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Accurate optic disc (OD) segmentation is an important step in obtaining cup-to-disc ratio-based glaucoma screening using fundus imaging. It
is a challenging task because of the subtle OD boundary, blood vessel occlusion and intensity inhomogeneity. In this Letter, the authors
propose an improved version of the random walk algorithm for OD segmentation to tackle such challenges. The algorithm incorporates
the mean curvature and Gabor texture energy features to define the new composite weight function to compute the edge weights. Unlike
the deformable model-based OD segmentation techniques, the proposed algorithm remains unaffected by curve initialisation and local
energy minima problem. The effectiveness of the proposed method is verified with DRIVE, DIARETDB1, DRISHTI-GS and MESSIDOR
database images using the performance measures such as mean absolute distance, overlapping ratio, dice coefficient, sensitivity, specificity
and precision. The obtained OD segmentation results and quantitative performance measures show robustness and superiority of the
proposed algorithm in handling the complex challenges in OD segmentation.

1. Introduction: Glaucoma is a degenerative and irreversible optic
neuropathy, which ranks as the second most disabling and vision
impairing disease worldwide [1]. Glaucoma is a silent thief of
sight as it is asymptomatic in preliminary stages; hence early
diagnosis and treatment is the only way to prevent further retinal
damage. Tests such as tonometry, gonioscopy, perimetry are
commonly practiced to detect glaucoma. However, these tests are
generally time consuming and prone to human errors; therefore
computer-aided diagnosis is suitable for large-scale glaucoma
screening [2].

There are two approaches for glaucoma detection in the literature
such as with segmentation [3—6] and without segmentation [7—15].
In [7-15], the methods use whole image-based features that include
higher-order spectral features [7-10], fractal features [11, 12],
wavelet-based features [13] and texture features [14] followed by
various classification strategies to accurately detect glaucomatic
cases. Since this approach does not require explicit segmentation,
it is computationally inexpensive. However, the other approach
employing segmentation-based reliable features such as cup-to-disc
height ratio (CDR), rim area, optic disc (OD) size is also found to be
useful for glaucoma screening. The proposed method only con-
centrates on the OD segmentation procedure which can be used
to determine the OD height. The OD height is a prerequisite in com-
puting the CDR-based glaucoma risk index evaluation [16].
To further enhance glaucoma detection accuracy, both approaches
can be combined together to design better automated glaucoma
detection systems. Moreover, OD segmentation is not only
limited to glaucoma detection but also considered to be a funda-
mental step in diabetic retinopathy detection and localisation of
other retinal structures such as fovea and macula [17, 18]. Subtle
OD boundary, blood vessel occlusion and intensity inhomogeneity
make OD segmentation a challenging task.

OD appears as a bright and relatively circular region, which
is partially occluded by the blood vessels as shown in Fig. 1. The
approaches adopted for OD segmentation as reported in the
literature can be broadly categorised as (i) shape-based template
matching, and (ii) deformable model-based methods. In template
matching-based methods, the OD is modelled as a circular or ellip-
tical object based on its shape [19-24]. The OD contour is estimated
by circular template matching on edge maps using the Hausdorff
distance measure [19]. Aquino et al. [20] computed the Hough
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transform-based circular approximation of the OD using a binary
mask of the boundary candidates. Another Hough transform-based
OD segmentation approach is also reported in [21]. A circular trans-
formation using evenly-oriented radial line segments of specific
length is designed in [22] to capture the circular shape of the
OD and the image variation across the OD boundary. The ellipse
fitting algorithm with intensity information is utilised to detect
the OD contour in [23]. A convex hull in the vicinity of best OD
candidate followed by an ellipse fitting approach is suggested in
[24]. The shape-based template matching methods have reported
several failure cases when an OD shape irregularity is caused by
different retinal pathologies.

A number of methods have been proposed to address the shape
irregularity of OD based on various deformable models [3-6,
25-28]. Xu et al. [3] detected the OD contour by improving the
original snake algorithm in two aspects: knowledge-based cluster-
ing and smoothing. Joshi et al. [4] applied active contour model
with energy function that includes multi-dimensional features
such as intensity, colour and texture. An anchored active contour
which was initialised by Hough circle fitted to the edges of the
binarised distance map is applied to the OD boundary extraction
in [5]. Mittapalli and Kande [6] proposed an active contour
model for OD segmentation which incorporates the image informa-
tion from multiple image channels. An automatic OD boundary
detection technique based on morphology and active contour
model is proposed in [25]. Wong et al. [26] proposed a variational
level-set model followed by ellipse fitting operation to obtain the
smooth OD boundary. A local deformable model with variable
edge-strength dependent stiffness for OD segmentation is used in
[27]. Dai et al. [28] proposed a PCA-based shape energy which
constraints the curve evolution in OD segmentation.

