Virtual interaction and visualisation of 3D medical imaging data with VTK and Unity

Gavin Wheeler' ™, Shujie Deng’, Nicolas Toussaint!, Kuberan Pushparajah'?, Julia A. Schnabel,

John M. Simpson'?, Alberto Gomez!

!School of Imaging Sciences & Biomedical Engineering, King’s College London, London, UK
’Department of Congenital Heart Disease, Evelina London Children’s Hospital, London, UK

= E-mail: gavin.wheeler@kcl.ac.uk

Published in Healthcare Technology Letters; Received on 10th August 2018; Accepted on 20th August 2018

The authors present a method to interconnect the Visualisation Toolkit (VTK) and Unity. This integration enables them to exploit the
visualisation capabilities of VTK with Unity’s widespread support of virtual, augmented, and mixed reality displays, and interaction and
manipulation devices, for the development of medical image applications for virtual environments. The proposed method utilises OpenGL
context sharing between Unity and VTK to render VTK objects into the Unity scene via a Unity native plugin. The proposed method is
demonstrated in a simple Unity application that performs VTK volume rendering to display thoracic computed tomography and cardiac
magnetic resonance images. Quantitative measurements of the achieved frame rates show that this approach provides over 90 fps using
standard hardware, which is suitable for current augmented reality/virtual reality display devices.

1. Introduction: Medical imaging is an invaluable tool in
diagnosis and treatment planning. Volumetric images are
available from different modalities such as computed tomography
(CT), magnetic resonance (MR), or 3D ultrasound (US).
Four-dimensional (3D +time) image sets extend this to show
function over time, e.g. blood flow or cardiac motion. These data
are primarily viewed using 2D screens, which places a limitation
on depth perception and understanding of the true 3D nature of
the data.

Recently, there has been a significant boost in virtual reality (VR)
and augmented reality (AR) displays, mainly in two forms: head
mounted and fish tank displays. Head-mounted VR displays are
popular as their price has come down to consumer level, e.g.
Oculus Rift (www.oculus.com) and HTC Vive (www.vive.com).
AR headsets are mostly used by developers, e.g. Meta 2
(www.metavision.com) and Hololens (Microsoft Corp). Fish tank
displays include zSpace (www.zspace.com) and Alioscopy
(www.alioscopy.com). Progress in display technology enables
natural and intuitive interaction in virtual and augmented environ-
ments, e.g. gesture and eye tracking, haptic feedback, and so on.
These advanced displays and interaction tools are now widely
used in the video game industry, and are slowly penetrating into
other sectors such as design, marketing, and medical applications.

Arguably, the most widespread AR and VR development
environment is Unity (unity3d.com). Unity is primarily used for
video game development and its popularity is due to good
support, fast prototyping capabilities, and compatibility with most
commercially available VR/AR displays and interaction tools.
Unity has also been used to develop medical applications,
mainly surgery simulators [1]. However, native Unity visualisation
capabilities for medical images are somewhat limited to surface
rendering of mesh models.

Various visualisation libraries are specifically designed for
medical imaging, among which the Visualisation Toolkit
(VTK — www.vtk.org) is a de facto standard. VTK is used in
many medical imaging software, e.g. Paraview, ITKSnap, MITK
and 3D Slicer.

The surface rendering techniques used in recent VR and AR
medical visualisation systems built using Unity require a patient-
specific polygonal model of the anatomy of interest [1, 2]. Such
surface models are typically derived from medical images
through segmentation, using manual or semi-automatic methods.
In most cases, this involves manual effort, and the time and skill

148

This is an open access article published by the IET under the
Creative Commons Attribution License (http:/creativecommons.
org/licenses/by/3.0/)

to do this may be significant [3]. Moreover, the segmentation
process inherently loses information present in the original
volume data. Volume data often do not have precise boundaries,
but volume rendering allows the user to interactively tune rendering
parameters or apply filters, to achieve the desired appearance. By
integrating volume rendering in VR, we remove the potentially
erroneous segmentation steps and give the user more flexibility
and control.

In this work, we aim to integrate VTK into Unity to bring the
medical imaging visualisation features of VTK into interactive
virtual environments developed using Unity. Particularly, we
describe a method to integrate VIK volume rendering of 3D
medical images into a VR Unity scene, and combine the rendered
volume with opaque geometry, e.g. sphere landmarks. We focus
on creating core technology to enable this and give developers
and researchers the ease of use and flexibility of Unity combined
with the volume rendering features of VTK.

