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Over the decades, electrocardiogram (ECQG) has been proved as the chief diagnostic tool for assessment of the cardiovascular condition of
human being. Myocardial Infarction (MI) is commonly known as heart attack, happens when blood supply stops to heart muscles causing
occlusions in some portion or whole artery. MI is the result of three pathological changes such as elevation of ST-segment, the
appearance of wide pathological Q-wave and inversion of T-wave in ECG record. Detection of MI by considering few ECG leads
generally requires prior information about the pathological behaviour of the disease. The present work considers 12 leads to view the
cardiac condition from various angles in ECG signal for accurate detection of MI. This Letter investigates on various wavelet basis
functions, i.e. Haar, Daubechies, Symlet, Coiflet and biorthogonal basis filters of different order for selecting the most suitable one for the
detection of MI. Wavelet transform of 12-lead ECG signal decomposes the signal into different subbands. A comparative study has been
done based on the multiscale energy at different wavelet subbands for the selection of most suitable wavelet basis for the accurate

detection of MI. The experimentation is carried out on different datasets from the PTB diagnostic ECG database.

1. Introduction: Medical applications would always be in its
infancy if engineering applications such as signal processing
would not be there. It is quite a difficult task for a healthcare
provider to diagnose the abnormality in the heart by seeing the
very long electrocardiogram (ECG) records manually at a time.
Expertisation in the correct interpretation of the ECG record is a
substantive skill for healthcare professionals. So over the years,
systematic development has been taken place to lessen the
strenuous task of the physicians through automated detection and
classification techniques. The graphical representation of the
electrical activity of the heart over a period of time is termed as
electrocardiogram (ECG). ECG record reflects the periodic
depolarisation and repolarisation of atria and ventricles over time.
ECG signal is an important tool for the diagnosis of the cardiac
condition of a human being [1].

Myocardial Infarction (MI) occurs when blood supply stops to a
certain part of the artery or the whole artery. MI is the main cause of
death among all cardio vascular diseases worldwide. The myocar-
dium becomes dead without getting the required blood supply,
oxygen supply, and essential nutrients [1]. This leads to the depos-
ition of blood platelets, red blood cells, and fibrin and thus forming
a local blood clot otherwise known as thrombus [2, 3]. Sometimes
thrombolytic substances are detached from the main artery, are
driven to some distal arterial tree, and are deposited there. This is
followed by blocking of the artery which is termed as the formation
of the coronary embolus. This is followed by interruption of blood
flow to the artery called as myocardial necrosis. Complete necrosis
of the myocardium at risk takes about 4-5 h to happen. Myocardial
injury is detected when the level of sensitive and specific bio-
markers such as creatine kinase-muscle/brain (CKMB) and
cardiac troponin T increases in the blood [4, 5].

The analysis of ECG signal from morphological and pathological
background adopts several signal processing methodologies over
the past few decades. Analysis of the ECG signal with the help
of Fourier transform (FT) spreads the signal in frequency domain
but time resolution spread is not achieved [6]. When short time
FT (STFT) was applied in signal processing, it provided temporal
resolution indicating the changes in the frequency spread with
time resolution [7]. The concept of principal component analysis
(PCA) and the relationship between PCA and Karhunen—Loeve
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transform were illustrated and implemented to ECG signal analysis
in [8]. PCA techniques have been adopted for ST segment analysis
for the detection of myocardial ischemia and other abnormalities
related to ventricular repolarisation, atrial fibrillation, and analysis
of body surface with potential mapping. Difference between quan-
titative analysis parameters of vector cardiogram trajectories
between the healthy control (HC) and MI cases was found to be sig-
nificant in [9].

Wavelet transform (WT) method emerged as an effective tool for
the analysis of signals with both temporal and frequency resolution
levels [6]. Discrete WT (DWT) analysis is the correlation of the
signal with the scaled and translated versions of the mother
wavelet. The multi-resolution properties of the WT were used for
the identification of the fiducial points in the ECG signal [10].

