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Low-power wearable devices for disease diagnosis are used at anytime and anywhere. These are non-invasive and pain-free for the better
quality of life. However, these devices are resource constrained in terms of memory and processing capability. Memory constraint allows
these devices to store a limited number of patterns and processing constraint provides delayed response. It is a challenging task to design
a robust classification system under above constraints with high accuracy. In this Letter, to resolve this problem, a novel architecture for
weightless neural networks (WNNs) has been proposed. It uses variable sized random access memories to optimise the memory usage and
a modified binary TRIE data structure for reducing the test time. In addition, a bio-inspired-based genetic algorithm has been employed to
improve the accuracy. The proposed architecture is experimented on various disease datasets using its software and hardware realisations.
The experimental results prove that the proposed architecture achieves better performance in terms of accuracy, memory saving and test
time as compared to standard WNNs. It also outperforms in terms of accuracy as compared to conventional neural network-based
classifiers. The proposed architecture is a powerful part of most of the low-power wearable devices for the solution of memory, accuracy
and time issues.
1. Introduction: In the present era, machine learning techniques
have been used by several researchers in the medical domain for
diagnosis of various diseases. In the literature, there exists so
many wearable diagnostic devices, such as Gluco Track [1],
Dexcom G5 [2], QuantuMDx [3], Gluco Beam [4], GeneXpert
[5] and so on. These devices are non-invasive and pain-free for
the better quality of life [4]. However, it is hard to embed these
techniques in low-power hardware devices because of its
memory, power and speed constraints. In this direction, Bledsoe
and Browning in 1959 [6] invented weightless neural network
(WNN). It is a breakthrough among neural network techniques
suitable for hardware implementation [7]. The major advantages
of this kind of network are the ease of implementation and the
ability to learn in single iteration. WNNs are also called n-tuple
classifiers. These classifiers offer fast training and testing
performance. Standard multi-layer feed-forward neural network
(MLFFNN) stores knowledge in the form of network weights
whereas WNNs store knowledge in random access memory
(RAM). The first version of WNN was designed by Bledsoe and
Browning in 1959 and various improved WNNs [8] have been
developed by many researchers. All these implementations of
WNNs have the following common properties: (i) interconnections
in WNN do not carry weights; (ii) the WNN can only take binary
inputs; and (iii) the knowledge of network is stored in the form
of binary look-up tables (LUTs).

In simple WNNs implementation, RAM is used as a LUT. Each
neuron (RAM) synapses (address lines) is supplied with a binary
bit string from the input pattern. This binary string is used as an
address to access the RAM. In the training phase, this binary
string is used as an address to store desired output in the RAM.
In the testing phase, a binary unseen test pattern is provided as an
address to access the previously learned contents from the RAM.
It is observed from the above training and testing procedures that
training and testing in WNNs are made in a single iteration. It is
also observed that the neuron (RAM) size grows exponentially
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with the size of the input vector because of RAM size is always
in the power of 2.

As the WNN proposed by Bledsoe and Browning suffers from a
memory problem, to resolve this Wilkes and co-workers [9] have
proposed WiSARD WNNs. WiSARD is identical to the simplest
WNN, except that in WiSARD the input pattern is partitioned
into multiple segments. Every WiSARD WNN is made up of
several RAM-discriminators and each RAM-discriminator made
up of Y one-bit word RAMs. Each one-bit RAM receives a
portion of binary input pattern (n-bits). Along with Y one-bit
word RAMs, each RAM-discriminator also consists of a
summing device (S). The number of such RAM-discriminators is
equal to the number of distinct classes in the dataset. In the training
phase, a binary pattern of Y*n bits partitioned randomly into Y equal
sized segments. These segmented binary patterns are used as the
address of RAMs to store desired output. In the testing phase,
binary input pattern is supplied to each discriminator and every dis-
criminator provides a response in terms of number of matches.
These responses are evaluated according to the majority voting
principle. Schematic representation of both WiSARD and
RAM-discriminator is shown in Fig. 1 [7].