This Letter is organised as follows. Section 2 briefly summarises
the background of Unity and VTK, and the limitations of existing
software technology that integrates the two for medical image
visualisation. Section 3 elaborates our method for addressing
these limitations. Section 4 describes the materials and procedure
of a preliminary experiment, and the results are shown in
Section 5. Section 6 discusses the results and concludes the Letter.

2. Background

2.1. Unity: Unity is a cross-platform environment for developing
2D, 3D, VR, and AR video games on many mobile, desktop, and
web platforms. Unity supports some of the most popular VR
APIs, such as Oculus and OpenVR. Most other headset and 3D
display devices are also supported in Unity, often through a
manufacturer plugin.

In the medical field Unity has been used to create VR training
environments [1, 2], and for scientific and medical visualisation
[4]. These studies use surface rendering techniques, which require
segmenting a surface from medical images. It is desirable to directly
render 3D medical images using volume rendering, which can be
implemented in Unity through fragment shaders. Other authors
have implemented volume rendering specifically for Unity [5-7].
However, most existing volume rendering technology is available
as separate libraries. More interestingly, these libraries incorporate
volume rendering interaction features such as cropping,

Healthcare Technology Letters, 2018, Vol. 5, Iss. 5, pp. 148-153
doi: 10.1049/htl.2018.5064



multi-planar reformatting, and transfer functions, which would
otherwise need to be implemented for Unity too.

Fortunately, Unity provides a low-level native plugin interface
[8] to enable multi-threaded rendering through plugin callbacks.
Considering that Unity supports multiple graphics contexts, includ-
ing Direct3D and OpenGL Core, it is possible to call OpenGL
rendering from external plugins and display it directly in Unity.

2.2. Visualisation Toolkit: VTK is an open-source C++ library for
3D computer graphics, image processing, and visualisation, aimed
particularly at medical imaging visualisation. Crucially, VTK
implements OpenGL rendering, recently updated to OpenGL
Core, which can be used in external applications. This opens the
possibility of OpenGL context sharing between VTK and Unity.

Integrating VR into VTK has attracted great research interest
already. For example, adding VR support to the VTK-based
medical application MeVisLab [9]. Recent updates to VTK added
support for OpenVR and Oculus VR platforms [10], in turn allow-
ing VR rendering to be used with e.g. Paraview. While VTK
includes tools for composing scenes and interacting with them, its
capabilities are not as advanced as Unity’s, and its support of visu-
alisation and interaction platforms, e.g. haptic gloves, is more
limited.

Significant effort has gone into VTK’s volume rendering capabil-
ities, with a major overhaul in 2014 [11]. Volume rendering func-
tionality includes cropping, composite, and additive blending,
maximum and minimum intensity projections, and so on. It has
been optimised to run on the GPU in an effort to maximise perform-
ance. A target frame rate in frames per second (fps) can be set, with
VTK adapting render quality to meet it. Further enhancements have
since been made, including an upgrade to OpenGL 3.2 (an OpenGL
Core specification), multi-component data support and performance
improvements [12].

2.3. Related work: An existing approach to integrate VTK in Unity
is to generate a virtual scene in VTK, copy the geometry and
textures to Unity, and then render them as Unity game objects.
A straightforward way to achieve this is to wrap VTK into a C#
plugin so that VTK functions can be directly called in Unity
scripts. Several C# wrapped VTK tools are available [13, 14].
Activiz.Net is developed by Kitware, Inc., the same company
who created VTK. Tamura et al. [15] demonstrated a successful
case using Activiz.Net in Unity for the implementation of
head-mounted display of numerical data.

However, depending on implementation, this approach could be
slow due to copy operations, especially as the data get larger and
the scene more complex. Copying between the CPU and GPU is
generally to be avoided as it causes a GPU stall, and texture copy
operations between the CPU and GPU may take of the order of a
ms [16]. This delay is significant when our target refresh rate
is 90 fps [17], giving ~11 ms to render each frame. For instance,
read-back and upload of two textures in a stereo scene taking
1 ms for each operation uses 8 ms (1 msx2 (read-back and
upload) x 2 (textures) x 2 (left and right eyes)). A potential solution
is to re-implement some of the rendering functionality in the main
application. This approach may also increase development work-
load as it may require re-implementation of the shaders and transfer
functions, potentially time consuming and not straightforward,
especially in tasks such as volumetric rendering. Inconsistencies
in this may result in rendering which does not look as good as
the original.