Various methods have been proposed for the detection of MI in
carlier literatures. Time sampling methods for extracting ECG
morphology features have been adopted for heartbeat fiducial
point detection in [11]. Rule-based rough-set decision system has
been implemented for the development of a disease inference
engine for ECG classification from different standard time plane
features in [12]. Time domain features such as Q-wave amplitude,
T-wave amplitude, and ST segment deviation are used for automat-
ic detection and localisation of MI using K-nearest neighbour
(KNN) [13]. As time domain methods cannot remove artifacts
from the frequency bandwidth of the ECG signal, the extracted fea-
tures are not robust enough to produce remarkable detection accur-
acy for MI. Thus transform-based methods have been introduced
for detection of MI in ECG signal. The entropy in the wavelet
domain is used for detection of MI in [9]. A WT-based method
has been adopted for ischemia detection in [14]. Neural network ap-
proach has been adopted for detection and localisation of MI in
[15]. An automated ECG classification system based on a combin-
ation of fuzzy logic and neural network theory is presented in [16].
ST-segment analysis approach for ECG interpretation has been
implemented in [17]. Some of these techniques use modelling-
based schemes by means of training and testing the system.
Generally, these modelling-based techniques use only a few ECG
leads for analysis of MI that is done on some portion of ECG
signal such as ST-segment, ST-T complex instead of the entire
ECG segment. This needs the accurate and exact detection of
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ST-segment. These processes require prior information about the
presence of MI in some of the selected leads. As various kinds of
Ml is depicted in different leads, monitoring all the 12 leads in mul-
tiscale is necessary for better detection of MI. Multiscale principle
combined with PCA is adopted to extract deterministic features in
statistical process monitoring in [18]. Multiscale PCA approach is
proposed for compression of ECG signal in [19].

In this work, an attempt has been made to detect the MI in ECG
in terms of its multiscale energy characteristics at different levels of
DWT. The analysis is carried out by taking different wavelet basis
functions and suitable wavelet basis function for accurate detection
of MIL.

2. Wavelet transform: The WT is a complex link between
mathematical facets of functional analysis on one side and
theories of subband coding and perfect reconstruction filter banks
on the other side. In real time in place of discrete functions,
we deal with discrete data. FT is performed to represent a signal
as a summation of sinusoids and it is the signal representation in
the frequency domain. So this representation is not economical
as there is no localisation in time. However, the WT is the
representation of the signal in both the time and frequency
domains [9]. To detect the onset of MI in ECG recording both
time and frequency domain analysis is needed. Thus WT is
adopted to trace the point at which the abrupt changes have
occurred in the frequency domain at a particular instant of time.
The wavelets are compactly supported small waves confined
between a finite period of time.

Computation of the wavelet coefficients at every possible scale
generates a lot of data. Selection of subsets containing scales and
positions as the power of two gives the efficient and accurate
result. Thus a DWT generally uses a dyadic grid a =2", m € Z
and b = nby2", n € Z. Assuming b, = 1 the wavelet function
can be defined as

V() =27"PWQ " — n). 1)
Corresponding scaling function can be defined as
@, (1) =27"OQ "t — n). ®)

The signal is the summation of the signal approximation and the
detail coefficient,

M
X0 =xy () + Y d, (),

Signal approximation at level M is expressed as

xy () = i Sy Pas (D).

“
Detail coefficient of the signal at scale m is expressed as
()= D Wy ¥, (0. )

n=—o0

W,

mmpn

where Sy, = (x(1)®,,,,(£)): approximation coefficients,
XY, ,(1)): detail coefficients.

3. Multiscale energy analysis based optimal wavelet selection
for MI detection: Selection of the suitable mother wavelet filter
is very much crucial for any type of processing of ECG signal in
the wavelet domain. Suitable basis mother wavelet gives the
optimal result in the maximisation of the wavelet coefficients in
the wavelet domain. Consequently, it leads to the production
of the highest local maxima of the ECG signal. The probability
of best frequency characterisation increases upon selection of
suitable wavelet filter banks.

