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Blood leakage and blood loss are serious life-threatening complications occurring during dialysis therapy. These events have been of concerns
to both healthcare givers and patients. More than 40% of adult blood volume can be lost in just a few minutes, resulting in morbidities
and mortality. The authors intend to propose the design of a warning tool for the detection of blood leakage/blood loss during dialysis
therapy based on fog computing with an array of photocell sensors and heteroassociative memory (HAM) model. Photocell sensors are
arranged in an array on a flexible substrate to detect blood leakage via the resistance changes with illumination in the visible spectrum of
500–700 nm. The HAM model is implemented to design a virtual alarm unit using electricity changes in an embedded system. The
proposed warning tool can indicate the risk level in both end-sensing units and remote monitor devices via a wireless network and fog/
cloud computing. The animal experimental results (pig blood) will demonstrate the feasibility.
1. Introduction: According to the 2016’s statistics in Taiwan,
more than 80,000 patients with end-stage renal disease and chronic
kidney failure have being regularly received haemodialysis
treatment. Venous needle dislodgement (VND) and blood leakage/
blood loss are frequently observed clinically serious complications
occurring during dialysis therapies. According to the American
Nephrology Nurses’ Association VND survey reports, more than
50% of patients on dialysis were concerned about VND or serious
blood loss, indicating that they were concerned about VND events
very often (>30%), often (>20%), or occasionally during dialysis
therapy. More than 75% of the surveyed patients indicated that
they had observed a VND event, and more than 8% had observed
five events or more in the last 5 years [1]. These events are
life-threatening complications. At a dialysis flow rate of
400–500 ml/min, an adult can lose more than 40% of blood
volume in just a few minutes. The critical risk level is defined as
the reaction time of <2.5 min at a blood flow rate of >200 ml/min.
Therefore, an additional assistant tool is required for the detection
of early blood leakage during dialysis therapies, as shown by the
fog computing framework in Fig. 1a.

Currently, blood leakage and bleeding detection sensors such
as pad sensors, wetness sensors, and optical sensors are being
used to design early warning detectors for dialysis therapy, intra-
venous therapy, and wound healing. Customised products such
as Redsense® monitor (Conformite Europeene Mark, Halmstad,
Sweden, approved by the Food and Drug Administration) [2–4]
and HEMOdialert™ (Anzacare) [5] have been applied for routine
dialysis therapy, high-risk patients, and home dialysis treatment.
Redsense® monitor is based on an optical fibre that transmits
light to an optical detector. When blood leakage covers the sensing
unit, the infrared (IR) light will be interrupted to identify the elec-
trical changes. However, the IR light source is easily affected by
moisture/sweat and temperature, and the intensity of the scattered
IR light will be reduced. In addition, the IR light sources can
be arranged as a single sensor or as an array of sensors. These
optical sensors are continually monitored during dialysis therapy
(3–4 h), while requiring continuous electrical power supply.
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The HEMOsensor™ and HEMOdialert™ systems consist of
two-spaced components. The sensing and alarm units are designed
with analogue circuits in two-spaced components and require a line
connecting an alarm, as shown in Fig. 1b. This system can be used
to offer home dialysis treatment to patients. The wetness sensor
detects direct current electricity changes (short circuit) when the
blood contacts the electrodes. Leakage/loss of blood or other
conductive liquids can be detected. However, additional analogue
circuits and electronic devices may limit the patient’s movements
in a dialysis setting and also cause the patient to be restless, stressed,
and worried about moving. Other wetness and pad sensors are
sensitive to saline, blood, or conductive liquids [6, 7]. Although
these sensors are simple to use and are of low cost with a unique
electrical circuit, they have no warning indications regarding
the Bluetooth/WiFi wireless communication and cannot stop the
blood roller pump.

Therefore, based on fog computing (edge computing) with
an array sensor, an assistant warning tool is used to design a con-
necting network, including one or more end-sensing units and a
remote monitor system in an indoor haemodialysis room. A flexible
sensor comprises an array sensor with four photocell sensors and a
microdistribution connection circuit (metallic material) on the
plastic substrate. The analogue circuit is fabricated via a screen-
printing technique by printing the electronic circuits and mounting
the circuit elements. Hence, the analogue circuitry of the sensing
unit can be reduced. Its substrate is employed to detect the
voltage changes with varying light intensities. The fog computing
(edge computing) is a technique of optimising cloud computing
by performing data processing at the edge of the wire/wireless com-
munication network. The proposed framework can primarily
analyse the time-sensitive data at the network edge or near the
source of the data, instead of sending vast amount of data to the
cloud [8]. While a sensing unit detects abnormal data for edge com-
puting, the wireless transmitter sends the selected messages to the
cloud for further analysis and storage. This technique can reduce
the communication bandwidth between the sensor and the central
data centre. In addition, this design may not be continuously
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Fig. 1 Proposed assistant tool for blood leakage detection
a Fog computing framework
b Customised product
c Array photocell sensor based on fog computing

