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The low-cost multimodal platform BITalino is being increasingly used for educational and research purposes. However, there is still a lack of
well-structured work comparing data acquired by this toolkit against a reference device, using established experimental protocols. This work
intends to fill the said gap by benchmarking the performance of BITalino against the BioPac MP35 Student Lab Pro device. This work
followed a methodical experimental protocol to acquire data from the two devices simultaneously. Four physiological signals were
acquired: electrocardiography, electromyography, electrodermal activity and electroencephalography. Root mean square error and
coefficient of determination were computed to analyse differences between BITalino and BioPac. Electrodermal activity signals were
very similar for the two devices, even without applying any major signal processing techniques. For electrocardiography, a simple
morphological comparison also revealed high similarity between devices, and this similarity increased after a common segmentation
procedure was followed. Regarding electromyography and electroencephalography data, the approach consisted of comparing features
extracted using common post-processing methods. The differences between BITalino and BioPac were again small. Overall, the results
presented here show a close similarity between data acquired by the BITalino and by the reference device. This is an important validation
step for all researchers working with this multimodal platform.
1. Introduction: The low-cost biomedical development toolkit
BITalino [1, 2] is seeing an increasingly higher use within
academia, for educational and research activities in a wide array
of application fields [3, 4, 5, 6]. Despite the theoretical charac-
terisation of different components of the system and laboratory
benchmarking initially performed [7, 8], a recurring issue that is
frequently pointed out regarding its use is the lack of empirical
validation against a gold standard device.

Previous work from our group has made an attempt to address
this issue, by comparing the BITalino and BITalino (r)evolution
toolkits with a biosignalsplux professional biomedical research
system [9]. While the findings of this previous study have provided
preliminary evidence validating BITalino [10], several metho-
dological and practical aspects have been highlighted to require
further evaluation.

In particular, a more formal albeit easily replicable experimental
protocol was identified as needed, and the need for benchmarking
against a more established and widely used gold standard other
than the biosignalsplux was also noted. As such, this Letter has
the goal of extending our previous investigation, to provide an
ultimate performance assessment of BITalino.

Within the state-of-the-art, BioPac [11] is perhaps the most
well-established and recognised system for biomedical research
and education, complete with classroom lessons that define experi-
mental protocols used for decades and comprising biomedical
sensors common to those included in BITalino (Fig. 1). In [10],
results are already provided regarding the performance of
BITalino when compared with its newest counterpart BITalino (r)
evolution, thus offering a referential between both, as such, in
this Letter we chose to focus only on benchmarking the perform-
ance of BITalino (r)evolution versus the BioPac (it is important
to highlight that the electroencephalography (EEG) sensor was
not available in the first version of BITalino).
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The remainder of the Letter is organised as follows: in Section 2,
we describe the methodology used in our study; in Section 3,
we present and discuss the comparative results; and finally, in
Section 4, we outline the main conclusions.
2. Materials and methods
2.1. Devices overview: Our goal is to benchmark the signal
quality of data acquired with the multimodal platform BITalino
(r)evolution (Fig. 1) against the more established BioPac
MP35 Student Lab Pro (BSL) [11]. Hereinafter, for the sake of
simplicity, these devices are referred to as BITalino and BioPac.
Additional information about the equipment used during
the acquisition is presented in Table 1. We focus in particular
on four physiological signals: electrocardiography (ECG),
electromyography (EMG), electrodermal activity (EDA) and
EEG. Characteristics of these sensors for the BITalino device can
be found in the respective datasheets: ECG [12], EMG [13], EDA
[14] and EEG [15].

For data acquisition, we used the OpenSignals (r)evolution soft-
ware, as it is the recommended software to be used with BITalino,
with data being transmitted via Bluetooth (the standard transmis-
sion channel for the platform). For the BioPac system, chosen as
a gold standard against which the BITalino is being compared,
we used the BSL Pro software application, as recommended by
the manufacturer. As previously mentioned, BioPac has been
chosen due to the widespread use of the BSL package for education
and research purposes.