2.4. Summary: In summary, Unity provides an ideal development
environment for AR/VR applications and advanced 3D interaction.
VTK is a medical image visualisation library that provides
advanced image display and processing tools including volume
rendering. Although some efforts to combine the two exist,
previous work sacrifices efficiency for ease of implementation and

Healthcare Technology Letters, 2018, Vol. 5, Iss. 5, pp. 148-153
doi: 10.1049/htl.2018.5064

requires re-implementation of some components. In this Letter, we
propose integrating VTK in Unity using a common OpenGL
context to keep their native efficiency.

3. Methods: To achieve an efficient, close coupling between Unity
and VTK, we implement sharing of an OpenGL context between
them. The main Unity application manages the OpenGL context,
calling VTK at the appropriate time to render directly into the
same OpenGL context. The following VTK and Unity features
led us to believe this would be successful.

The VTK external rendering module enables VTK rendering
in another application’s OpenGL context. It is an optional
module, selected in the VTK CMake configuration. VTK
external rendering is enabled in an application by declaring
vtkRenderingExternalModule, and then using the external
versions of the camera, renderer and render window. Then VTK
does not perform the context setup/tear down it normally would,
leaving this to the external application, with the VTK external ren-
derer making its OpenGL calls into the application’s OpenGL
context.

Unity supports several renderers across numerous platforms.
We use the OpenGL renderer to be compatible with VTK.
Communication with VTK is also required, and Unity provides a
low-level plugin interface [8], where C++ may be used — the
native language of VTK. For instance, an available native Unity
plugin example [18] uses OpenGL calls to directly manipulate
vertex buffers and textures in Unity’s OpenGL context, supporting
the idea that VTK external rendering in Unity can be achieved.

VTK OpenGL volume rendering is based on the OpenGL 3.2
specification, Unity supports OpenGL 4.5. Both are OpenGL
Core specifications. As OpenGL Core is backwards, compatible
VTK should not require OpenGL features which Unity does not
support.

Our proposed architecture to share the OpenGL context is
described in Fig. 1. Combining Unity and VTK in this manner
offers the possibility of direct and efficient VTK rendering in
an OpenGL based Unity application.

3.1. Unity plugin implementation: Our plugin acts as the glue to
bind VTK to Unity. To ease experimentation and development,
this is kept as lightweight as possible, concentrating functionality
in the Unity scripts. The plugin connects the vtkCamera to the
Unity camera, vtkProp3D derived objects to Unity game
objects and synchronises the rendering events.

Unity provides a C API for its event queue and graphics inter-
faces. This allows plugin development of event handlers and
graphics callbacks. A native Unity plugin can also expose static
C functions which can be imported into and accessed from
Unity C# scripts.

To synchronise the rendering, our plugin registers a graphics
callback which calls the VTK Render () method. This callback
is associated with the main camera in the Unity scene by adding
a command buffer to it in an initialisation script. In Unity these
command buffer callbacks are associated with a stage of the render-
ing loop, e.g. pre- or post-opaque object rendering, for example to
perform advanced lighting effects. We add a command buffer to
call our plugin’s render callback at the transparency render stage.
We use this stage as the volume is a semi-transparent object, and
so should be rendered after the opaque objects in the scene.

This functionality is adequate to compose a scene in VTK and
render it within Unity. However, a bug in the external VTK renderer
prevents effective synchronisation of the VTK camera, and a VTK
modification was required, described in Sections 3.2 and 3.3.
To take advantage of the Unity editor we add functions to allow
Unity C# scripts to compose and update the scene. In addition to
volume rendering, our plugin makes the following VTK functions
available to Unity: data loading (DICOM), add/remove a VTK
prop to/from the scene, set a VTK prop’s transform

149

This is an open access article published by the IET under the
Creative Commons Attribution License (http:/creativecommons.
org/licenses/by/3.0/)



> Set up OpenGL

Initialisation
Forward Rendering

Unity

Physics Depth Texture

context

Render Unity
» opaque objects

—

O
c
[,
o

o

DepthNormals Texture
Input Events

Decommissioning

Opaque Objects e
Game Logic Opaque Effects
Scene Rendering - Skybox
Transparencies J _|C Render VTK
Image Effects oblects
Tear down

> OpenGL context

Fig. 1 Unity creates, manages, and destroys the OpenGL context. At the appropriate point in the render loop VTK is called to perform volume rendering using
the buffers set up by Unity. As the volume is a semi-transparent object, this call is made at the transparency rendering stage

(position, rotation, scale), adjust the volume render transfer func-
tion, and add a cropping plane to the volume. These functions all
directly relate to VTK functionality and are flexible enough for a
variety of scenes to be created, manipulated, and explored. Unity
and VTK multi-thread many operations, so many of these com-
mands are queued to be safely processed at the render event.