In deformable model-based OD segmentation, the boundary
localisation is sensitive to curve initialisation. The curve evolution
stops at a local energy minimum if proper initialisation is not under-
taken. Various types of local information are used in the level set
energy functional to address this problem. The main limitation
of the level set methods is that they often require specification
of several parameters and it is tedious to tune them, especially
when the desired contour does not correspond to a local energy
minimum. The above challenges provide space to explore and
apply graph-based random walk (RW) segmentation paradigm

31

This is an open access article published by the IET under the
Creative Commons Attribution License (http:/creativecommons.
org/licenses/by/3.0/)



[29]. The RW provides accurate segmentation output even at weak
boundaries in the presence of intensity irregularity. In addition, it
avoids the trapping at local minima in deformable models and
small cut problem in graph cuts. RW-based segmentation was
applied successfully in biomedical images such as left ventricle seg-
mentation in cardiac magnetic resonance images [30] and tumour
segmentation in brain and liver images [31].

In this Letter, we propose a new curvature and texture con-
strained RW (CTCRW) algorithm for OD segmentation in fundus
images. Here, we propose a graph-based RW algorithm with
a modified weight function which is new for OD segmentation. A
new composite RW weight function is defined by incorporating
mean curvature, Gabor texture energy features with multiple orien-
tations and intensity features. The distinctive curvature and texture
information of OD enable the segmentation process to tackle the
misleading interference such as noise, weak boundaries in the OD
segmentation procedure.

The remaining of this letter is organised as follows: Section 2
describes the details of the proposed CTCRW-based segmentation
method. The results are provided in Section 3. In Section 4, the
effectiveness of the proposed CTCRW algorithm is tested and
validated by comparing the accurate OD segmentation performance
on a wide variety of fundus images taken from DRIVE,
DIARETDBI1, DRISHTI-GS and MESSIDOR databases. Finally,
Section 5 presents the concluding remarks.

2. Methods: This section describes the proposed CTCRW algorithm
for accurate OD segmentation. The schematic representation of
the proposed OD segmentation algorithm is illustrated in Fig. 2. In
the first step, blood vessel inpainting and intensity adjustment
is performed. The mean curvature feature, Gabor energy texture
feature and intensity features are then extracted and used to
compute the weights for the proposed CTCRW algorithm. After
selecting the background and foreground seed pixels, the solution
to combinatorial Dirichlet problem minimisation is computed
to get the probability of unmarked pixels belonging to the seed
pixels. Finally, the segmentation decision is obtained by retaining
the maximum probability value at each pixel.

2.1. Pre-processing: The OD segmentation process starts with the
grey-scale image I created by a weighted combination of red (Z,)

Fig. 1 Major retinal structures
a Colour fundus image (DRIVE database)
b Enlarged OD region with major retinal structures labelled

and green (/,) channels of the RGB fundus image to enhance the
contrast across the OD boundary [22]

I=oal, + (1—-al, where a=0.6 1)

The OD segmentation performance degrades due to blood vessel
obstruction in and around the OD region. Hence, the blood vessels
are extracted using the binary Hausdorff symmetry measure based
seeded region growing [32] and then inpainted. This is followed
by the intensity adjustment using median filtering at each pixel
around the OD centre that is detected based on the symmetry prop-
erty of retinal blood vessels [33]. A sample pre-processed image is
shown in Fig. 3.

2.2. RW for segmentation: In RW-based segmentation, an image is
treated as a graph with fixed number of vertices and edges. A
real-valued weight is assigned to each edge in the graph which
corresponds to the likelihood that a random walker will cross that
edge [29].

A graph G = (V, E) constitutes of vertices v € V' and edges
e € E, where EC V' x V. An edge connecting two vertices v;
and v; is represented by e;;. In a weighted graph, each edge e; is
assigned to a weight w;. The degree d; of the vertex v; is the
summation of all the incident edge weights

di=>"w;. )
J

In classical RW [29], the edge weights are represented by a
Gaussian function that maps a change in image intensities to the
edge weights

w=exo(~6(1- 1)) ()

where /; and J; represent the image intensities at pixels i and j,
respectively, and 3 represents the free parameter of RW algorithm.