The two devices have different sensors’ bandwidths, which are
specified in Table 1. To account for these differences, we will
need to do pre-processing with the purpose of conditioning the
signals before comparing them, as will be detailed in the next
section.
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Fig. 1 Biomedical sensors bundled by default in BITalino (r)evolution

Table 1 Sensors’ bandwidths and additional material used with the two
devices

Sensor Bandwidth, Hz Additional material

BioPac
MP35

BITalino
(r)evolution

BioPac
MP35

BITalino
(r)evolution

ECG 0.05–35 0.5–40 SS2L electrode
lead set

3-lead accessory
UC-E6EMG 5–250 25–480

EEG 0.5–35 0.8–49
EDA 0–35 0–2.8 SS3LA EDA

transducer
2-lead accessory

UC-E6

Fig. 2 Pulses emitted by the BioPac (top) and acquired BITalino light
sensor data (bottom) during an ECG recording, prior to time alignment
and synchronisation. Red vertical lines indicate the beginning and end of
each one of the four activities
2.2. Data acquisition protocol and pre-processing: Data was
acquired for seven subjects following the protocol described
hereafter. For each sensor, we acquired data simultaneously with
the BioPac and the BITalino. Further details about the acquisition
process for the four sensors are presented below, in the order in
which the acquisition took place for each subject. The protocol
followed here is a minor adaptation of the one described in
BioPac Student Laboratory Lessons. All data were acquired with
a sampling frequency of 1000 Hz and default filtering settings on
both devices.
To synchronise the data collected by the two devices while guar-

anteeing electrical decoupling between them, a light-emitting diode
(LED) and light sensor setup were used. The BioPac was pro-
grammed to trigger periodic sequential LED pulses, and data
from the BITalino light sensor was recorded simultaneously with
the biosignal data.
The pulses used were programmed to have a frequency of 1 Hz,

width of 100 ms and cover the full scale in amplitude. To help
segment the areas of interest in post-processing, sequences of
pulses were emitted during ‘activity’ periods and turned off
between activities (e.g. when the subjects were changing position).
The first pre-processing step consists of segmenting the data by ac-
tivity periods, and discarding the data acquired between activities.
For each subject and each sensor, ‘activity’ periods must be identi-
fied and the data should be segmented accordingly. An example of
BioPac and BITalino data acquired to allow segmentation is shown
in Fig. 2. For each activity, we identify the first and last pulses in the
series and detect its onset for both devices. Sensor data is then seg-
mented according to these time stamps.
To have a fairer comparison, all data were filtered prior to this seg-

mentation. A fourth-order forward–backward Butterworth band-pass
filter was implemented for each sensor, except for the EDA, where a
lowpass filter was used. The cut-off frequencies were chosen accord-
ing to the most restrictive bandwidths values of Table 1 (e.g. 0.5 and
35 Hz for the ECG; 0.8 and 35 Hz for the EEG).
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Further pre-processing steps, specific to each sensor were used
for the sake of reinforcing the comparison, and are presented in
the following subsections, along with the acquisition protocol.

2.2.1 Electrocardiography: For ECG acquisition, we followed the
procedure described in BSL Lesson 5, where three electrodes are
used to record the ECG. The ground was placed on the medial
surface of the right leg, just above the ankle. A second electrode
mimicked this position on the left leg. The third electrode was
placed at the wrist, on the right anterior forearm.

The ECG acquisition is divided into four activities of 20 s:
supine, seated, deep breathing and recovery after exercise. For the
first two activities, the subject is simply asked to relax. During
the third activity, he is instructed to take long, slow, deep breaths.
After a series of jumping-jacks meant to raise his/her heart rate,
the subject is told to sit down and relax again so the fourth activity
can be recorded.

For some sensors, including the ECG, there is a slight delay
between data from the BioPac and data from the BITalino, which
we believe to be introduced by differences in the specification of
the hardware signal conditioning circuitry. To achieve the best pos-
sible alignment and thus a more correct comparison, the following
procedure was followed:

† Data was segmented according to activity periods
† For each segment (activity), the correlation between data from
the two devices was computed
† The ‘shift’ was defined as the maximum correlation point
such that:

oThe shift was positive (due to the acquisition protocol, BioPac
data was always ahead of BITalino data)

oThe shift was at most 20 samples (the ‘true’ alignment was
always close to the beginning of the segments)

† The BioPac segment starts now after the determined number of
‘shift’ samples

An example of segments before and after this alignment proced-
ure is shown in Fig. 3 for the ECG.