The plugin keeps a std::map of handles linked to the
vtkProp3D’s pointers in order to manage the scene. When a
prop is added to the scene, the plugin returns its handle to be
stored as a member variable by the script. The handle is then
used by the script to update a prop’s position or delete it. The
handle is simply an index which is incremented each time a prop
is added to the scene.

There are differences between Unity and VTK which we address.
First, Unity’s unit system is metres, so we scale VTK volume data
specified in millimetres to be in metres. Second, Unity uses a
left-handed coordinate system while VTK uses a right-handed
one. In practice, the camera matrices and actor locations are both
reversed so the effects are limited to a z-axis flip in the
vtkProp3D objects. This affects the volume as a left-right flip,
solved by reversing the data along z as part of the loading process.

3.2. VIK configuration: In the right OpenGL environment, VTK
external rendering will work with little effort. However, OpenGL
Core pipeline implementations vary as their configuration is
determined by the author. Differences between Unity’s OpenGL
pipeline and VTK’s expectations of it have led us to make
modifications to VTK for volume rendering and camera updates
to work in Unity. These differences are not due to defects in
either VTK or Unity. Rather, they are the result of different
design decisions made by the two development teams.

By default, the vtkExternalOpenGLRenderer obtains the
camera view and projection matrices from OpenGL and sets them in
the vtkExternalOpenGLCamera. This works for a legacy
OpenGL pipeline, where these matrices are stored in a specified
way. However, it does not work for the OpenGL Core pipeline in
Unity where the matrices are not stored in the way VTK expects.

We add methods to vtkExternalOpenGLRenderer so the
camera view and projection matrices can be set. These are obtained
from the Unity camera, and passed in through the plugin. The ori-
ginal code where they are obtained directly from OpenGL was
removed. After setting these view and projection matrices in the
camera the existing VTK recalculation of the camera up vector
and position is performed, required for the camera to work
correctly.

These changes are sufficient for VTK opaque surface rendering
in Unity, and for volume rendering when none of these surfaces

150

This is an open access article published by the IET under the
Creative Commons Attribution License (http:/creativecommons.
org/licenses/by/3.0/)

impinges the volume. For volumetric medical data we also
require surface rendered objects, e.g. landmarks, within the
volume. For the volume and surface rendered objects to be
blended correctly VTK volume rendering uses the depth buffer
to calculate early ray termination when there is an object inside
of the volume [19]. During its render loop, VTK updates depth in
the standard GL_BACK_BUFFER, and at the start of the volume
rendering copies a depth image from the GL_DEPTH_BUFFER
for use in ray termination. Unity uses frame buffer objects (FBO)
with textures attached for colour, depth, and so on. As a result,
the depth image is not stored in the standard buffer as VTK
expects. We address this by obtaining the name of the current
FBO’s depth texture, and use this as the source of the copy oper-
ation. We modified vtkOpenGLGPUVolumeRayCastMapper
to copy from the FBO depth texture, requiring an additional
method in vtkTextureObject to enable a depth image to be
copied from a texture. Fig. 2 illustrates the effect of our changes.
The left-hand image illustrates the rendering before our changes,
the landmarks are either in-front of the volume, or behind it — but
not ‘embedded’ into it. The right-hand image shows the rendering
after our changes, the landmarks are correctly ‘embedded’ into
the volume render.