Fig. 2 Fog computing based prototyping platform
a Proposed fog computing by photocell sensors and Arduino prototyping
platform
b Monitor interface
connected to a network and covers wireless sensor network, mobile
data acquisition, and mobile signature analysis [9, 10]. Therefore,
this framework can continuously monitor the real-time personalised
health condition and can also integrate with the wireless sensor and
the intelligent mobile device for use in the haemodialysis room.
In this study, four photocell sensors are arranged in an array con-

figuration on a plastic substrate, as shown in Fig. 1c. A photocell
sensor is a variable resistance semiconductor. It is a light-dependent
resistor with varying light intensities. The resistor voltage divider
and the voltage follower can be used to transfer voltage changes
in the sensing unit. The sensing unit with the four photocell
sensors has a multiposition switch function that manipulates high
and low voltage levels. Then, a digital analytical design is
employed to identify the leakage levels of blood or conductive
liquids using hard limit function. In addition, the plastic substrate
is thin and soft, and can be placed on the puncturing site (arterial
or venous site) and be covered with the whole swab. In the
alarm unit, a heteroassociative memory (HAM) model [11, 12] is
employed to design a digitised alarm to automatically identify
blood leakage levels. This machine learning model can deal with
input binary pattern and acts as the biological behaviour to associate
the possible risk level, the corresponding output binary pattern with
the logic high signal to directly drive an alarm unit, such as trigger-
ing a loud alarm or a light-emitting diode (LED). The proposed
HAM intelligent algorithm for fog computing can improve the
detection reliability and can be easily implemented using a high-
level programming language in an embedded system or a mobile
device, such as Arduino® (Uno) prototyping platform, as shown
in Fig. 2a. Hence, the analogue analytic circuitry of the alarm
unit can be reduced. An end-sensing unit can become more intelli-
gent to indicate the warning information in the fog layer and can
also send warning signals to the cloud layer via the WiFi wireless
local area network (IEEE 802.11 Standard, WLAN [13]) for
driving an alarm system or tripping the haemodialysis machine in
a dialysis room. Then, warning information from the personalised
physiological monitor can be received on the iPad or smart
phone. The experimental results (pig blood) will demonstrate the
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efficiency of the proposed prototyping model. This new digital
analytical and computing model lowers the cost and improves the
performance for distributed computing in blood leakage-level iden-
tification and multibed monitoring application.

2. Flexible array photosensor: A photocell sensor was made
of a high-resistance semiconductor and was a light-controlled vari-
able resistor (illumination: 0.1–1000.0 lx). It tended to be sensitive
to light spectrum between 500 nm (green light) and 700 nm (red
light) and could act as a dark-activated switching circuit, manipulat-
ing the low or high resistors (switch on/off) based on minor blood
leakage or blood loss covering any photocell sensor. In this study,
four photocell sensors were arranged in an array sensing plane on a
flexible substrate, as shown in Fig. 2. The electronic circuits could
be printed on a plastic substrate (40 × 40 mm2 in size) using the
computer numeric control machine and semi-auto screen-printing
machine, thus provided flexibility, thinness, and light weight
to be easily placed on the puncturing site and for continuous
monitoring.

Four resistor voltage dividers were connected to a constant
voltage source of Vcc =+5.0VDC (current: 0.008–0.5 mA). Then,
the sensing nodal voltages, Vi, i = 1, 2, 3, 4, could be obtained to
identify the sensing states on the analogue input connectors. The
analogue input ports were used to measure the 0.0–5.0VDC
voltage signals. Then, a digital sensing signal, si, i= 1, 2, 3, 4, as
4-bit binary patterns, could be obtained using the hard limit func-
tion with the threshold value, Vcc × 70% (seen in Fig. 3), as follows:

si =
0, if Vcc × 70% , Vi , Vcc

1, if Vi , Vcc × 70%

{
(1)
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Fig. 4 Configuration of proposed HAM model