2.2.2 Electromyography: The EMG data is divided into two activ-
ities: clenching fist for the dominant hand and clenching fist for the
non-dominant hand. For each of them, one electrode is attached to
the anterior forearm, close to the elbow. A second electrode and the
ground are placed on the wrist, on the interior side of the arm.
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Fig. 3 First 3 s of filtered ECG segments before (top) and after (bottom) the
alignment procedure. Segments were scaled for visualisation purposes
Each activity lasts 1 min during which the subject is asked to
clench his/her fist and hold before releasing the clench and repeating
the process with an increasingly high clench force. The maximum
clench should be achieved on the fourth repetition. The subject
repeats this series of four clenches during the 1 min period. This pro-
cedure follows what is described in the BSL Lesson 1.

The alignment step described in the previous subsection was also
implemented for the EMG, but only after the computation of its
linear envelope (as described in the next section).

2.2.3 Electrodermal activity: For the EDA sensor, to avoid cross-
talk between the two devices, BioPac’s electrodes were placed on
the index finger and BITalino’s electrodes were attached to the
ring finger. During the first 20 s, the subject is relaxed, and after
this initial relaxation period, the subject answers ‘yes’ or ‘no’ to a
series of questions.

Although we followed the procedure described in the BSL
Lesson 9, translation and minor adjustments were made to the ques-
tions, in order to have them more adapted to the national context
where the tests were performed. Examples of questions included
in the questionnaire are translations of: ‘Are you a student?’, ‘Do
you own a motorcycle?’ and ‘Have you ever visited another
planet?’. The subject is instructed that he may answer truthfully
or dishonestly, given that for our comparative analysis non-specific
responses are sufficient.

For one subject, during EDA acquisition, the emission of BioPac
pulses started before the BITalino was properly connected. This
caused the first pulse to not be captured by the BITalino light
sensor. Therefore, the second emitted pulse was the one used as
the start of the activity.

2.2.4 Electroencephalography: For the EEG, the ground electrode
is placed behind the left ear. A bipolar measurement is performed,
with two electrodes placed on the forehead, near positions Fp1 and
Fp2 of the standard 10–20 system. Two 1 min activities are
recorded: first, the subject is asked to keep his eyes opened, then
he is asked to keep them closed. This follows the procedure
described in the BSL Lesson 3.

A switching of electrodes happened during EEG acquisition,
resulting in inverted signals between the two devices. Prior to seg-
mentation, BITalino signals were therefore inverted.

2.3. Feature extraction: When the signal is very rich in high-
frequency components, and considering that each device has an inde-
pendent analogue-to-digital converter, it is virtually impossible to
ensure that the sampling occurs at the exact same instant for both
devices. This introduces a problem related to the fact that a very
small offset in the sampling time can translate in significantly differ-
ent measured quantities (as is the case for EMG data). Consequently,
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comparing raw EMG acquired by the BITalino and the BioPac does
not provide the fairest comparison base. Similarly, EEG data,
although not as rich in high components, varies very rapidly, and
therefore comparing it in its raw form can be a challenge.
Following the method presented in [10], we chose to compare
these signals based on commonly extracted features, after applying
common signal processing techniques.

For the EMG, the linear envelope of the signals was computed.
First, a fourth-order forward–backward band-pass Butterworth
filter with cut-off frequencies of 10 and 450 Hz was applied. The
signals were then rectified before filtering with a fourth-order
forward–backward low-pass Butterworth filter with cut-off fre-
quency of 4 Hz.

EEG data is often analysed in terms of its frequency content. For
each segment, an estimation of the power spectral density (PSD) was
computed using Welch’s method. Each segment was split into seg-
ments of length 1 s with overlap of 999 samples and a Hanning
window was applied to them. The periodograms were then computed
using a zero-padded fast Fourier transform of length 2048 samples.
Finally, the individual periodograms were averaged.