As shown in Fig. 1, WiSARD overcomes limitation of simple
WNNs by dividing the Y*n-sized input vector in Y segments.
As a result the total memory requirement is reduced from 2Y∗n to
Y∗2n. On the other side, it lowers the generalisation capability of
WiSARD. This caused applications using WiSARD, performing
lower than that of virtual generalising RAM (VG-RAM) WNN
[10, 11]. However, WiSARD has used to solve the problems in
automatic video surveillance [12], robotics [13], 3D video anima-
tion [14] and text categorisation [15].

The VG-RAM WNN is a different type of WNN, in which each
neuron memory size is proportional to the training set [10, 16].
During training, VG-RAM neurons store input binary pattern
along with its associated class information. During the testing,
each VG-RAM neuron searched for closest learned pattern using
Healthcare Technology Letters, 2017, Vol. 4, Iss. 4, pp. 122–128
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Fig. 1 Illustration of both RAM-discriminator and WiSARD WNN
any distance measure, such as hamming distance and so on. The
class information of the closest input pattern is the neurons
output. The searching procedure for the closest pattern is sequential
and requires scanning of each neuron whole memory, which is
costly in terms of time, if there are many training patterns.
Moreover, the memory size of each VG-RAM is increasing on
par with training patterns. Even though VG-RAM WNNs have
these limitations, these are used in many applications, such as
face recognition [17], text categorisation [18] and traffic sign detec-
tion [18].
To deal with such problems, a novel architecture for WNNs is

proposed in this Letter. It uses variable sized RAMs (neurons) to
optimise the memory usage, and a modified binary TRIE data struc-
ture for reducing the test time [19, 20]. In addition, a genetic algo-
rithm (GA) is used to improve the accuracy of WNNs by optimising
the mapping function [21].

2. Proposed architecture: The proposed architecture emphasises
on improving the classification accuracy, reducing the memory
Fig. 2 Proposed architecture for the classification task
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usage and finally reducing the test time. To accomplish all these
tasks, different techniques have been employed and all of them
are explained in Sections 2.1–2.3. The proposed architecture is
shown in Fig. 2. According to this figure, the input binary pattern
is mapped to set of VG-RAM neurons using the mapping
function for improving the accuracy. During the training, in each
VG-RAM neuron, patterns are managed using TRIE data
structure (for simplicity of diagram only prefix, access counts of
each class are shown, class information is not shown in TRIE
node). This helps us in memory saving and faster access to
contents. During testing, each neuron outputs class label, final
class is determined on the basis of the majority voting.

2.1. Memory reduction using variable sized VG-RAM
(VVG-RAM) neuron: VG-RAM neuron stores both patterns and
its class information. Hence, its size is proportional to the training
set. Usually count of such VG-RAMs neurons needed is
undeterministic. In this Letter, VVG-RAMs have been proposed
to optimise the memory usage. The size of each VVG-RAM
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neuron is determined by a range of values that features can take.
However, also count of such neurons is determined by
dimensionality of the data. The motivation behind this approach
is that every dataset consists of some repetitive subpatterns. By
eliminating these repetitive subpatterns, it is possible to constitute
VVG-RAM. Proposed VVG-RAM neuron maintains extra
information about these repetitive subpatterns in the form of
access count (see Fig. 3). This extra information plays a vital role
in decision process, especially in case of ties. Architectures of
VG-RAM neuron and VVG-RAM neuron have been shown in
Figs. 3a and b. Further, the proposed architecture employs the
binary TRIE data structure [19, 20] to manage the patterns inside
each VVG-RAM neuron.