Fig. 3 Hard limit function
where sensing state si= 1 for logic ‘High(1)’ and si= 0 for logic
‘Low(0)’; threshold valve, Vcc × 70%, was chosen based on at
least 40 experimental tests. Sensing state: S= [s1, s2, s3, s4] = [0/1,
0/1, 0/1, 0/1]. For four digit binary numbers, each bit had two
states, {0, 1}, and the total combination of the four-digit binary
string was 24 = 16 of different binary patterns, and the correspond-
ing binary output patterns, R= [0/1, 0/1, 0/1], could be encoded
a binary value of ‘1’, indicating a ‘possible event’, and everything
else encoded by the value of ‘0’. Three risk levels were indicated as
follows:

† Risk Level 1 as R= [1, 0, 0]: 0 sensing node could be detected
with 1 normal condition, and then first output signal ‘1’ as a high
level (+5.0VDC) drove a green LED.
† Risk Level 2 as R= [0, 1, 0]: 0 < sensing nodes≤ 2 could be
detected with a total number of 10, and second output signal ‘1’
drove a yellow LED and a loud alarm.
† Risk Level 3 as R = [0, 0, 1]: sensing nodes > 2 could be detected
with a total number of 5, and third output signal ‘1’ drove a red LED
and a loud alarm.

The output pattern, R, was used to identify the possible risk level
and to drive the LEDs and the loud alarm units. For 16 binary pat-
terns, an HAM model was used to design a digitised alarm unit to
detect the blood leakage/blood loss. Then, warning information was
transmitted from the sensing unit to mobile appliances via WiFi
wireless synchronous serial communication [13]. For fog comput-
ing design, this framework could reduce the communication
needed between the sensor and the central data centre by perform-
ing analytics and knowledge generations. It facilitated the operation
of compute and analysis using the microcomputer and microcon-
troller [14, 15].

3. HAM machine learning model: An associative memory
machine learning method is an unsupervised learning system and
can be divided into autoassociative memory and HAM models.
The HAM machine learning model is a feedback mechanism that
allows for the generation of new patterns, noise filtering, and
pattern completion [11, 12]. Its network contains an input layer,
an output layer, and network connections. The HAM model can
store high-dimensional training patterns in a connecting and
associate matrix for modelling human cognitive processes. Its
mechanism investigates various conditions that are represented
by encoding weighted values in a weighting matrix. This process
can maximise information representation and reduce the memory
store for each patient with 16 input–output paired training data, as
Sk–Rk, where k= 1, 2, 3, …, 16. Hence, it can be used to solve
non-linear separable problems. The network connections between
the process units are bidirectional and in a loop configuration
[16]. This model can learn and recall various types of input and
output associations in different data lengths and data types, such
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as binary, bipolar, and numerical data. The digitised model can
deal with binary data and also act as the biological behaviour to
perform the associative memory to directly drive the LEDs and
the alarm units.

The HAM machine learning algorithm stores information and
matrices using noise-free versions of the input and output patterns.
To resolve the non-linear separable problem, its configuration can
be modified as a multilayer pattern mechanism with non-linear pro-
cessing units, such as Gaussian functions, as shown in Fig. 4. The
HAM algorithm has two stages, the ‘learning stage’ and the ‘recal-
ling stage’, as delineated below.

Learning stage

Step 1: establish the 16 input–output pairs of the training patterns,
Sk and Rk, k= 1, 2, 3, …, 16.
Step 2: establish the connecting matrix C using K pairs of training
patterns

C =
∑K
k=1

St
kRk (2)

where C = [wij]n × m, Sk= [sk1,…, ski, …, skn]
t, n= 4 and m = 3,

ski ∈ {0, 1}, and Rk= [rk1, …, rkj, …, rkm]
t, rkj∈ {0, 1}.

Step 3: calculate m eigenvalues

lj =
1

n

∑n
i=1

wij , j = 1, 2, 3, . . . , m (3)

The weight matrix,W5×3, and the associative matrix, A5×3, for the
four risk levels are

W ⇔ A

vo × l1 v0 × l2 v0 × l3

v1 × l1 v1 × l2 v1 × l3

..

. ..
. ..

.

..

. ..
. ..

.

v4 × l1 v4 × l2 v4 × l3

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⇔

1 0 0

0 1 0

0 1 0

0 0 1

0 0 1

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

(4)
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Fig. 5 Experimental setup for blood leakage detection (pig blood)

Fig. 6 Analog input connectors and average nodal voltages
a Analogue input connectors and DO indication
b Nodal voltage distributions on each photocell sensor
where ωh= h, h= 0, 1, 2,…, 4, is the weight value for the risk levels.
The associative matrix, A, is encoded the binary values of 1 or 0,
with a value of ‘1’ for a ‘possible risk level’ and all other states
encoded as the value ‘0’.