In this Letter, multiscale energy analysis of the ECG signal has
been performed for detection of MI [20]. Different wavelet basis
filters of different orders, i.e. Haar, Daubechies, Symlet, Coiflet,
and Biorthogonal basis filters have been used for experimentation
for detection of MI. The characteristics of these basis filters are illu-
strated in Table 1. Different features of ECG signal are confined to
different decomposition level of the signal. Incorporating these
features multiscale energy analysis is performed with different
wavelet basis filters and hence optimal wavelet basis filter is then
selected for accurate detection of MI in ECG signal.

Wavelet analysis of an ECG signal with M-level decomposition
using suitable mother wavelet produces n™ wavelet coefficient at
the M™ level [9]. This wavelet analysis is based upon the multire-
solution pyramidal decomposition technique and it decomposes
the signal up to M + 1 subbands. For the k™ ECG lead the decom-
position results with an approximation subband coefficients, cAj,‘/,’,,
at level M, and with detail subbands, cDﬁw at level m, where
m=1,2,..., M. The approximation coefficient is obtained by
taking the inner product of the input multilead ECG signal with
the scaling function. The detail coefficient is obtained by taking
the inner product of the input ECG signal with the wavelet function.
In this work, a six-level wavelet decomposition of a 12-lead ECG
signal is adopted. The diagnostic and pathological information is
distributed over different wavelet subbands basing upon their band-

3) width and frequency distribution. The lower frequency subbands
m=—00 contain the most significant information of the ECG signal
whereas the higher frequency subbands contain the least significant
where M: Decomposition level. information.
Table 1 Popular wavelet families in investigation
Wavelet family Haar Daubechies Symlets Coiflets Biorthogonal
short term Haar Db Sym Coif Bior
_ _ _ Or=1,2,..,6
order k 1 k=1,2,..,10 k=2,3,..8 k=12..5 Op=1,2,..,8
real/complex real real real real real
orthogonal/biorthogonal orthogonal orthogonal orthogonal orthogonal biorthogonal
symmetry symmetric asymmetric nearly-symmetric nearly-symmetric asymmetric
support width k 2k—1 2k—1 6k—1 —
compactly supported yes yes yes yes yes
filter length 2k 2k 2k 6k *
number of vanishing moments for (6) k k k 2k —
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3.1. Multiscale energy analysis: Wavelet decomposition of 12
lead ECG with M-decomposition level produces M + 1 subband
matrices. The columns of the subband matrix represent the corre-
sponding leads of ECG and the rows represent the coefficients of

the subband. Considering S,,, = 4,,, and W, , = D,, ,, the ap-
proximation subband matrix is given by
Ay = [cAyy s cAig s o cAly ] (6)
and the detail subband matrix is given by
— 1 2 k
D, = [cDm’n, cqun, ey cDm’n] (7)

where k=12 is the number of ECG leads and m =1, 2, ..., M.
The multiscale matrices contain diagnostic components of the
multilead ECG signal. The energy content in the subbands due to
wavelet coefficients along each lead is termed as multiscale energy,

2

1

Ejy = N ;!DM,n , ®)
L1

E = N ;!AMJ,‘Z. )

It is observed that for all the leads of ECG higher order wavelet
subbands (cA46; c¢D6; c¢D5; cD4) contain large amount of energies
and the lower subbands (cD3; ¢D2; ¢D1) contain less amount of
energies. For the multiscale matrix, the relative energy content of
the individual matrix is termed as multiscale multivariate energy
contribution efficiency (MMECE)

t[Cy, ]
MMECE,, = 7
tr[Cy, 1+ Zj:l tr[CD]]

_ Ey,
- | ~L  °
E, +2 50 Ep,
t[Cp ]
MMECE,, = 2
TooulCy 1+ 30 tr[Cp ]
Ep

— g

L 9
E, + Zj:lEDj

(10)

(11

where C, , £, and Cp, , Ej, represent the covariance matrices and
energies in approximation and detail matrices, respectively. Fig. 1
describes the block diagram for the proposed multiscale energy ana-
lysis based optimal wavelet selection.