Regarding the ECG, although a morphological raw comparison
was undertaken, a simple processing step was also attempted.
When using pattern recognition methods to analyse ECG records,
be it for diagnostics or biometrics purposes, it is often beneficial to
segment them and extract relevant features. A common segmentation
procedure is to first identify the R peaks (corresponding to ventricular
depolarisation), and then use only a predefined window around each
peak. This method was also employed in our study, to allow a
beat-by-beat comparison between the two devices. A window of
600 ms was used (200 ms before and 400 ms after the R peak).
Before beat segmentation, ECGs were filtered in a more specific
manner. First, two median filters with local window sizes of 0.2
and 0.6 s were applied to the signal. By subtracting from the original
signal the result of this filtering, we were able to remove the baseline
wandering. Then, the signal was filtered using a low-pass finite
impulse response filter with a 40 Hz cut-off frequency. The filter
used had an order of 300 and a flattop window.

2.4. Comparison metrics: The root mean squared error (RMSE) (1)
can be used to measure the difference between the values recorded
by the two devices (x and y, with length n). Since it is a
scale-dependent metric, a normalisation step must be performed
prior to its computation (2), where m represents the data mean

RMSE(x, y) =
������������������������������∑n

k=1 (xnorm[k]− ynorm[k])
2

n

√
(1)

xnorm[k] =
x[k]− mx

max x−min x
(2)

A second metric, the coefficient of determination (R2), was also
computed. This value is a measure of the linear dependence
between data from the two devices. More specifically, if we
consider the least square fit between data from BioPac and
BITalino, R2 can be computed as shown in (6), considering the
sum of squares detailed in (3), (4) and (5)

SSxx =
∑n
k=1

x[k]2 − nm2
x (3)

SSyy =
∑n
k=1

y[k]2 − nm2
y (4)

SSxy =
∑n
k=1

x[k]y[k]− nmxmy (5)
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R2 = SS2xy
SSxxSSyy

(6)

3. Results and discussion: Following the protocol described in the
previous section, data was acquired for seven subjects and then
segmented. The total number of segments, analysis time and
number of events for each sensor are reported in Table 2.
The first comparison presented here is a simple morphological

comparison. EDA, ECG and EEG data are compared using this
approach. For EMG, EEG and ECG, a comparison based on
common features is undertaken.

3.1. Morphological comparison: RMSE and R2 were computed to
quantify the morphological differences between devices for
EDA, ECG and EEG data. An example of EDA data acquired by
the two devices is shown in Fig. 4, after signal alignment and
filtering. The results of the comparison for these three sensors are
summarised in Table 3, along with the remaining results
presented in the next sections.
The RMSE is similar and low for all three signals. The R2 is close

to 1 for the EDA, indicating a high correlation between data
acquired by the two devices. A lower value is obtained for the
ECG, although still showing a strong correlation. Regarding the
EEG, the decrease in R2, which is still at around 0.7, can likely
be attributed to the fast variations of this signal.
Table 2 Total number of segments, analysis time and number of events
for each sensor

Sensor Number
of segments

Total analysis
time, s

Number of events

ECG 28 700 898 beats
EMG 14 394 154 muscle contractions
EDA 7 456 —

EEG 14 340 14 PSD estimations

Fig. 4 BioPac and BITalino EDA data from one subject, after signal align-
ment and filtering. Segments were scaled for visualisation purposes

Table 3 RMSE and R2 for all comparisons carried out

Sensor Comparison type RMSE R2

EDA morphological 0.059 ± 0.029 0.948 ± 0.059
ECG morphological 0.054 ± 0.012 0.830 ± 0.054
ECG beat-by-beat 0.049 ± 0.016 0.914 ± 0.046
EMG envelope 0.026 ± 0.009 0.989 ± 0.004
EEG morphological 0.055 ± 0.012 0.693 ± 0.067
EEG PSD 0.013 ± 0.005 0.968 ± 0.014
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3.2. ECG beat-by-beat comparison: ECG segments were
segmented beat-by-beat, as explained in the previous section. A
total of 898 cardiac cycle waveforms were compared, resulting in
a RMSE of 0.049 ± 0.016 and a R2 of 0.914 ± 0.046.

For both the RMSE and the R2, there is an improvement in com-
parison with the results obtained in the previous section. We can
point out two main reasons for this. First, since portions of the
signals are being left out, disparities between devices happening
in these portions are minimised. However, since the main com-
plexes are within the chosen window (P wave, QRS complex and
T wave), the portions of the signal that are left out of this compari-
son have little relevance in what concerns the typical interpretation
steps. The second reason stems from the alignment between the
signals. Despite the methodology followed to ensure the initial
alignment of the signals, slight differences in the device’s internal
clocks may cause the signals to drift apart from each other. This
misalignment is more pronounced as time goes by. By using a
small window and centring the beats by the R peaks, we are dimin-
ishing such disparities.