We have tested these changes with opaque surface objects
embedded within a rendered volume, which yields correctly

Fig. 2 (Lefi) Before our changes, the polygonal surface rendered landmarks
are incorrectly blended with the volume. The markers are often obscured by
the volume, when instead the markers should obscure the volume, or be em-
bedded into the volume. (Right) After our changes to VIK, the landmarks
correctly obscure and blend in with the volume

Healthcare Technology Letters, 2018, Vol. 5, Iss. 5, pp. 148-153
doi: 10.1049/htl.2018.5064



blended scenes. The opaque objects may be rendered from both
Unity and VTK. This configuration works because opaque
surface objects are rendered before the volume and write to the
depth buffer, which is in turn used by the volume renderer. On
the other hand, semi-transparent objects (surface or volume) may
not render correctly when combined with another rendered
volume due to depth sorting problems. Particularly, rendering mul-
tiple volumes will pose depth sorting problems. A potential solution
is to render all of the semi-transparent objects in VTK and allow
VTK to perform depth sorting and, if necessary, depth peeling.
We have not tested other rendering features in VTK, or other
OpenGL rendering pipelines, which is left as future work and
might require further modifications.

3.3. Camera synchronisation: Synchronisation of the VTK camera
to the Unity one is performed by a C# script attached to the main
camera in the Unity scene. In this script’s Start () event a
command buffer is added to the camera which will call the
plugin’s render callback function. No data are passed at this call,
so the camera’s world-to-camera and projection matrices are
obtained from the Unity camera and set in the plugin in the
camera’s OnPreRender () event.

For a stereoscopic display, e.g. a VR headset, rendering is per-
formed for the left and right eyes. Unity represents a stereo
camera as a single camera in its scene making this slightly more
complex, rather than as separate left and right eye cameras where
stereo rendering is trivial. The OnPreRender () event queries
the camera to find out if it is a stereo camera. Then, if it is a
stereo camera, if it is the left or right one. From this it obtains
the correct view and projection matrices to set in the plugin.
The command buffer call to the render event does not indicate if
it is being called by the left or right camera, and this cannot
easily be ascertained. We therefore make the assumption that
the OnPreRender () and render events are called in the same
order. In the plugin this is done by pushing the view and projection
matrices onto the back of a queue at an OnPreRender () event,
then popping them off the front of the queue at the render event, so
their order is preserved. Whilst this solution may be improved, our
experiments did not show any left-right camera reversal.

3.4. Unity scene configuration: Configuring and updating the scene
in VTK is also performed with C# scripts. We use the concept of a
proxy to enable interaction to be handled by Unity while rendering
is performed by VTK. A proxy has a GameObject in the Unity
scene, but without any mesh renderer enabled. It may have other

Un Ity Game Object
Initialisation
Physics
Input
Game Logic Update()

Scene Rendering

Decommissioning

active Unity components, e.g. a collider for interaction. A proxy
has an active C# script attached to control the creation and update
of a prop in VTK. These scripts are structured to fit in with the
Unity GameObject lifecycle:

Start () event initialises the VTK prop

Update () sets the VTK prop’s transform, updates the window
of the transfer function, and so on

Destroy () removes the VTK prop

For example, our rendered volume is a GameObject to which
we attach a collider for controller interaction, and a C# script to
initialise, update, and destroy the VTK prop. The scripts actions
are illustrated in Fig. 3.

Similarly, a proxy object with a script attached can add and
update a surface rendered primitive, e.g. a sphere. Multiple Unity
entities can access the plugin functions, e.g. a script can be attached
to a controller to alter the transfer function window of the volume.

Volume cropping planes are somewhat more complex as they
are entities themselves but also need to be associated with the
volume they crop. To associate a cropping plane with a volume,
the volume proxy shares its prop handle with the script which
creates the cropping plane. This handle is then passed back into
the plugin when the cropping plane is added to the scene so that
the plugin knows which volume the cropping plane is going to crop.

A cropping plane should move with the volume when the
user moves the volume in the scene, but the user should also be
able to move the cropping plane independently of the volume.
Achieving this offers a good example of Unity’s power and
flexibility.

The cropping plane proxy in Unity is created as a child of the
volume proxy, so that when the volume moves the cropping
plane’s position relative to the volume is unchanged. In Unity,
this works because an object’s transform is relative to its parent.
To move the cropping plane independently, its proxy is un-parented
from the volume proxy, moved, and then re-parented to the volume
proxy. Unity updates the parent—child transform automatically.
Fig. 4 shows a US volume cropped with a plane.

Currently, we have not synchronised lighting between Unity and
VTK. By default, scenes using the external VTK renderer have no
lights. Therefore, props within the VTK scene are unlit.

3.5. VR, AR, and interaction in Unity: We have primarily been
developing with the HTC Vive and the Unity SteamVR plugin.

Plugin

LoadDicomVolume()

AddVolumeActor).. vtkDICOMImageReader...