4. Results and discussions: Here the MI data are taken from the
PTB diagnostic ECG database [21]. This database includes
digitised ECG data recorded from HC cases and different cardiac

Multilead ECG Preprocessing

Processing

Wavelet Transform
using different
Basis function

disease cases at the Department of Cardiology, University Clinic
Benjamin Franklin in Berlin, Germany. The database contains
549 records from 290 subjects. The different subjects include MI:
148, cardiomyopathy/heart failure: 18, bundle branch block: 15,
dysrhythmia: 14, myocardial hypertrophy: 7,valvular heart
disease: 6, myocarditis: 4, miscellaneous: 4 and healthy controls:
52. In this investigation, 12 lead ECG records are considered
simultaneously for proper viewing of heart from every possible
angle. All the Matlab simulated experimental results are presented
using ECG S0017lrem recording of PTB diagnostic ECG
database. The 12 lead ECG data are first fed to the preprocessing
block. The preprocessing block constitutes a filtering method
which adopts a moving average filter to remove the base line
wanders, muscle artifacts, baseline drifts and powerline interfaces
from the multilead ECG recordings. For high frequency removal,
we introduced a discrete cosine transform (DCT)-based bandpass
filter whose pass band is set to a frequency interval [f,f,] so as to
eliminate the influence of remaining low frequency artifacts and
high frequency noise including the electromyography noise. f; is
chosen so that it does not exceed the cardiac fundamental
frequency (CFF), whereas f, is considered as 45 Hz, which is
slightly lower than the powerline frequency. First, QRS
complexes are extracted using a bandpass filter. Its passband is
set at [5 Hz, 15 Hz]. Then the QRS complexes are transformed
using DCT, in which the first dominant frequency is considered
as CFF.

Then the frame based segmentation is carried out to acquire the
correlation information between the leads, between the rhythms
and between the samples. After preprocessing the multilead ECG
signal is subjected to WT for decomposition. The choice of six
level decomposition L, which satisfy the frequency range of the
main features of an ECG is based on sampling frequency F, and
is given as L = [log, (F, —2.96)] [22]. Here L is an integer
number, and F; is the sampling frequency of the signal. Here
different wavelet basis filters have been adopted and thus suitable
basis filter is selected for the detection of MI.

Fig. 2 presents the 12 lead ECG S0017/rem recording taken from
the PTB diagnostic ECG database.

Fig. 3 presents the lead I ECG recording of the given MI data,
ie. ECG S0017lrem recording taken from the PTB diagnostic
ECG database. All the 12 lead ECG signals are subjected through
wavelet decomposition with different wavelet basis filters under in-
vestigation, i.e. Haar, Daubechies, Symlet, Coiflet and biorthogonal
basis filters of different orders. The six level wavelet decomposition
of the same ECG recording using Haar wavelet basis function is
shown in Fig. 4. The sixth level approximation subband a6 for
the same ECG recording with several wavelet basis filters is
shown in Fig. 5. Then the MMECE of the subband matrices is cal-
culated for different subbands.

The MMECE plot of the MI ECG record decomposed with
Daubechies biorthogonal 9/7 filter is shown in Fig. 6. The relative
energy distribution, i.e. energy percentage of all the individual
matrices is calculated. It is observed that the matrices A6, D6,

Optimal Wavelet selection for MI detection

| ‘ Moving Average Frame based g
Filter Segmentation H

Fig. 1 Block diagram of proposed work
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Fig. 4 Six level decomposition of ECG (MI) with Haar basis filter

D5 and D4 (higher order subbands) contain more amount of energy
whereas matrices D3, D2 and D1 (lower order subbands) contain
less amount of energy, which is illustrated in Table 2 for the above-
mentioned ECG signal with MI. The reason for choosing higher-
order subbands is that the higher order subbands contain vital
clinical diagnostic information of more energy. Lower order sub-
bands contain relatively less energy due to the availability of less
clinical information.