The RW algorithm is initialised by assigning K seeds indicating
regions belonging to K objects in the image. The RW algorithm
labels each unmarked pixel by computing the probabilities of its
first arrival at one among the K seed points. A solution using the
minimisation of the combinatorial Dirichlet problem with boundary
conditions is established to optimally compute the probability
values.

2.3. Proposed CTCRW algorithm: In this subsection, we present
the CTCRW algorithm in details. The CTCRW algorithm uses the
mean curvature and Gabor texture energy features as constraints
in the proposed RW weight computation. In classical RW, w;; is a
function of pixel intensities in (3). However, irrespective of the
pathological variations in OD shape, the curvature value is more at
the OD boundaries and the texture of OD region is different than
the background. Therefore, in addition to pixel intensities, the
mean curvature and texture features could achieve improved
performance as compared to classical RW. Furthermore, the
curvature and texture information in CTCRW is dynamically
derived from the image itself such that the requirement of any
prior shape training is avoided. The CTCRW algorithm constitutes
of mainly three steps: (i) seed initialisation, (ii) assignment of the

Mean curvature Labeling of the seed
pixels
P - e ¥ Proposed v
Fundus pucesan Gabor ener CTCRW Label th
inpaint 9 |y CTC Rpply abel the
Image™ 21 ﬂzﬁiirs:de.:‘::mﬁmg texture feature weight Dirirchlet solution to| | unmarked pixel oD
- — o OmpUEAtiOn find CTCRW using computed [ segmented

Intensity feature probabilities probability values image

Fig. 2 Schematic representation of the proposed OD segmentation algorithm
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Fig. 3 Preprocessing of fundus image

a Colour fundus image

b Fundus image after preprocessing

¢, d Enlarged OD region of (a) and (b), respectively

b

Fig. 4 Seed initialization and probability values in CTCRW algorithm
a Foreground (cyan) and background (magenta) seeds
b CTCRW probability values

proposed weight values to the edges, and (iii) computation of the
probability of each unmarked pixel belonging to a seed point.

o [nitialisation of seed pixels: A total of K foreground and back-
ground seeds are automatically selected on two circles situated
around the OD boundary (Fig. 4a).

o Composite edge weight computation: The edge weights are com-
puted considering the curvature information from the circular shape
of OD and texture information from the Gabor energy values.

The mean curvature is an extrinsic measure of curvature that comes
from differential geometry and that locally describes the curvature
of an embedded surface [34]. The mean curvature H of an image
1 is given by

xTytxy
200+ 12+ 12y

VI + 2011+ (1+ 1)
g Ut+L) ( My @

Gabor filter is a linear filter used for texture analysis, which
analyses the specific frequency content in the image in specific
directions in a localised region. A two-dimensional (2D) Gabor
filter mask comprises of Gaussian modulated sinusoidal wave
used for localised and oriented frequency analysis [35]. A 2D
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Fig. 6 Illustration of OD segmentation
a OD segmentation result
b Enlarged OD region with marked contours (red: proposed, black:
groundtruth)

Gabor function for wavelength (A), orientation (6) and standard
deviation (o) can be expressed as

2
glx,y) = exp_((x_X)2+(y_Y 127 sin (TW (xcos 6 — ysin 9)) (5)

For g(x, y) computation, the wavelength A and standard deviation
o are considered as 1.414 and 0.1, respectively, in 12 equidistant
orientations (0, 15, 30, 45,..., 180) in this method (Fig. 5). The
Gabor energy is computed by convolving g(i, /) with the image
1(x, y)

Ty =1(x,y) x gg (G, /), 0, =1[0°15° ..., 180°] (6)

After computing the mean curvature and Gabor texture energy
values at different angles, the composite weight of the edge con-
necting two nodes is found using the following equation:

wy = cyexp(— By — [))) + ey exp (— By(H, — H))*)
+esexp(— By Yy (T, — Ty))

e Labelling of unmarked pixels: The probability of each unmarked
pixel belonging to a seed point is computed by solving the com-
binatorial Dirichlet problem. The final segmentation decision is
obtained by retaining the maximum probability value (xﬁ) at each
vertex v, (unmarked pixel)

Label, = max o, w, €V, 8)

The maximum probability at each unmarked pixel is shown in
Fig. 4b and the contour of the segmented region is shown in Fig. 6.

