Learning the representation of instrument images in laparoscopy videos
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Automatic recognition of instruments in laparoscopy videos poses many challenges that need to be addressed, like identifying multiple
instruments appearing in various representations and in different lighting conditions, which in turn may be occluded by other instruments,
tissue, blood, or smoke. Considering these challenges, it may be beneficial for recognition approaches that instrument frames are first
detected in a sequence of video frames for further investigating only these frames. This pre-recognition step is also relevant for many
other classification tasks in laparoscopy videos, such as action recognition or adverse event analysis. In this work, the authors address the
task of binary classification to recognise video frames as either instrument or non-instrument images. They examine convolutional neural
network models to learn the representation of instrument frames in videos and take a closer look at learned activation patterns. For this
task, GoogLeNet together with batch normalisation is trained and validated using a publicly available dataset for instrument count
classifications. They compared transfer learning with learning from scratch and evaluate on datasets from cholecystectomy and
gynaecology. The evaluation shows that fine-tuning a pre-trained model on the instrument and non-instrument images is much faster and

more stable in learning than training a model from scratch.

1. Introduction: Recording videos and storing them without
adding comprehensive notes, that describe these recordings in
detail, has become a common practice for many of us and we all
know how difficult it is to find a specific scene inside a personal
collection of videos. This situation is as well reflected in the field
of medical endoscopy, where huge video archives have emerged
over the last years that consist of recordings of diverse
laparoscopic procedures, stored either for documentation, quality
assessment, or training purposes, just to name a few use cases.
However, most of these recordings are commonly accompanied
by a sparse textual description, which mainly is added to link
these stored archives to existing medical case reports. Although
videos contain much more information it is impossible to
describe everything textually with reasonable effort. Nevertheless,
finding specific scenes from such videos archives without a
sufficient keyword search is like looking for a needle in a
haystack. It is also difficult to describe the content more generally
because it has to be considered that some content is relevant for
one individual but not relevant for another. Therefore, it becomes
apparent that there is a need for making these archives searchable
by conducting automatic visual content as well as workflow
analysis in order to aid and reduce the workload of medical teams.

In a computer-aided analysis of surgical videos, specifically in
examining procedures like cholecystectomy, automated detection
of instruments has received attention in many vision-based analysis
tasks. For example, automated recognition of surgical workflow
steps benefits from the knowledge of which instruments are
visible because specific steps are accompanied by specific instru-
ments [1]. However, this issue of detecting instruments is mainly
addressed by approaches through classifying images according
to their tool presence [2—5], which differs from usual object detec-
tion and localisation tasks. This task has recently been studied in
the context of automated assessment of surgeons’ performances,
which requires information about where instruments are visible
because instrument handling is analysed [6]. The detection rate in
both tasks, tool presence and spatial localisation alike, has been
improved by the usage of deep learning approaches. Nonetheless,
there is still room for improvement, and considering the complex
task of automatic instrument recognition in laparoscopic videos,
this task in its simplest form is to automatically detect instrument
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frames in a sequence of video frames in order to further investigate
solely these frames for recognising different types of instruments.

In this work, we examine the usage of convolutional neural
networks (CNNs) in the field of laparoscopy for the purpose of
classifying video frames into instrument and non-instrument
frames. Specifically, we address the question to what extent
CNNs can be used to classify instrument frames in terms of
precision, hit rate, and throughput. Furthermore, we address the
question: Which patterns in instrument images are learned and
how are they different from patterns in images solely showing
tissue? The main contribution of this paper is to review and contrast
not only existing approaches towards surgical instrument detection
but also state-of-the-art CNN architectures. Although many differ-
ent network architectures have been proposed since AlexNet [7]
was released in 2012, we show that GoogLeNet with batch
normalisation is reasonably accurate with sufficient throughput to
automatically classify frames in real-time. We validate our findings
on two large, independent and publicly available datasets con-
taining different laparoscopic procedures and instrument types.
Finally, we assess the classification performance in detail by
taking a closer look at activation patterns when processing instru-
ment frames.