Recalling stage

Step 1: obtain the network connecting matrices, C, W, and A, and
apply the testing input pattern, S0 = [s1, s2, s3, s4], to the connecting
network,
Step 2: associate the output pattern, R0 = [r1, r2, r3]

T, as

R0 = CTS0, rj =
∑4
i=1

wjisi, j = 1, 2, 3 (5)

Step 3: transit the output pattern, R0, to the Gaussian function units,
gh, and compute the output of the Gaussian function

gh = exp
−1

2s2
× (EDh)

2
( )

, h = 1, 2, 3, . . . , 5 (6)

EDh = ||vhj − rj|| =
����������������∑3
j=1

(vhj − rj)
2

√√√√ (7)

where σ= 0.1 is the standard deviation; in the vector G0 = [g1, g2,
g3, …, g5]; EDh is the distance estimation; and the output of
Gaussian function, gh, is the index to screen the similarity degree
among the weight values in five row weight vectors. The similarity
degree is parameterised with Gaussian function, varying between
the values 0 and 1.
Step 4: transit the outputs of gh units to the rj unit with nonlinear
feedback, and compute the output of rj unit using the hard limit
function with the threshold value 0.50, as

vj =
∑5
h=1

a jhgh, j = 1, 2, 3 (8)

rj =
1, vj ≥ 0.50
0, vj , 0.50

{
, R = r1, r2, r3

[ ]
(9)

Step 5: transit the bidirectional patterns repeatedly between the Rj

units and gh units until the bidirectional stability is reached, vmax -
= argmax(vj)≥ 0.50 and ΔRp = ||Rp−Rp−1 || = 0, where p is the iter-
ation number. The iteration process (forward and backward
computing) takes, p≤ 2, iterative computations to reach the conver-
gent condition.

The proposed intelligent algorithm can be easily implemented
in Arduino® (Uno, Atmel 8-bit CMOS microcontroller
32 K bytes self-programmable mechanism, six analogue inputs,
14 digital inputs/outputs, DI/digital output (DO)) prototyping
platform in the fog layer. The output vector R indicates the
digital outputs, Rp= [r1, r2, r3] = [green, yellow, red], which sets
the digital output state as either ‘logic high’ or ‘logic low’. The
output LED is active when the digital output is in the high level.
Using WiFi wireless communication, a WLAN is used to link to
a wearable or a mobile devices in the 2.4-GHz medical frequency
band [13], which is used to transmit warning information to neph-
rology nurses and further an alarm signal to trip the haemodialysis
machine in the haemodialysis room (20 × 30 m2).

4. Experimental results: The experimental setup for blood leakage
detection is shown in Fig. 5. The resistor voltage divider was
employed to measure each photoresistor between the DC voltage
Healthcare Technology Letters, 2018, Vol. 5, Iss. 1, pp. 38–44
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source and pull-down resistor. Then, four analogue input
connectors were used to obtain four nodal voltages from the
sensing unit to the four analogue/digital converters (ADCs) as
10-bit ADC channels, as seen in Fig. 6a. The analogue voltage
reading ranged from 0.0VDC to about 5.0VDC. For animal
experiments, pig blood was collected with some anticoagulant
to prevent the clotting of blood. This blood sample was heated
at 35–37°C to simulate adult blood. We dropped pig blood on
the sensing unit in random order using the precision graduated
syringe. Thus, pig blood could be used to mock the blood
leakage (3–40 ml) with a <1 s reaction time (Fig. 5). When blood
(pig blood) leakage covers any photocell sensor, the total
41
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Table 1 Experimental results for blood leakage detection

Risk level Analogue input (voltage) Sensing state (0/1) HAM output Hit rate%

V1 V2 V3 V4 s1 s2 s3 s4

1 3.95 3.97 4.12 4.04 0 0 0 0 [1 0 0] 100
2 2.98 3.67 4.12 4.08 1 0 0 0 [0 1 0] 100