3. Results: The validation of the proposed CTCRW algorithm
is carried out on DRIVE [36], DIARETDBI1 [37], DRISHTI-GS
[38] and MESSIDOR [39] databases having colour and pathological
artefacts variability. The DRIVE database contains 40 colour fundus
images including 7 pathological images. The images are captured
using 8 bits per colour plane at 564 x 584 pixels and 45° FOV
(field of view). The DIARETDBI1 dataset consists of 89 colour
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images with 84 of them containing at least one indication of lesion.
The images are captured with a digital fundus camera at 50° FOV and
had a size of 1500 x 1152 pixels. DRISHTI-GS consists of a total of
101 images out of which 70 images have signs of glaucoma. The
images are taken with 30° FOV and of dimensions 2986 x 1944
pixels. MESSIDOR database [39] comprises of 1200 retinal
images captured using 8 bits per colour plane at different resolutions
of 1440 x 960, 2240 x 1488 or 2304 x 1536 pixels.

For quantitative performance evaluation of the proposed algo-
rithm, the following performance measures are taken into consider-
ation. The mean absolute distance (MAD) between the detected OD
boundary 7}, and the groundtruth /; is defined as

11 1
MAD(D, G) = 5<;Zd(di, G)-l—;Zd(gj, D)) 9)
i=1 j=1

where D and G are represented as the sets of contour points,
ie.D={d,,d,, ...,d,} and G={g, g, ..., g,} inlyand I,
respectively. Furthermore, d(d;, G) is the distance of point d; to
its closest point in G.

The other parameters such as overlapping ratio (OR), dice co-
efficient (DC), sensitivity (SN), specificity (SP) and precision
(PR) values are derived from true positive (TP), false positive
(FP), true negative (TN) and false negative (FN) rates as follows:

_area(Gg N Dy)

" area(Gp U D) (10)

b= GR2UXD(RG i gRD A)DR (an
SN= e (12)

SP = TNT—fFP (13)

PR = TPLEFP (14)

where G, and Dy, correspond to the groundtruth and segmented OD
regions, respectively.

The performance of the CTCRW algorithm for OD segmentation
is first compared with the classical RW [29] and its recent variations
applied on medical images [30, 31]. In order to make an unbiased
performance comparison, the preprocessing and seed initialisation
process are kept identical for each method. In [30], the distance
transform of the fitted circle to the initial contour is used in the
weighting function to incorporate the circular shape information
of the left ventricle during segmentation. An extra penalty term is
utilised in the weighting function of [31] which penalises the dis-
persion of Gaussian-filtered intensities. The segmentation algo-
rithms in [30, 31] are referred as RWDT (RW with distance
transform) and RWP (RW with penalty function) here.

The visual comparison of all these methods is shown in Fig. 7
and the quantitative parameters are given in Table 1. From Fig. 7

Fig. 7 Detected OD boundary
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and Table 1, it is observed that the proposed algorithm achieves
better segmentation performance in terms of MAD (1.46) and OR
(0.93) values. This indicates better detection accuracy with an
improved match between the groundtruth and proposed segmented
outputs. The proposed CTCRW algorithm achieves an improved
performance as it incorporates mean curvature and Gabor texture
energy features to compute the edge weights. Few more segmenta-
tion results are shown in Fig. 8.

Table 1 Quantitative parameters

Method MAD OR DC
classical RW [29] 4.51 0.92 0.96
RWDT [30] 5.75 0.75 0.86
RWP [31] 6.33 0.73 0.84
proposed CTCRW 1.46 0.93 0.96

Fig. 8 OD segmentation results
a—d First column: colour fundus images and second column: overlapped OD
boundaries (black: groundtruth, red: detected contour)
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Table 2 OD segmentation performance in DRIVE database

Method MAD OR DC PR SP SN
classical RW [29]  9.89  0.8063 0.8927 0.8964 0.9985 0.8871
RWDT [30] 18.47 0.5901 0.7101 0.6136 0.9600 0.9706
RWP [31] 12.06 0.6118 0.7446 0.7207 0.9884 0.8560
proposed 4.63 0.8467 0.9070 0.9257 0.9983 0.9167
CTCRW