2.2. Performance improvement using GA: Mapping function maps
input pattern to synapses of VVG-RAM neuron, such that one
synapse is mapped to exactly one neuron. To improve the
VG-RAM network performance, optimal mapping function
between input pattern and neuron synapses has to be defined. If
there is an N-bit binary pattern there exist N ! possible
combinations. To select optimal or near optimal mapping by
doing an exhaustive search of N ! combinations is NP-hard
problem. Hence, this combinatorial optimisation problem is
solved by one of the most familiar GA with the objective of
maximising the objective function. GA parameters have to be
properly tuned to obtain the optimal or near optimal solution and
these parameter values are dataset specific. The objective function
based on sensitivity and specificity is defined in (1) [22]. It is
clear from (1) that the objective function is a geometric mean of
sensitivity and specificity. Sensitivity focuses only on the positive
class case predictions and does not capture any information about
how well the WNN handles negative class cases. Similarly,
specificity focuses only on the negative case predictions and does
not capture any information about how well the WNN handles
positive cases. To balance the both positive and negative class
predictions, a new measure has been proposed as a geometric
mean of sensitivity and specificity

Objective function =
������������������������
sensitivity∗specificity

√( )
(1)

Sensitivity = TP

TP+ FN

( )
(2)

Specificity = TN

TN+ FP

( )
(3)

Accuracy = TP+ TN

TP+ FP+ FN+ TN

( )
(4)
Fig. 3 Comparison of VG-RAM and VVG-RAM neuron structures
a VG-RAM neuron
b Proposed VVG-RAM neuron
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where TP represents the true positive count, which is calculated as
the number of positive class records that the WNN predicts as
positive, TN represents the true negative count, which is
calculated as the number of negative class records that the WNN
predicts as negative, FP represents the false positive count, which
is calculated as the number of negative class records that the
WNN incorrectly classifies as positive and FN represents the false
negative count, which is calculated as the number of positive
class records that the WNN incorrectly classifies as negative [23].

2.3. Faster neuron memory search with modified TRIE data
structure: Usually in standard VG-RAM networks, during the
testing to measure the closeness of test pattern over patterns
stored in neuron, distances need to be calculated sequentially. As
a result test time increases. Since hashing technique is more
appropriate for search and insertion operations, Forechi et al. [24]
have used a hash table for test time reduction. Still hash tables
are not an efficient solution as it increases chance of collisions as
the number of entries grows. Moreover, it is desirable to design
an effective hash function to handle these collisions; this imposes
the computational complexity on hash function. Hence, to address
these problems in this Letter a modified version of the binary
TRIE data structure has been proposed and it is shown in Fig. 4.

According to Fig. 3, every node of the binary TRIE data structure
stores pattern prefixes, class information along with access counts
of each class during the training. During the test, it finds a
longest prefix match. The output of each neuron is the class infor-
mation along with each class access count associated with the
longest prefix match. In case of tie, access counts of each class
are useful to determine the class of the test pattern on the majority
basis. Unlike standard VG-RAM neuron, the proposed VVG-RAM
neuron does not require any distance computations for measuring
similarity. As compared to hash-technique-based neuron, proposed
neuron is free from hash function calculations. Hence, the proposed
VVG-RAM neuron is efficient in terms of computations (calcula-
tions) as compared with standard VG-RAM and hash-technique-
based neurons.

3. Results
3.1. Experimental setup: All software and hardware experiments
are performed on an Intel (R) Core i7 processor with 3.60 GHz
speed and 8 GB RAM. Three categories of datasets, such as more
data with low dimensionality (MDLD), small data with high
dimensionality (SDHD) and more data with high dimensionality
(MDHD) are chosen from UCI machine learning repository [25]
to validate proposed WNN. All the datasets used for experiments
are shown in Table 1 and are partitioned according to 10-fold
cross-validation (10-FCV) method [26]. According 10-FCV,
Healthcare Technology Letters, 2017, Vol. 4, Iss. 4, pp. 122–128
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Fig. 4 Modified binary TRIE data structure