3.73 3.05 4.21 4.16 0 1 0 0 [0 1 0]
3.35 4.15 2.52 4.11 1 0 1 0 [0 1 0]
4.06 4.17 4.13 2.51 0 0 0 1 [0 1 0]
3.44 3.16 3.78 4.16 1 1 0 0 [0 1 0]
3.95 1.82 2.67 4.09 0 1 1 0 [0 1 0]
4.04 4.17 1.88 2.33 0 0 1 1 [0 1 0]
1.99 3.91 2.55 4.07 1 0 1 0 [0 1 0]
1.83 4.03 4.15 2.54 1 0 0 1 [0 1 0]
3.78 3.44 4.16 3.16 0 1 0 1 [0 1 0]

3 4.08 2.03 2.10 2.39 0 1 1 1 [0 0 1] 100
2.10 4.17 2.42 2.51 1 0 1 1 [0 0 1]
2.07 2.28 4.16 2.61 1 1 0 1 [0 0 1]
2.02 2.30 2.53 4.06 1 1 1 0 [0 0 1]
1.57 2.02 2.15 2.00 1 1 1 1 [0 0 1]

Fig. 7 Network parameter and mean-squared error versus iteration number
for the conventional machine learning model (GRNN)
resistors of the photocell and the pull-down resistor will increase
the current flowing through both resistors will decrease, and thus
the voltage across the pull-down resistor will also decrease. The
nodal voltage was proportional to the inverse of the photocell
resistor. The nodal voltages, V1 to V4, could be obtained to
identify the sensing states using (1), where the critical threshold,
Vcc × 70%<Vi <Vcc, i = 1, 2, 3, 4, for logic ‘0’, and Vi <Vcc ×
70% for logic ‘1’, respectively.

We can establish the 16 input–output pairs of training patterns,
which are two matrices, as the sets of binary patterns. Then, the
weight matrix, W, and the associate matrix, A, could be established
using (4), as

W =

0× 0 0× 4 0× 4
1× 0 1× 4 1× 4
2× 0 2× 4 2× 4
3× 0 3× 4 3× 4
4× 0 4× 4 4× 4

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦ ⇔ A =

1 0 0
0 1 0
0 1 0
0 0 1
0 0 1

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

Therefore, an HAM machine learning mode had four input
nodes, three output nodes, and five non-linear processing nodes
(Gaussian function units, as seen in Fig. 4.

For example, considering the blood leakage (>10 ml of pig
blood) covered the sensing nodes, 1# and 2#, then, the detection
procedure is as shown below.

Step 1: transit the metering analogue voltages, V= [V1, V2, V3,
V4] = [3.44, 3.16, 3.78, 4.16], and estimate the sensing states,
S0 = [1, 1, 0, 0] using the hard limit function (1), as seen in Table 1.
Step 2: initiate the R0 = [0, 0, 0, 0], then apply the input pattern,
S0, and associate the output pattern, R0, using (5).
Step 3: transit the output pattern, R0, to the Gaussian function units,
and compute the output vector, G0 = [0.00, 0.00, 1.00,0.00, 0.00]
and ED= [11.31, 5.66, 0.00, 5.66, 11.31], using (6) and (7). The
maximum one, g3 = 1.00 (argmin||ED3|| = 0.00), is an index to
measure the similarity degree among the five categories, then the
risk level 2 can be determined.
Step 4: transit the outputs of Gaussian function units, and compute
the outputs of vj, [v1, v2, v3] = [0.00, 1.00, 0.00]. The output of rj
units using the hard limit function is [r1, r2, r3] = [0, 1, 0],
Step 5: reach the bidirectional stability and terminate the
detection algorithm, and then indicate the ‘Risk Level 2#’. Then,
output signal r2 (High Logic) acts to drive a yellow LED and a
loud alarm.
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When any sensing node was covered by pig blood, the values of
nodal voltage changes, V1 to V4, were used to identify the sensing
states using (1). Fig. 6b shows the average nodal voltages by 16
events, including normal condition and possible blood leakage
events. Then, the proposed HAM model as a virtual alarm unit
was employed to identify blood leakage levels. Hence, the virtual
alarm unit could associate two different data types, as a sensing
pattern, S, and an alarm pattern, R, to automatically drive the
LED and the loud alarm. Based on at least 80 experimental tests
(5 × 16 events), the experimental results with 16 events indicated
a hit rate of 100%, as shown in Table 1. This finding confirmed
that the proposed model could detect blood leakage or blood
loss during dialysis therapy. Its firmware system integrated with
the flexible sensor and the HAM application software took
<0.15 ms to deal with the task in the fog layer and further trans-
mitted the warning information via wireless communication to a
mobile device or a remote monitor system in the cloud layer.