SetTransform()

SetTransferFunction()... actor->SetUserMatrix()...

SetViewMatrix
SetProjectionMatrix()..

OnRenderEvent() RenderWindow->Rende

ClearVolume()
RemoveActor()...

Renderer->RemoveActor().

Fig. 3 Architecture linking Unity events to VIK functionality via the plugin. For a volume, VIK loads image data and creates a prop during the Unity game
object’s Start () event. While the Unity application is running, the VIK volume’s transform and transfer function are updated in the Update () event. The
VIK camera’s view and projection matrices are updated by the Unity PreRender () event and the volume is then rendered during the main Unity render

pipeline. When the VIK prop is no longer needed the Destroy () event deletes

Healthcare Technology Letters, 2018, Vol. 5, Iss. 5, pp. 148-153
doi: 10.1049/htl.2018.5064

it and unloads the data

151

This is an open access article published by the IET under the
Creative Commons Attribution License (http:/creativecommons.
org/licenses/by/3.0/)



Fig. 4 Capture of a stereo rendered scene from an HTC Vive headset. This
scene contains an US volume, and its bounding corners are indicated by
grey cubes. The volume is cropped by a plane indicated by the grey
square outline. Spherical, coloured landmarks have been placed within
the volume. The user can pick up and move all of these objects using the
standard Vive controller, pictured in the scene

These are well developed and the combination of controllers and
lighthouses gives significant flexibility.

The SteamVR plugin includes a CameraRig prefab, providing
a camera which tracks the Vive headset, and tracked representations
of the left and right-hand controllers. To use this, we add the
CameraRig prefab to the scene and delete the original camera.
To enable VTK rendering, we attach our C# script to the
Camera (eye) component of the CameraRig. To create interac-
tions using the controllers, we add interaction scripts to the
Controller (left)and Controller (right) components,
e.g. to pick up and place objects using the trigger, or control the
transfer function windowing using the touchpad.

4. Materials and experiments: We implemented a Unity
plugin and the described VTK modifications which allow
volumetric medical data to be loaded and visualised using the
VTK volume renderer within a Unity application. In this work,
we used Unity 2018.1 and VTK 8.1, under Windows 10 on a
standard workstation (Intel Core i5-7600 CPU, NVidia Quadro
M4000 8 GB GPU, and 16 GB RAM). We used medical images
from two modalities. First, a thoracic CT dataset obtained from
the TCGA-SARC dataset (http:/cancergenome.nih.gov), and
made up of 512 x 512 x 100 voxels (379 x 379 x 500 mm).
Second, a cardiac MR dataset acquired on a healthy volunteer
using a Philips Achieva 1.5T scanner, and made up of
480 x 480 x 110 voxels (280 x 280 x 110 mm). We chose CT
and MR data so we have examples with soft and hard tissue that
are relevant for a wide variety of medical applications. These
particular volumes were used as their size makes them suitable
for volume rendering performance tests.

Rendering performance was measured quantitatively through the
rendering frame rate, using the Unity preview Stats overlay to
manually read the fps. The volume proxy in Unity was made a
child of the SteamVR camera, and the z-axis distance between
them was adjusted so that the rendered volume filled a different
portion of the view. At its closest, the render would mostly fill
the viewport. We moved the volume away from the camera to
measure the impact on the frame rate. A transfer function where
anatomy could be seen clearly — some parts of the render were
fully transparent and some parts fully opaque — was manually set,
and the volume was the only object in the scene.

Qualitative results are provided as 3D rendered images where
opaque landmark spheres are included in the volume, to demon-
strate semi-opaque blending.

5. Results: Table 1 shows the quantitative results for two imaging
modalities. For VR applications, our performance target is 90 fps
[17], which is achieved with our proposed method.

152

This is an open access article published by the IET under the
Creative Commons Attribution License (http:/creativecommons.
org/licenses/by/3.0/)

Table 1 VTK volume rendering performance of a CT and MR volume on
the HTC Vive using the Unity editor, with and without a VTK fps target.
At the closest distance the volume fills the height of the view, it is then
moved away to fill half, and quarter (1/4) of the height

Modality Vol. Dist. No fps target fps target
CT 0.5 m (full) 40-50 70 to >100
MR 0.4 m (full) 55-60 >100
CT 1.0 m (half) 70-80 85 to >100
MR 0.8 m (half) 60-70 >100
CT 2.0m (1/4) 80-90 90 to >100
MR 1.6 m (1/4) 80-90 >100

VTK allows a performance target to be set in fps and will adapt
render quality to maintain this frame rate. This is enabled by setting
a frame rate target in vtkExternalOpenGLRenderWindow
using the SetDesiredUpdateRate method. The per-frame time
for the desired frame rate is then shared between the props in the
scene, so as more props are added each one has less render time. For
our application, the vtkOpenGLGPUVolumeRayCastMapper
adjusts its sampling distance to complete rendering within its
allocated frame time if AutoAdjustSampleDistances is
enabled.