Table 1 Datasets used in this Letter

Dataset Number of patterns Dimensionality

PID 768 8
LCD 32 56
DRD 1151 19
every dataset is partitioned into ten equal folds. Every time, nine
different folds constitute the training set and remaining fold is
treated as the testing set. During the training phase, the training
dataset is used to store the contents into RAM nodes (neurons).
During the testing phase, the testing dataset is used to evaluate
the performance of trained model using performance measures,
such as accuracy, sensitivity and so on. This process is repeated
for ten folds and at the end of tenth fold all the values are
averaged. As the GA parameter values are dataset specific find
tuned parameter values for three datasets are shown in Table 2.
To validate the performance of proposed WNN further it com-

pared with conventional neural networks, such as multi-layer per-
ceptron network (MLPN) [27], MLFFNN [27], probabilistic
neural network (PNN) [28], radial basis function neural network
(RBFNN) [27] and time delay network (TDN) [29].
The MLPN and MLFFNN used in these experiments are con-

structed with one input layer, two hidden layers and one output
layer. Hidden layers of MLFFNN consist of 21 and 19 neurons,
Table 2 GA tuning parameter values for three medical datasets

Dataset Parameter Valu

PID PopSize 15
cross-over rate 0.8
MutRate 0.1
selection rate 0.6
MaxGen 10,0

LCD PopSize 25
cross-over rate 0.3
MutRate 0.0
selection rate 0.7
MaxGen 25,0

DRD PopSize 10
cross-over rate 0.8
MutRate 0.1
selection rate 0.6
MaxGen 10,0
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whereas in MLPN consists of 9 and 5 neurons. The MLPN and
MLFFNN are trained using back propagation and scaled conjugate
gradient algorithms, respectively. The learning rate and maximum
epochs for both the training algorithms are set to 0.01 and 1000,
respectively. As the output values of both the networks are
between 0 and 1, a transformation function has been applied with
cut off of 0.5, to transform into binary values. Similarly, the
RBFNN and PNN are configured with spread value of 1.60.
Finally, TDN is providing the eight positive vectors as input delays.

3.2. Performance measures: We measure the memory usage of
WiSARD, standard VG-RAM and proposed VVG-RAM using
the following equations:

MWiSARD = C∗N∗ 2S/N∗1( )( )
bits (5)

where S is the number of synapses, N is the number of neurons
chosen such that N∗(2S/N ) ≥ Tr, and C is the number of classes

MVG−RAM = Tr∗N∗ 2B∗(B+ 1)
( )( )

bits (6)

where Tr is the number of training samples, B is an integer chosen
such that S ≤ 2B, N is the number of neurons such that N = S/B.

MProposed =
∑D
i=1

2bi∗(bi + 1+ C∗ai)
( )

bits (7)
e Explanation

0 initial population size
2 cross-over rate

mutation rate
population that survive after every generation

00 maximum number of generations
0 initial population size
2 cross-over rate
1 mutation rate

population that survive after every generation
00 maximum number of generations
0 initial population size

cross-over rate
4 mutation rate

population that survive after every generation
00 maximum number of generations
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Table 6 Accuracy comparison on LCD
where D is the dataset dimensionality, bi is the number of bits
required to represent values of ith feature and ai is the number of
bits to represent each class access count of ith feature, i.e.
ai = l∗bi, 0 < λ≤ 1. In all the experiments, l value chosen as 1/bi.

Apart from memory usage of each model, accuracy and test time
also considered for evaluation. Accuracy is used to measure the
overall predictive performance of model on unseen data. It is calcu-
lated according to (4). Test time is used to measure the fastness in
the model response, i.e. how fast the model providing the response.
It is calculated using tic and toc functions of Matlab.

3.3. Software realisation: The proposed WNN along with two
standard WNNs namely WiSARD and VG-RAM are
implemented using Matlab 2015a software. These WNNs are
experimented on various datasets to obtain performance measures
like memory usage, accuracy and test time. These results are
shown in the following subsections.