2. Related work: CNNs have proven to be a highly promising
approach for image classification and recognition tasks and
undoubtedly, the ImageNet Large Scale Recognition Challenge
(ILSVRC) [8] has contributed decisively to advancing networks
over the last few years. It has been shown that these approaches
achieve considerable performance improvements in terms of
accuracy in comparison to traditional approaches, where specific
visual features have to be selected manually to describe the task
at hand. Among them are AlexNet [7], GoogLeNet [9] alias the
Inception network, VGGNet [10] as well as ResNet [11], in
the order in which they have participated, and each network has
outperformed its predecessor with higher accuracy in the
classification task of ImageNet data. Taking a closer look at each
aforementioned network according to top-5-accuracy on the
ImageNet validation set from ILSVRC 2015, ResNet-152 yields an
accuracy of 95.51% (see top-5 error-rate listed in [11] Table 4),
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whereas VGGNet achieves 92.90%, GoogLeNet 92.11% and
BN-InceptionNet even 94.19%.

Extracting visual features to describe instrument appearances
have been studied extensively in the last years and the authors
of [12—-14] investigate various methods to extract such features
for specific instrument types appearing in cholecystectomy
videos. For examples, Primus et al. [13] utilise ORB [15] features,
bag-of-features (BoF) and an SVM for classifying different instru-
ment images and obtained a mean average precision (mAP) of
56% + 2.0% (n=6, see [13] Table I (a) column (512, 16)).
Primus et al. [14] apply a similar approach but do not process the
entire image, they pre-select instrument regions using a histo-
gram-based thresholding method in the CIE L*a*b* chromaticity
coordinates and finally process these selections for SVM classi-
fications. Another histogram-based approach is presented by
Letouzey et al. [12], but in comparison to the previously mentioned
work, they apply a greyscale histogram for selecting instrument
regions and classify them using HOG features and SVM, resulting
in a mAP of 72% (n = 8, see total accuracy listed in [12] Table 1).
However, results of both approaches are not directly comparable,
although similar data and instrument types are investigated —
Primus ef al. [13] use a custom dataset comprising six different in-
strument classes, whereas Letouzey et al. [12] report results based
on a dataset, which is part of a challenge at M2CAI 2016 [16].

This tool presence detection challenge at M2CAI 2016 [16] has
shown that CNNs are more accurate in classifying entire images
according to different instrument types compared to the afore-
mentioned approaches. Zia et al. [5] compare the classification
performance by fine-tuning pre-trained models of several CNN
architectures, which are originally trained on the ImageNet
dataset [8]. They achieved an mAP of 63.78% with AlexNet [7],
69.75% with VGGNet [10] and 76.60% with InceptionNet [17]
in its third version. In [4], the authors evaluate ToolNet [1], a
network based on AlexNet, fine-tune a pre-trained model on
the challenging dataset and obtained mAP of 52.5% + 30.5%
(n = 7). Another approach taken by Sahu et al. [3] is to use
off-the-shelf CNN features of a pre-trained model of AlexNet to
further train a random forest classifier. This classifier achieves an
mAP of 54.50% + 24.4% (n = 7). In addition to [5], Raju ef al.
[2] also fine-tune pre-trained models of VGGNet and GoogLeNet
with different setups and report an mAP of 78% using
GooglLeNet and 75% for VGGNet. The evaluation of the last two
mentioned approaches on the challenging test data has shown
that using VGGNet and GoogLeNet are equally accurate as classi-
fying CNN features off-the-shelf [3] and finally both approaches
rank at the top.

3. Approach: During laparoscopy, surgeons use different
instruments for performing different surgical actions. These
instruments vary in size and shape and are used either solely or
combined with others for actions that require multiple instruments
(e.g. suturing). It is common that, for example, gynaecological
surgeries are performed with up to three diverse instruments
simultaneously. Therefore, we want to find all frames in a surgery
video automatically that show laparoscopic instruments of any
type, size, or count. To achieve this, we formulate this task
as a binary classification task and train CNN to learn the
representation of frames that show instruments and the ones that
do not. For this task, we select a modified version of GoogLeNet
[9] with batch normalisation [18], because this regularises the
model with trainable parameters and generalises faster over
training data at equal performance as demonstrated by Szegedy
etal [17].

