IHT) algorithms were used to individually compress and
reconstruct each ECG channel of MIT-BIH database. However,
the spatially correlated information that exists between different
channels was ignored in the above works. The proposed work
processes multiple channels simultaneously and thus exploits this

Table 2 MOS error (in %) in different types of ECG signals

ECG features BBB HC HP MI PVC VF
P wave 8.57 17.14 17.28 17.14 2142 -
Q wave - - - 15.71 — —
QRS complex 7.85 10 7 17.14  14.28 -
QRS duration 8.28 - 7.14 - - -
ST segment 9 14.28 1046 15.71 17.14 —
T wave 13.14 12.85 8.15 10.76  12.85 -
RSr’ complex 7 - - - - -
Slurred S wave 8.42 - - - - -
PVC beat 1 - - - - 12.85 -
PVC beat 2 - - - - 12.85 -
VF waves - - - - - 14.28

Overall ECG signal ~ 8.89 13.5 10 1529 1523 14.28
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Table 3 Performance comparison table

Techniques Distortion metrics CR(M) Correlation type Database
Proposed PRD 2.15 6.58 spatiotemporal MIT-BIH (f; = 360 Hz)
Qs 3.06
WEDD 1.13
MMB-IHT [5] PRD 3.74 6.4 temporal
QS 1.71
Proposed PRD 1.67 192 spatiotemporal
WLM [6] PRD 3.64 192 temporal
Proposed PRD 4.68 73.3% spatiotemporal PTB (f; = 1kHz)
WEDD 3.61
JCS [4] PRD 9.00 72.7% spatial
WMNM [8] PRD 5.5 73.4% spatial
PWMNM [15] PRD 33 73.9% spatial

correlation during JCS reconstruction, which results in lower PRD
and higher QS values at reported CR1 = 6.4 and M = 192. In
another JCS-based work [4], the shared information across the
channels was utilised by a row-sparse modelling of MECG
signals. Here, the authors used a mixed norm-based convex
optimisation algorithm for joint reconstruction of all the channels
simultaneously. Recently, we proposed a weighted mixed norm
minimisation (WMNM)-based JCS recovery algorithm to
emphasise the important ECG features through coefficient-based
weighting approach. The WMNM technique improves the
recovery performance and substantially reduces the PRD value
from 9% in the case of JCS to 5.5%. However, in row-sparse
modelling, single sample from each channel falling within a row
are emphasised and thus overlooking the temporally correlated
samples within a channel. The STSBL algorithm employed in the
proposed work targets inherited spatiotemporal correlations of
MECG signals simultaneously by modelling different channels
into block structure form. This helps it outperform other
techniques in the form of reduced distortion levels at same CR
(or M) values. We also compared the recovery results of STSBL
with our latest work [15]. In this work, we attempted to exploit
the multi-scale signal information through a weighting approach
and proposed a prior weighted mixed-norm minimisation
(PWMNM) algorithm for JCS recovery. It is found that PRD
value for STSBL is relatively higher than subband
weighting-based PWMNM algorithm. Though PWMNM is also
based on spatial correlation only, it exploits diagnostically
important multi-scale information additionally, through the
subband-based weighting approach. On the other hand, STSBL
only leverages block-sparsity and does not utilise any other
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additional prior signal information. In this way, PWMNM
becomes more signal-adaptive than STSBL, which might help it
to emphasise clinically relevant ECG features more precisely
during JCS recovery and results in lower PRD value compared
with STSBL. Though WMNM also uses coefficient-based
weighting, its weighting scheme is not as effective as
subband-based weighting PWMNM, and hence produces higher
PRD value. Despite having little higher PRD value than
PWMNM, STSBL approach can be advantageous in many ways:
(i) it is significantly faster (0.96 s) than the other algorithms, such
as WMNM (12.78 s), JCS (3.81 s) and PWMNM (3.72 s) on the
same platform, (ii) its computational time does not scale with the
number of channels and remains almost stable for 2 channels
(0.89s), 8 channels (0.96s), and 12 channels (0.98s) ECG
signal, (iii) the STSBL algorithm is capable of signal encoding
efficiently even with the simplest sensing matrix (with only d = 2
number of 1s in each column), which enables faster data
encoding, lower power consumption, and simplified circuit
design, and (iv) furthermore, STSBL can operate directly on raw
MECG data (Fig. 4) without requirement of any pre-processing
steps, which makes it more energy efficient.

3.4. Computational complexity and power efficiency: From the
power saving point of view in practical applications, a random
sparse binary sensing matrix is employed during the entire
encoding process with entries of Os and 1s [6]. Sparse binary
matrices replace the multiplication operations with simple
additions at the encoder. This reduces the number of on-chip
computations and cuts down the computational cost during the
signal sensing. This improves the power efficiency as compared
with the cases where sensing matrix ® has non-binary entries [2, 3].