3.3.1. More data with low dimensionality: In this category, Pima
Indians Diabetes (PID) dataset has been selected. The PID dataset
consists of 768 records of diabetes patients, of which 500 are nega-
tive and 268 are positive classes [25]. It has eight predictive attri-
butes, one decision attribute. The experimental results on this
dataset are provided in Table 3 in terms of memory usage, accuracy
and test time. From Table 3, it is observed that the proposed WNN
performed better than standard WNNs in terms of memory usage,
accuracy and test time. Further, proposed method also compared
with conventional neural network classifiers in Table 4 and best
values are highlighted in bold. It is observed from the table
results that proposed method achieved best rank in terms of accur-
acy. It is due to the GA performance on this dataset. In this Letter,
GA parameters are used specifically to dataset (see Table 2).

3.3.2. Small data with high dimensionality: In this category, Lung
Cancer Dataset (LCD) has been chosen. This dataset has 32
instances with 57 attributes (1 decision, 56 predictive) [25].
Results against this dataset, in terms of memory, accuracy and
time, are furnished in Table 5 and best values are highlighted in
bold. These results show that the proposed WNN requires more
Table 3 Comparison results on PID dataset

Type of WNN Memory, KBs Accuracy, % Test time, s

WiSARD 35 64.72 79.23
VG-RAM 31.5 70.15 61.95
proposed 21.25 78.23 47.27

Table 4 Accuracy comparison on PID dataset

S. no Type of neural network classifier Accuracy, %

1 MLPN 75.20
2 MLFFNN 74.00
3 PNN 67.20
4 RBFN 68.53
5 TDN 66.54
6 proposed WNN 78.23

Table 5 Comparison results on LCD

Type of WNN Memory, KBs Accuracy, % Test time, s

WiSARD 512 82.31 148.41
VG-RAM 4.3125 86.75 43.86
proposed 6.3 86.73 44.72
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memory than WiSARD and standard VG-RAM WNNs, it is due
to high dimension of data and features are taking high range
values. From (7), it is clear that memory required for the proposed
architecture, i.e. MProposed is proportional to dimensionality of data
(D) and range of values (bi) features can take. However, proposed
method performed better in terms of accuracy. It is due to the
dataset-specific GA parameter tuning (see Table 2).

Further, the proposed WNN has been compared against five
popular neural network-based classifiers, namely MLPN,
MLFFNN, PNN, RBFN and TDN. These comparison results are
shown in Table 6 and best values are highlighted in bold. It is
observed from these results that the proposed WNN outperformed
in terms of accuracy as compared to other neural network-based
classifiers.

3.3.3. More data with high dimensionality: In this category,
Diabetic Retinopathy Debrecen (DRD) dataset has been selected.
It has 1151 instances with 20 attributes (1 class attribute, 19 predict-
ive) [25]. Experimental results on this dataset are furnished and best
values are highlighted in bold in Table 7. From these results, it is
observed that the proposed WNN outperformed in terms of accur-
acy and test times as compared to standard WNNs.

Further, the proposed WNN has been compared with five popular
neural network-based classifiers, such as MLPN, MLFFNN, PNN,
RBFN and TDN. These comparison results are shown in Table 8
and best values are highlighted in bold. It is clear from the table
results that the proposed WNN outperformed all other classifiers.
Best values are highlighted in bold in Table 8.

From Tables 3–8 results, it is observed that the proposed WNN
performed better in terms of accuracy for the datasets of kind
MDLD, SDHD and BDHD. Datasets like where the number of pat-
terns less than dimensionality, i.e. SDHD, the proposed method suf-
fered from memory problem this in turn created delayed response.