Network architecture: As described by Szegedy et al. [9],
GoogLeNet consists of 22 layers, and later Szegedy et al. [17]
have shown that a batch normalisation function inserted between
each of these layers allowing faster and more stable training of a
model. However, the batch normalisation technique is evaluated
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Fig. 1 Example images of the instrument count dataset [19], labelled
according to the number of visible instruments

a One

b Two

c Three

d Zero

with a modified version of the GoogLeNet, where the main differ-
ence of both networks is that a convolutional layer has been
replaced by two consecutive smaller convolutional layers. Since
the reason for this modification is not stated, we use GooglLeNet
in its original version together with batch normalisation. To distin-
guish between both networks, we take the term ‘BN-GoogLeNet’ as
by Szegedy et al. [17], which represents the batch normalised
GoogLeNet in its first version.

Datasets: For training the model, we use a publicly available
dataset that has been published in the context of automatic
content analysis in laparoscopic gynaecology by Leibetseder
et al. [19]. In this Letter, the authors present in total four different
datasets, where each of these datasets is built for a specific content
analysis problem in the field of laparoscopy. One of them is the
automatic determination of the number of visible laparoscopic
instruments solely based on processing images, for which they
also provide a baseline evaluation. The instrument count dataset
consists of images from gynaecology and cholecystectomy (added
samples form Cholec80 dataset [1]). In total, the dataset contains
~22k labelled images, categorised equally into four different
classes. Each class represents a specific number of visible instru-
ments, which is shown in Fig. 1: either one instrument (Fig. 1a)
is visible, or two (Fig. 1b), or three (Fig. 1¢) or there are no instru-
ments visible at all (Fig. 1d).

Data pre-processing: We process only a subset of the instrument
count dataset [19] to learn the classification of instrument and non-
instrument images. Since the dataset contains ~5.1k samples of
each instrument count class, we use all images that are labelled
with no visible instruments as non-instrument images and a third
of every other class as an example for instrument images. This
results in a training dataset of 10.2k examples, equally distributed
over both classes. To distinguish between both datasets, we intro-
duce the term ‘InstCnt dataset’ to describe the entire instrument
count dataset of 22k images and ‘/nstBin dataset’ to denote the
subset that is processed for the binary classification task. To
detail the image pre-processing settings for training
BN-GoogLeNet models, each image and its RGB values are nor-
malised between (—1.0 and 1.0) and squashed to the input image
size of the network without cropping. This setup is used for training
and validation equally.

4. Experiment: In this section, we describe in detail the
experimental setup used to train and evaluate BN-GoogLeNet
[17] for binary classification of image sets showing laparoscopic
instruments. We describe insights obtained on parameter
initialisation and analyse the classification performance of several
models in terms of precision and hit rate, alias sensitivity. Finally,
we test our approach using different types of laparoscopy
video data, including video recordings of gynaecology and
cholecystectomy. Our experiments are conducted using PyTorch
[20] running on Nvidia GeForce GTX TITAN X.

4.1. Training and validation: We train and validate resulting models
with the usage of a k-fold cross-validation approach. In doing so,
we select £k =5 and split the training dataset with a size of
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n samples into five equal subsets of n/k samples each. Overall,
training of the network is carried out five times, where one fold
of these subsets is used as validation data with a total of n/k
samples and remaining n — n/k samples as training data. In the
following, reported results are averaged across each fold unless
otherwise stated. We also use the term ‘training phase’ for
training one fold to distinguish between the averaged values
across all folds and evaluation of training on one selected fold.
Since we also consider different initialisation approaches to train
a BN-GoogLeNet model for the binary classification task, Fig. 2
illustrates a training phase with different setups to initialise a
model, where random means a training setup from scratch,
ImageNet as well as InsCnt stands for fine-tuning a model either
on a pre-trained ‘ImageNet model’ or ‘InstCnt model’.