For the same training patterns, a machine learning model as
the generalised regression neural network (GRNN) was also used
to establish a screening model with four inputs and three outputs.

Its configuration could be determined using the presentation of
16 input–output pairs of training patterns [17, 18]. We had four
input nodes in the input layer, 16 pattern nodes in the pattern
layer, four nodes in the summation layer, and three nodes in the
output layer (network topology: 4-16-4-3). Its model could deal
Healthcare Technology Letters, 2018, Vol. 5, Iss. 1, pp. 38–44
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Table 2 Comparison of the proposed screening model and GRNN method

Task Method

The proposed screening model GRNN model

training data 16 input–output pairs of training patterns 16 input–output pairs of training patterns
memory storage C matrix (4 × 3): 48 bytes weight matrix between input and pattern layer (4 × 16): 256 bytes

W matrix (5 × 3): 60 bytes weight matrix between pattern and output layer (16 × 4): 256 bytes
A matrix (5 × 3): 60 bytes

training process matrix operation iteration computation<25
recalling process iteration computation≤ 2 matrix operation
computer time <0.15 ms <5.00 ms
accuracy% 100% 100%
with high-dimensional and non-linear training patterns for pre-
diction and classification applications. However, it needed an
optimal algorithm to minimise the pre-specified tolerance value,
such as the traditional least-square algorithm or the gradient
descent algorithm. The iteration computations were used to reach
the convergent condition by tuning the network parameters in
the learning stage. The iteration process took about <5.0 ms and
<25 iterative computations to reach the convergent condition with
the prespecified tolerance value (mean-squared error ≤10−3).
Hence, the optimal model parameter, σ = 0.2772, was obtained to
minimise the mean-squared error, as seen in Fig. 7. The GRNN
was a regulable pattern mechanism with updating network
parameters in online applications. However, initial condition
assignments, such as initial network parameters and learning
rates, could affect its learning performance. In addition, the fill-in
with elements in two weight matrices could increase computing
time and memory storage requirements. Considering 4 bytes
for digital storage, the memory storage was 512 bytes, as seen in
Table 2. Increases in both memory storage and computing time
were limited to implementation in a microprocessor-based system
or a portable embedded system.
In contrast to the GRNN model, the proposed screening model

had a very fast training stage using matrix operation without
iteration computations, learning and network parameters assign-
ment. The dimensions of the training pattern presentation and the
memory storage needs could be reduced from 512 to 168 bytes.
Its recalling stage slightly needed iteration computations without
changing any network parameters and took an average execution
time of <0.15 ms and ≤2 iterative computations to reach the
bidirectional stability. Hence, the HAM model could be easily
implemented in an embedded system or a portable detection
device. Based on fog computing, the proposed detection model
could exert the physical condition, control the measurement
process, and send alerts. The wearable assistant tool with the
array photocell sensor and the HAM model also reacts to process
data and take the decision in the fog layer.

5. Conclusion: The integrating photocell sensors and the
associative memory machine learning model were established
to detect blood leakage. In contrast to the IR light sensor, the
photocell sensor was small, of low cost, consumed low power,
and was easy to implement in a wearable device. These cells
could be mounted on a flexible printed circuit board such as a
plastic substrate. This electrical equipment needs to be validated
for safety and effectiveness before its commercialisation by the
standard of IEC 60601 series [19] and IEC PAS 63023:2016
[19, 20] that covers the design methodology, verification, and
risk assessment. In addition, the proposed model had a simple
configuration and a very fast training process in the learning
stage and computing process in the recall stage (<0.15 ms and
≤2 iterative computations). The dimensions of the training
patterns and the memory storage needs were less than those of
Healthcare Technology Letters, 2018, Vol. 5, Iss. 1, pp. 38–44
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the traditional machine learning method. With the high-level
programming language (language C), the HAM algorithm
could be easily implemented in an intelligent wearable system
for personalised physiological monitoring applications. Using pig
blood mimicking blood leakage/loss, the experimental results
indicated a hit rate of 100% and a true positive rate of 100%.
Therefore, the proposed prototype tool could further be integrated
into a compact portable microchip without limiting the
patient’s range of motions. Then, the wireless communication
was employed to transit the warning signals to control the alarm
system or haemodialysis machine. With its feasibility evaluations,
the prototype tool employed the fog (edge) computing and
indicated the warning information via wireless communication
system for clinical applications in dialysis therapies.

6. Funding and declaration of interests: None declared.
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