Table 3 OD segmentation performance in DRISHTI-GS database

Method MAD OR DC PR SP SN
classical RW [29] 15.05 0.8583 0.9222 0.9472 0.9983 0.9041
RWDT [30] 17.40 0.7477 0.8535 0.9751 0.9993 0.7658
RWP [31] 18.09 0.7370 0.8421 0.9668 0.9989 0.7633
proposed 13.03  0.9040 0.9496 0.9441 0.9966 0.9552
CTCRW

Table 4 OD segmentation performance in DIARETDBI database

Method MAD OR DC PR SP SN
classical RW [29]  10.08 0.8206 0.8891 0.9029 0.9764 0.9116
RWDT [30] 11.07 0.7344 0.8362 0.9540 0.9910 0.7737
RWP [31] 12.59 0.7367 0.8347 0.9166 0.9765 0.8105
proposed 7.30 0.8841 0.9385 0.9574 0.9980 0.9203
CTCRW

Table 5 OD segmentation performance in MESSIDOR database

Method MAD OR DC PR Sp SN
classical RW [29] 5.88 0.7056 0.8161 0.9091 0.9987 0.7888
RWDT [30] 737 0.6511 0.7822 0.9876 0.9999 0.6580
RWP [31] 1042 0.6388 0.7575 0.7783 0.9843 0.8434
proposed 295 0.8588 0.9218 0.9360 0.9994 0.9168
CTCRW

4. Discussion: The proposed CTCRW algorithm for OD
segmentation incorporates mean curvature, Gabor texture energy
features with multiple orientations in the RW weight formulation.
Both curvature and texture features of OD are different than the
pathological structures like myelinated nerve fibre and
peripapillary atrophy. In addition to that, the intensity adjustment
around the OD centre in the preprocessing step and careful
selection of K number of foreground and background seeds add
robustness to the proposed method.

The quantitative evaluation parameters computed on complete
DRIVE, DRISHTI-GS, DIARETDB1 and MESSIDOR databases
are provided in Tables 2-5, respectively. The proposed CTCRW al-
gorithm has MAD values 4.63, 13.03, 7.3 and 2.95 in DRIVE,
DRISHTI-GS, DIARETDB1 and MESSIDOR, respectively,
which is better than that of classical RW, RWDT and RWP. It sig-
nifies that the detected OD contour is nearer to the groundtruth as
compared to other methods. It is also observed from Tables 2—-5
that the CTCRW algorithm achieves better OR, DC, SN values
in all databases. In case of SP of DRIVE and SP, PR of
DRISHTI-GS and MESSIDOR, the proposed method has margin-
ally equal performance as compared to RWDT, RWP and classical
RW algorithms. The RWDT depends on the circularity criteria;
therefore does not perform accurate segmentation where OD is
not circular. In RWP, Gaussian filter kernel is used to reduce the
responsiveness of the variation of intensities. However, it is
unable to detect the correct OD boundary in the presence of peri-
papillary atrophy around OD. In such challenging scenario, the
final OD contours by RWDT and RWP segmentation moves
away from the groundtruth.

Furthermore, Table 6 shows the performance comparisons
between the proposed CTCRW approach and state-of-the-art OD
segmentation methods. The original results are obtained from
the respective papers for this comparison. The proposed CTCRW
algorithm achieves OR value of 0.8467 in DRIVE and 0.8841 in
DIARETDBI1 which is better than the methods in [24, 40-42].
In DRISHTI-GS database, the CTCRW algorithm achieves MAD
value of 13.03 which is marginally higher than the MAD value
of 11.1 pixels achieved by Joshi et al. [4]. In MESSIDOR, the pro-
posed method achieves better performance than Roychowdhury

Table 6 Performance comparison of the proposed OD segmentation with state-of-the-art methods