From all the above results, it is also observed that a number of
features and range values that each feature can determine the
S. no Type of neural network classifier Accuracy, %

1 MLPN 70.20
2 MLFFNN 60.30
3 PNN 60.40
4 RBFN 49.10
5 TDN 75.45
6 proposed WNN 86.73

Table 7 Comparison results on DRD dataset

Type of WNN Memory, KBs Accuracy, % Test time, s

WiSARD 512 68.72 191.33
VG-RAM 121 70.15 173.61
proposed 22.93 72.86 63.73

Table 8 Accuracy comparison on DRD dataset

S. no Type of neural network classifier Accuracy, %

1 MLPN 53.17
2 MLFFNN 66.10
3 PNN 60.69
4 RBFN 45.08
5 TDN 49.70
6 proposed WNN 72.86
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Fig. 6 Average performance of WiSARD, VG-RAM and proposed model
over three medical datasets

Fig. 5 FPGA SPARTAN 3E tool kit
memory usage of proposed model. Also, proper tuning of mapping
function using GA affects the model performance. It is also
observed that the difference in test times is small. It is due to all
the experiments are carried out in high configuration system. In
general, low-power devices use 2- or 4-bit processor with low pro-
cessing capability; there the difference in test times is significant.

3.4. Hardware realisation: This section introduces hardware
implementation of the proposed WNN architecture based on
an FPGA SPARTAN 3E tool kit (shown in Fig. 5) for disease
diagnosis. Two conventional WNNs architectures namely
WiSARD and VG-RAM are also realised with hardware for
comparison. Three bench mark disease datasets have been used
for testing. For each dataset, we have obtained the performance
measure, namely power consumption, area (memory) and test time.
Area or memory is measured as number of LUTs. A LUT con-

sists of a block of SRAM that is indexed by the LUT’s inputs.
The output of the LUT is whatever value is in the indexed location
in its SRAM. The LUT is actually implemented using a combin-
ation of the SRAM bits and a MUX. Each LUT size is varied
from 8, 16, 32 or 64 words. The power consumption denotes
amount of power consumed for operations, it is measured in
watts. The test time denotes the delay in the response, it is measured
in seconds.
The performance measures over three datasets are averaged and

normalised between 0 and 500. These results are shown in Fig. 6.
Healthcare Technology Letters, 2017, Vol. 4, Iss. 4, pp. 122–128
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It is clear from the figure that proposed model performed better
in terms of power, area and test times over standard WNNs.

The results obtained by this hardware realisation are used to
verify the presented software implementation and to compare soft-
ware and hardware solutions. The hardware implementations of the
WNNs are done using FPGA SPARTAN 3E tool kit. It is observed
from the results that memory requirement in hardware is high. It is
due to as the hardware area will depend on experiments and FPGA
platform. Also, time requirements are slightly higher due to delay in
RAM nodes. Overall, the results produced by both software realisa-
tion using Matlab and hardware realisation using FPGA platform
produced the similar responses.

4. Conclusion: In this Letter, a new architecture has been proposed
for WNNs to overcome limitations of low-power wearable devices,
such as memory and delay in response. The proposed architecture
has been designed using variable sized RAMs (neurons) to
optimise the memory usage and a modified binary TRIE data
structure for reducing the test time. It also used a bio-inspired GA
to improve the accuracy of WNNs by optimising the mapping
function. The proposed architecture has been validated using both
software and hardware realisations of standard WNNs over
various categories of disease datasets. In case of MDLD and
MDHD, the proposed architecture reduced the memory, test time
and increased the classification accuracy as compared with
standard WNNs. In case of SDHD, the proposed architecture
achieved the highest accuracy but suffers from memory problem.
It is due to the fact that the memory required by proposed model
is a function of the number of features in the dataset and the
range of values that each feature can take.

The proposed WNN also validated using five popular neural
network-based classifiers. As compared to conventional neural
network classifiers proposed WNN outperformed for the cases of
MDLD, SDHD and MDHD.

Hence, it is concluded that the proposed architecture is a power-
ful part of various low-power wearable devices, such as Gluco
Track [1], Dexcom G5 [2], QuantuMDx [3], Gluco Beam [4],
GeneXpert [5] and so on for the solution of memory, accuracy
and time issues. This results into applications of low-power wear-
able diagnostic devices to diagnose diseases, such as diabetes,
cancer, HIV, malaria and so on.

5. Funding and declaration of interests: Conflict of interest:
none declared.
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