3.3. EMG envelope comparison: For each subject and each activity,
EMG linear envelopes were computed. An example is shown in
Fig. 5. The comparison between BITalino and BioPac data gives
a RMSE of 0.026 ± 0.009 and a R2 of 0.989 ± 0.004.

The low RMSE and high R2 indicate a very close similarity
between the linear envelopes computed for the two devices
(Table 3). That is, although the high-frequency content of the
signals makes it hard to morphologically match EMGs from differ-
ent recorders, a simple and very useful processing technique con-
firms that the acquired signals are very similar concerning their
information content.

3.4. EEG power spectrum comparison: Due to the sensitive nature
of EEG acquisition, a preliminary test was made to assess the noise
characteristics of the BITalino sensor. By placing the sensor in an
input-referred configuration, we observed a peak-to-peak
amplitude of 4.27 and a standard deviation of 0.43. Considering
that the range of the sensor is +41.24mV, this peak-to-peak
noise amplitude corresponds to 5% of the full scale. Although
this input noise can be sufficient to measure EEG, some sensitive
applications may need to guarantee a higher SNR.

An example of EEG data acquired by the two devices is shown in
Fig. 6. The EEG PSD was estimated for each segment, as shown in
Fig. 7, where the normalisation only takes into account values
ranging from 0 to 35 Hz. Comparing the two devices gives an
overall RMSE of 0.013 ± 0.005 and a R2 of 0.968 ± 0.014. A com-
parison by EEG bands is presented in Table 4.

For all bands, the RMSE is low and a high correlation between
devices is obtained. We can note that the lowest band, delta, is
Fig. 5 EMG data (in blue) and computed linear envelope (in red) for one
activity
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Fig. 7 PSD (left) and scaled PSD (right) for one activity

Fig. 6 BioPac and BITalino EEG data from one subject, after signal filter-
ing. Segments were scaled for visualisation purposes

Table 4 RMSE and R2 for different EEG bands

EEG frequency bands RMSE R2

delta – 0 to 4 Hz 0.113 ± 0.029 0.857 ± 0.077
theta – 4 to 8 Hz 0.079 ± 0.04 0.995 ± 0.012
alpha – 8 to 14 Hz 0.027 ± 0.016 0.992 ± 0.009
beta – 14 to 500 Hz 0.003 ± 0.002 0.997 ± 0.001
the one where differences between devices are more noticeable.
Overall, and comparing with the morphological results, it is clear
that by applying this common processing technique the similarity
between signals becomes more apparent.

4. Conclusions: With the goal of comparing data acquired by the
BITalino against a reference equipment, we collected data
simultaneously with the two devices. We followed a replicable
data acquisition protocol for each one of the four physiological
sensors (ECG, EMG, EDA, and EEG), and acquired data from
multiple subjects. Pre-processing steps, including filtering and
signal alignment, were implemented to ensure that the data could
be fairly compared.

Morphological comparison of EDA and ECG signals showed a
high similarity between data acquired by the two devices. For the
EMG, the computation of the linear envelope resulted in a small dif-
ference and high correlation between the BITalino and the reference
device. Regarding the EEG, spectral comparison showed a higher
level of similarity between devices than the morphological com-
parison. Although the obtained results seem to be promising for
benchmarking BITalino’s EEG, the � 4mV peak-to-peak noise
floor can be sufficient to measure EEG, but will not always be.
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Due to the sensitive and specialised nature of this modality, we
intend to deepen this analysis using a more appropriate EEG proto-
col (e.g. visual, auditory or other evoked potentials), following a
different protocol than the one proposed in the BioPac lessons.

The empirical validation of BITalino against a reference device,
as presented here, is important for educators and researchers
working on many different applications. Since signals acquired
with this low-cost and easy-to-use toolkit are similar to those
acquired with well-established devices, it is expected that many
more experiments can be carried out, leading to a faster develop-
ment of different biomedical research topics.
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