With no VTK fps target, the frame rate decreases as the volume
gets closer to the viewer. This behaviour was expected. As the
volume rendering needs to fill more pixels on the display, more
rays need to be cast which in turn results in a higher computational
cost. When the volume is very close to the viewer, the frame rate
can drop to an uncomfortable 40 fps. However, this is the use
case VR encourages when we give the user the ability to pick up
a volume and examine it. For viewer comfort, the rendering per-
formance needs to be improved.

Our target frame rate is 90 fps and there are 3 rendered views,
headset left and right eyes and the screen preview. Therefore,
VTK needs to render the volume 270 times every second. Based
on this and allowing for some overhead, we set VTK a 300 fps
frame rate target. This significantly increases the final frame rate,
often to much higher than 100 fps. However, there is a cost to
image quality, with visible banding on the render with a target
frame rate (Fig. 5).

Fig. 2 demonstrates that the VTK volume rendering blends cor-
rectly with opaque spheres, which are correctly occluded by an
MR volume when they are behind a visible portion of it, and in
turn occluding the MR volume render when they are in front.
Correct cropping of a US volume by an arbitrary plane is shown
in Fig. 4.

Fig. 5 Effect of VIK frame rate target on render quality. (Lefit) Without a
target frame rate quality is maintained but the frame rate can be reduced
to an uncomfortable level. (Right) A frame rate target of 100 fps increases
viewer comfort, but there can be a visible drop in quality, seen here as an
extreme case of a banding effect

Healthcare Technology Letters, 2018, Vol. 5, Iss. 5, pp. 148-153
doi: 10.1049/htl.2018.5064



6. Discussion and conclusion: We have successfully integrated
VTK volume rendering into Unity. Our method allows opaque
surface rendered polygonal objects to be mixed with a VIK
volume render. Interactive rendering rates can be achieved,
although with some cost to render quality. However, we believe
that frame rate should be prioritised so as to avoid possible
discomfort. Our initial demonstrations with clinicians have been
very positive, so perhaps comfort, interactivity, and intuitiveness
outweigh ultimate visual fidelity.

Compared to existing integration methods, e.g. a C# wrapped
VTK plugin, our method can achieve ‘what you see in VIK is
what you get in Unity’, with improvements of performance and im-
plementation efficiency. The shared OpenGL context avoids the
need to copy buffers, the virtual objects are directly rendered and
displayed. Moreover, re-implementation of the shaders is also
avoided. Specifically, it is more convenient to transplant existing
VTK code into Unity with few modifications, although systematic
evaluation in the future is required to support this argument.

Our aim was to build a technical platform from which we can
develop an intuitive 3D control system, which we have successfully
achieved. With Unity and VTK working together the community
will have access to a platform where immersive VR/AR medical
imaging applications can be quickly built and investigated.

Future work will include further improvements in the perform-
ance of our software prototype. For this improvement work
we will use more sophisticated tools for performance analysis,
e.g. FCAT, and produce more complex scenes with more objects.
The optimal trade-off between frame rate and render quality
should also be investigated. Other improvements in the system
will include the utilisation of transparent objects, lit VTK rendering,
and increased VTK volume rendering functionality. We aim
to make this work publicly available, and perhaps to integrate it
into VTK.

Support for platforms more mobile than our existing desktop
Windows/x86 implementation also offers interesting possibilities.
For instance, Hololens development is theoretically possible —
Unity supports Hololens development, and VTK could be compiled
for the Hololens’s Universal Windows Platform. This would give
much more freedom to users, provided the hardware is powerful
enough run volume rendering with adequate visual quality.