The difference of ECG energy distribution between MI subjects
and healthy controls (HC) is shown in Table 3. As observed from
this table, there is the difference between energy distribution for
HC and MI classes for lead I, lead II and lead aVL. These
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MMECE for 12 lead ECG MI data from PTB diagnostic ECG database

Table 2 Energy percentage distribution of subbands

Lead A6(%) D6 (%) D5(%) D4(%) D3 (%) D2(%)

1 97.52 1.55 0.81 0.10 0.01 0.01
1II 98.84 0.59 0.40 0.13 0.02 0.02
11T 93.41 5.20 1.00 0.20 0.11 0.08
aVR 98.54 0.77 0.56 0.11 0.01 0.01
aVL 94.76 3.81 1.25 0.11 0.04 0.03
aVF 98.07 1.32 0.35 0.16 0.05 0.04
V1 94.74 4.54 0.56 0.11 0.03 0.01
V2 90.18 7.42 2.10 0.27 0.02 0.01
V3 82.00 11.33 5.75 0.90 0.02 0.01
V4 92.05 4.81 2.76 0.36 0.01 0.01
V5 7.49 15.64 9.26 1.43 0.11 0.07
A 96.99 2.00 0.89 0.10 0.01 0.01

differences in energy distribution are due to the pathological alter-
ation in the clinical features during the onset of MI [23].

The within-class variations of normalised multiscale wavelet
energy for all ECG leads are evaluated using 1074 MI multilead
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Table 3 Energy distribution between MI subjects and healthy controls

Subband HC (%) MI(%) HC (%) MI(%) HC (%) MI (%)

A6 91.65 65.08 96.81 99.14 93.67 70.40
D6 3.68 24.73 1.90 0.56 4.11 26.51
D5 3.17 6.96 1.22 0.23 1.93 2.04
D4 0.32 1.27 0.07 0.06 0.25 0.51
D3 0.34 0.97 0.01 0.01 0.03 0.32
D2 0.39 0.74 0.00 0.00 0.00 0.17
D1 0.44 0.24 0.00 0.00 0.00 0.05

ECG frames. The normalised multiscale energy of subband A6 is
shown in Fig. 7. The normalised multiscale energy of subbands
D6, D5 and D4 are presented here as these subbands carry the
most vital information. The normalised multiscale energy of sub-
bands D6, D5 and D4 are shown in Figs. 8-10, respectively. The
normalised multiscale energy of these four subbands is different
and this is due to the difference in the pathological information of
ECG signal in higher order subbands.

After multiscale wavelet energy analysis the multiscale features
such as mean, standard deviation, median, median absolute

Normalized Multiscale Energy (NME)
10000 === rmrmemeees
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Fig. 7 Variation of multiscale energy for cA6 subbands for 12 ECG leads in
MI record
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Fig. 8 Variation of multiscale energy for cD6 subbands for 12 ECG leads in
MI record
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Fig. 9 Variation of multiscale energy for cD5 subbands for 12 ECG leads in
MI record
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deviation and mean absolute deviation are computed for individual
leads. It is observed that the mean, standard deviation, median,
median absolute deviation and mean absolute deviation are differ-
ent for different scales. The above parameters for the considered
ECG with MI are analysed and given in Table 4.