Methods Approach Database (number of images) Performance measures
MAD OR SN
Aquino et al. [20] model-based method MESSIDOR (1200) — 0.8600 —
Roychowdhury et al. [24] convex hull at best OD candidate ellipse fitting DRIVE (40) 5.01 0.8067  0.8780
DIARETDBO (130) 491 0.7761 0.8660
DIARETDBI (89) 4.82 0.8022  0.8815
STARE (81) 9.13 0.7286  0.8380
MESSIDOR (1200) 3.93 0.8373  0.9043
Joshi et al. [4] active contour with intensity and texture feature DRISHTI-GS (101) 11.1 — —
Mittapalli and Kande [6] active contour using different image channels local database (59) 10.11 — —
Dai et al. [28] shape energy constrained curve evolution DRIONS (110) 2.42 0.9081 —
MESSIDOR (1200) 2.25 0.9100 —
Welfer et al. [40] adaptive morphological approach DRIVE (40) 5.74 0.4147 —
DIARETDBI (89) 831  0.4365 —
Salazar-Gonzalez et al. [41] Markov random field with compensation factor DRIVE (40) 3.39 0.8240 0.9819
DIARETDBI (89) 6.55 0.7850  0.8750
Diaz-Pernil et al. [42] implementation using parallel architecture DRIVE (40) — 0.8330 0.8990
DIARETDBI (89) — 0.8430  0.9180
Muramatsu et al. [43] fuzzy C-mean, active contour and artificial neural network local test set 1 (98) — 0.8820 —
local test set 2 (30) — 0.8710 —
proposed method CTCRW DRIVE (40) 4.63 0.8467 09167
DRISHTI-GS (101) 13.03 0.9040  0.9552
DIARETDBI (89) 7.30 0.8841 0.9203
MESSIDOR (1200) 2.95 0.8588  0.9168
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Fig. 9 Effect of variation of the parameters on MAD and OR in DRIVE database

a Varying 3, keeping 8, and S35 fixed
b Varying 8, keeping 3, and B; fixed
¢ Varying B; keeping 3; and B, fixed

et al. [24] in terms of MAD, OR and SN values, whereas Dai et al.
[28] report slightly higher performance in terms of MAD and
OR. The proposed CTCRW algorithm segments the OD more
accurately. However, accurate OD centre detection is an additional
requirement for successful execution of the proposed segmentation
algorithm.

The computation of the probabilities of random walkers first
reaching a seed point starting from each pixel is computationally
complex. However, it has been established that the minimisation
of combinatorial Dirichlet problem makes the RW algorithm
simple, convenient and computationally efficient. The proposed
CTCRW method is implemented in MATLAB environment on an
Intel desktop processor (core i7 CPU, 3.40 GHz). The average com-
putational time per each image for CTCRW is 19.44 s, which
is marginally higher than the time of 16.30 s by the classical RW
algorithm. In contrast, the processing time of 18.59 and 21.71 s is
required for RWDT and RWP-based OD segmentation, respec-
tively. The proposed algorithm has achieved better performance
at the cost of few more seconds to compute mean curvature and
Gabor texture energy features.

The optimal parameter (8;, 8, and 3;) selection in proposed RW
is an important task. The parameters are experimentally chosen to
optimise the performance of the segmentation results. The values
of the free parameters S3,, 3, and B; are chosen as 90, 250 and
90, respectively. To show the parameter SN on result accuracy,
each parameter is varied and its effect on the MAD and OR
values are shown in Fig. 9 for DRIVE database. The variation of
OR and MAD values is compared to a range of each parameter,
keeping the other two constants at its optimal value. In Fig. 9, it
can be observed that the OR and MAD values attain optimal
values at B, =90, B, =250 and B; = 90. However, once the
optimum values of the parameters are decided, it remains fixed
for each image in all databases.

5. Conclusion: Glaucoma is an irreversible optic neuropathy, which
leads to blindness if remains untreated. Early detection and diagnosis
of glaucoma can only prevent further vision loss. Monitoring the
shape changes in the OD is crucial for indicating the progression
of glaucoma. This letter contributes an efficient and fully automated
algorithm for accurate OD segmentation. The accuracy of glauco-
matous damage estimation depends highly on the exact outlining
of the OD contour line. The proposed CTCRW algorithm in this
Letter overcomes the curve initialisation and local energy minimum
problem of deformable model-based approach. The CTCRW algo-
rithm is shown to segment OD more accurately by incorporating
the mean curvature and Gabor texture energy information in the com-
posite edge weight function. The efficacy of the CTCRW algorithm
is reflected in terms of the quantitative parameters such as MAD, OR,
DC, SN, SP and PR in DRIVE, DRISHTI-GS, DIARETDBI1 and
MESSIDOR databases. In terms of future work, an accurate optic
cup segmentation algorithm will be designed to be used for
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CDR-based glaucoma classification during the large-scale screening
of retinal images.
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