7. Funding and declaration of interests: This work was supported
by the NIHR i4i funded 3D Heart project [II-LA-0716-20001]. This
work was also supported by the Wellcome/EPSRC Centre for
Medical Engineering [WT 203148/Z/16/Z]. The research was
funded/supported by the National Institute for Health Research
(NIHR) Biomedical Research Centre based at Guy’s and St
Thomas’ NHS Foundation Trust and King’s College London and
supported by the NIHR Clinical Research Facility (CRF) at
Guy’s and St Thomas. The views expressed are those of the
author(s) and not necessarily those of the NHS, the NIHR or
the Department of Health. The results shown here are in part

Healthcare Technology Letters, 2018, Vol. 5, Iss. 5, pp. 148-153
doi: 10.1049/htl.2018.5064

based on data generated by the TCGA Research Network:
http:/cancergenome.nih.gov/.

8. Conflict of interest: None declared.

9 References

[1] Cecil J., Ramanathan P., Pirela-Cruz M., £7 4L.: ‘A virtual reality
based simulation environment for orthopedic surgery’. OTM
Workshops, 2014

[2] Escobar-Castillejos D., Noguez J., Neri L., £7 4L.: ‘A review of simu-
lators with haptic devices for medical training’, J. Med. Syst., 2016,
40, (4), pp. 104-125

[3] Byme N., Velasco Forte M., Tandon A., £7 4L.: ‘A systematic review
of image segmentation methodology, used in the additive manufac-
ture of patient-specific 3d printed models of the cardiovascular
system’, JRSM. Cardiovasc. Dis., 2016, 5, p. 2048004016645467

[4] LinQ.,XuZ., LiB., EraL.: ‘Immersive virtual reality for visualization
of abdominal ct’. Medical Imaging: Image Perception, Observer
Performance, and Technology Assessment, 2013

[5] Bruggmann R.: ‘Unity volume rendering— plug-in zum rendern von
medizinischen daten’, October 2016

[6] LISCINTEC: ‘Volume viewer pro’. Available at https:/
www.assetstore.unity.com, accessed 07 June 2018

[7] Nakamura M.: ‘Unity volume rendering’. Available at https:/
www.github.com/mattatz/unity-volume-rendering, accessed 07 June
2018

[8] Unity: ‘Low-level native plugin interface’, 2017. Available at
https:/www.docs.unity3d.com, accessed 16 April 2018

[9]1 EggerJ., Gall M., Wallner J., £7 4L.: ‘HTC vive MeVisLab integration
via OpenVR for medical applications’, PloS one, 2017, 12, (3),
pp. 1-14

[10] O’Leary P., Jhaveri S., Chaudhary A., £r 4L.: ‘Enhancements to VTK
enabling scientific visualization in immersive environments’. IEEE
VR, 2017

[11] Chaudhary A., McKenzie S., Avila L., £7 4r.: ‘“Volume rendering
improvements in VTK’. Available at https:/www.blog.kitware.com,
accessed 08 June 2018

[12] Chaudhary A., Jhaveri S., Avila L.: ‘“Volume rendering enhancements
in VTK’. Available at https:/www.blog kitware.com, accessed
08 June 2018

[13] Activiz: ‘3d visualization toolkit for .net/c#. Available at https:/
www.kitware.eu, accessed 18 May 2018

[14] Hanak I., Frank M., Skala V.: ‘OpenGL and VTK interface for.NET’.
C# and.NET Technologies, 2003

[15] Tamura Y., Nakamura H., Fujiwara S.: ‘An intuitive interface for
visualizing numerical data in a head-mounted display with gesture
control’, Plasma Fusion Res., 2016, 11, p. 2406060

[16] Gregg C., Hazelwood K.: ‘Where is the data? Why you cannot
debate CPU vs. GPU performance without the answer’. 2011 IEEE
Int. Symp. on Performance Analysis of Systems and Software
(ISPASS), 2011, pp. 134-144

[17] Unreal Engine: ‘Virtual reality best practices’. Available at
https:/www.docs.unrealengine.com, accessed 08 June 2018

[18] Pranckevicius A., Bard L., Trivellato M., £7 4L.: ‘Native code (C++)
rendering plugin example for unity’, 2016. Available at https:/
www.bitbucket.org/Unity-Technologies, accessed 16 April 2018

[19] Wittenbrink C.M., Malzbender T., Goss M.E.: ‘Opacity-weighted
color interpolation, for volume sampling’. IEEE Symp. on Volume
Visualization, 1998

153

This is an open access article published by the IET under the
Creative Commons Attribution License (http:/creativecommons.
org/licenses/by/3.0/)