From this table, it is observed that there is very large difference
between the mean and standard deviation among all the 12 leads
of the ECG signal, as all the leads view the heart at a different
angle. The mean values of leads L, II, IIl, aVL, aVF, V5, and V6
are very low and it specifies that these leads undergo the infarction
in arteries. Inferior MI is depicted from the leads II, III, and aVF
whereas left lateral MI is traced out from leads I, V5, V6, and
aVL. Thus the analysis says that the infarction is an inferolateral in-
farction. The standard deviations of corresponding leads are high
which confirms the abrupt changes of normal ECG shape. Further
analysis is performed considering different MI data and for the
same MI data different wavelet basis filters are used for selection
of suitable wavelet basis filter. In our investigation, we have exam-
ined 110 MI records for detection of infarcted ECG records. All the
records are taken from the PTB diagnostic ECG database. Detection
accuracy is computed considering two factors, i.e. MI record ana-
lysed and MI record detected into account.

MI records detected
X
MI records analysed

Detection accuracy = 100.  (12)

Detection accuracy is computed considering the wavelet basis
functions under test. A complete comparative study of detection
accuracy using different wavelet basis functions such as Haar,
Daubechies, Symlet, Coiflet, and Biorthogonal basis filters is pre-
sented in Fig. 11. From the comparison, it is found that detection
accuracy is maximised for Daubechies 9/7 biorthogonal wavelet
filter followed by Daubechies 6/8 biorthogonal wavelet basis

Table 4 Feature analysis of different leads

Lead Mean Standard Median Median Mean
deviation absolute absolute
deviation deviation
1 —683.372 173.764 714 82 117.817
i —659.696 249.725 —-624 134 189.471
111 —24.850 292.671 88 158 223.420
aVR  672.046 157.564 681 68 102.731
aVL —353.517 205.900 -386 104 151.416
aVF  —317.466 257.879 =255 132 200.126
Vi 296.576 386.902 210 94 262.851
V2 132.112 605.299 —-60 129 429.275
V3 100.977 874.756 -232 141 640.183
V4 24.871 755.270 -234 89 473.206
\'A) 1.555 309.679 -59 76 154.420
V6 —86.759 148.650 —106 60 89.213
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Fig. 12 Comparative result of correlation coefficients with wavelet basis functions under test

filter. The comparative study conveys that the more is the similarity
between the selected basis function and the ECG data, higher is the
detection accuracy. Fig. 12 represents similarity measure cross-
correlation coefficients of the ECG signal with different wavelet
basis filters of a different order. The result of cross correlation coef-
ficients strengthens the suitability of Daubechies 9/7 biorthogonal
wavelet filter for the detection of MI since this filter produces a
maximum cross correlation coefficient.

In the investigation, we performed experiments following the
multiscale energy analysis method for obtaining suitable basis
filter to detect MI in the ECG signal. From the experimental
results, it is observed that the Daubechies 9/7 biorthogonal
wavelet filter is most appropriate for the detection of MI in the
ECG signal.

5. Conclusion: In this Letter, a multiscale energy analysis approach
has been adopted for the detection of MI. This work also aims at
selection of suitable wavelet basis function for detection of MI.
Most of the ongoing and present works concentrate on only
fewer leads of the ECG signal. Thus it is quite difficult to exactly
detect the presence of MI from the ECG recordings. The
proposed MI detection technique does not require any prior
knowledge of the pathological characteristics of the MI. Here
multiscale multilead energy features are taken into consideration
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for detection of MI. Since all the leads are analysed at one time
the simultaneous changes that occur in the leads are properly
traced out here. Thus the analysis provides the detection of MI
with the accurate investigation of all the ECG leads. This
proposed technique helps in immediate detection of MI with
accuracy, which can be interpreted within 10 min of onset of MIL.
Thus it is very advantageous than the biochemical marker test
which takes almost 6-9 h. The experimental results specify the
suitability of Daubechies 9/7 biorthogonal wavelet basis function
to be the most suitable and appropriate wavelet basis function for
the detection of MI in the ECG signal. The selected wavelet basis
function is found to be optimal in terms of detection accuracy
and experimentation on cross correlation coefficients further
strengthens the suitability of the selected basis function.

6. Funding and declaration of interests: Conflict of interest:
None declared.
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