The number of 1s (d) in each column of sensing matrix directly
corresponds to the computations involved in the encoding process.
The low number of 1s is highly desirable from the power saving
perspective. So, the performance of the proposed STSBL-based
joint recovery algorithm is also analysed with respect to d. The
reconstruction errors in terms of PRD and WEDD are plotted in
Fig. 8 at different values of d. It can be observed that the distortions
remain almost invariant with the change in values of d. This is a
very important characteristic of Bayesian learning-based approach.
We used d = 2 in all experiments. So, STSBL helps save more than
90% energy in the encoding process compared with JMCS [4]
which uses d = 35 number of 1s in each column.

4. Conclusion: A Bayesian learning-based sparse recovery
approach was proposed to exploit spatial and temporal
correlations simultaneously in CS-based WBAN-enabled MECG
telemonitoring systems. Efficient exploitation of spatiotemporal
correlations substantially improved the recovery performance of
CS at low number of measurements. Low measurement
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requirement reduces the on-chip computations and can eventually
lead to reduction in the volume of the data to be transmitted over
power hungry wireless links. Also, the number of computations
was made to reduce further at the encoder by employing a sparse
binary sensing matrix with only two 1s in each column.
Therefore, the proposed method is able to achieve good quality of
signal reconstruction with reduced computational load at the
encoder, which may lead to significant power savings in
CS-based ECG telemonitoring applications.

5. Funding and Declaration of Interests: Conflict of interest:
none declared.

6 References

[1] Candes E.J., Wakin M.B.: ‘An introduction to compressive sam-
pling’, IEEE Signal Process. Mag., 2008, 25, (2), pp. 21-30

[2] Mamaghanian H., Khaled N., Atienza D., £r 4r.: ‘Compressed
sensing for real-time energy-efficient ECG compression on wireless
body sensor nodes’, /IEEE Trans. Biomed. Eng., 2011, 58, (9),
pp. 2456-2466

[3] Polania L.F., Carrillo R.E., Blanco-Velasco M., £7 4L.: ‘Compressed
sensing based method for ECG compression’. 2011 IEEE Int. Conf.
on Acoustics, Speech and Signal Processing (ICASSP), Prague,
2011, pp. 761-764

[4] Mamaghanian H., Ansaloni G., Atienza D., £7 4L.: ‘Power-efficient
joint compressed sensing of multi-lead ECG signals’. 2014 IEEE
Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP),
Florence, 2014, pp. 44094412

[S] Polania L.F.,, Carrillo R.E., Blanco-Velasco M., ET 4L.
‘Exploiting prior knowledge in compressed sensing wireless

56

This is an open access article published by the IET under the
Creative Commons Attribution-NonCommercial License (http:/
creativecommons.org/licenses/by-nc/3.0/)

(6]

(71

(8]

(9]

[10]

(11]

[12]

[13]

[14]

[15]

ECG systems’, IEEE J. Biomed. Health Inform., 2015, 19, (2), pp.
508-519

Zhang J., Gu Z., Yu Z.L., 7 4r.: ‘Energy-efficient ECG compression
on wireless biosensors via minimal coherence sensing and weighted
¢, minimization reconstruction’, /EEE J. Biomed. Health Inform.,
2015, 19, (2), pp. 520-528

Surawich B., Knilans T.: ‘Chou’s electrocardiography in clinical
practice’ (Elsevier, 2008, 6th edn.)

Singh A., Dandapat S.: ‘Weighted mixed-norm minimization based
joint compressed sensing recovery of multi-channel electrocardio-
gram signals’, Comput. Electr. Eng., 2016, 53, pp. 203-218

Zhang Z., Jung T.P., Makeig S., Er 4r.: ‘Spatiotemporal sparse
Bayesian learning with applications to compressed sensing of multi-
channel physiological signals’, IEEE Trans. Neural Syst. Rehabil.
Eng., 2014, 22, (6), pp. 1186-1197

Zhang Z., Rao B.D.: ‘Sparse signal recovery with temporally corre-
lated source vectors using sparse Bayesian learning’, IEEE J. Sel.
Top. Signal Process., 2011, 5, (5), pp. 912-926

Goldberger A.L., Amaral L.A.N., Glass L., £7 4L.: ‘Physiobank, phy-
siotoolkit, and physionet: components of a new research resource for
complex physiologic signals’, Circulation, 2000, 101, (23), pp.
€215-e220 [Circulation Electronic Pages; http:/circ.ahajournals.org/
cgi/content/full/101/23/e215]

www.physionet.org

Manikandan M.S., Dandapat S.: “Wavelet energy based diagnostic
distortion measure for ECG’, Biomed. Signal Proc. Control, 2007,
2, (2), pp. 80-96

Zigel Y., Cohen A., Katz A.: ‘The weighted diagnostic distortion
(WDD) measure for ECG signal compression’, [EEE Trans.
Biomed. Eng., 2000, 47, (11), pp. 1422-1430

Singh A., Dandapat S.: ‘Exploiting multi-scale signal information in
joint compressed sensing recovery of multi-channel ECG signals’,
Biomed. Signal Proc. Control, 2016, 29, pp. 53—66

Healthcare Technology Letters, 2017, Vol. 4, Iss. 2, pp. 50-56

doi: 10.1049/htl.2016.0049