Training the binary classification from scratch: Initially, a
BN-GoogLeNet model is trained on InstBin data from scratch
using the Adam [21] optimisation algorithm and the cross-entropy
loss function. For optimising the loss function, the algorithm
requires the following input parameters: learning rate «, stabilisa-
tion parameter €, decay parameters 3;, and 3,. The decay para-
meters are initialised as suggested in [21] with B, = 0.9 and
B, =0.999, but it is not clear how to choose the learning rate «
and the stabilisation parameter € for our binary classification task.
For this parameter, we evaluate several combinations of initialisa-
tion and select @ = 10~ and € = 107 with i out of {1, 2, 3, 4}
and j out of {0, 1, 2, 3, 4, 8}. The training is conducted for
several epochs using a batch size of 64, results in 127 steps per
epochs for 8160 training examples. During the hyperparameter
search, we found that each combination of € and « results
always in an unstable training phase and only a learning rate
of a=10" with €e=10"" and a=10"" with e=10""
perform equally well, but the latter combination converges better
and faster in terms of validation accuracy.

Training with transfer learning: Additionally, we test the initial-
isation of the BN-GoogLeNet model with a pre-trained model on the
ImageNet dataset [8] and a model trained on the InstCnt dataset and
uses both models to fine-tune on our data for the binary classification
task. For fine-tuning a model on the InstCnt dataset, we re-implement
the training setup in [19] and train a model of the network from
scratch using the entire InstCnt dataset consisting of 21,433
samples. To perform five-fold cross-validation, we split the dataset
into 17,147 samples for training and 4286 samples for validation.
Training is conducted as described previously for several epochs
using a batch size of 64, results in 267 steps per epoch. Finally, a
model for the binary classification task is initialised with both pre-
trained models on ImageNet and InstCnt data, respectively. In a fine-
tuning setup, all layers of BN-GoogLeNet are re-trained for the new

Cross-validation

InstBin data (k different train/val sets)
¥ 1
Training ——| BN-GoogleNet —| Validation
T
[ Initialization |
T
[ Random | | ImageNet | | InstCnt |
Testing
M2CAI Cholec data GYN data

Fig. 2 Training phase in a k-fold cross-validation setup with different ini-
tialisation methods. Random stands for training from scratch and
ImageNet, InstCnt is used as a term where a model is initialised using
either a pre-trained ImageNet or InstCnt model. Generalisability is tested
on two independent datasets, comprising cholecystectomy (M2CAI
Cholec) and gynaecology (GYN) data
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task and only the last fully connected layer is re-initialised for the
corresponding number of classes. Since we also use a subset of
the instrument count data for fine-tuning, overfitting of the model
is an issue, therefore, the model is additionally validated with two
independent datasets.

From scratch versus transfer learning: Fig. 3 shows loss and
accuracy in five-fold cross-validation during training the binary
classification task B (blue and orange dashed lines) and the multi-
classification task M (red dashed line) from scratch in comparison
to fine-tuning a model using ImageNet data (solid green line) and
InstCnt data (solid purple line), respectively. Additionally,
Table 1 reports the average validation accuracy over five-folds
with a standard deviation for the five different training approaches.
As shown in Fig. 3, training a model for counting instruments with
provided data and suggested default values a = 10~°, e = 107%
results in a slow learning progress and a maximum average accur-
acy of 67% after epoch 150. Also, higher learning rates « and
epsilons € show similar results as with training the binary classifi-
cation task from scratch but in these cases the validation accuracy
decreases after few epochs and does not increase anymore.
On the other side, training a model as a binary classifier the same
settings of the Adam optimiser as suggested for instrument counts
but for a single class (dashed orange line) is much faster and
results in more stable training. Also, increasing both parameters
toa=10"2and e = 1072 (dashed blue line) leads to an improve-
ment of validation accuracy to 88% in epoch 80.

Performance details: Table 2 details the classification perform-
ance in training from scratch in terms of precision, sensitivity
alias hit rate, and F1 score averaged over five-folds. The F'1 score
represents the harmonic mean of precision and sensitivity and is
calculated on the basis of

PrecisionxSensitivity
Precision + Sensitivity *

Fl =2«

As can be seen, the results obtained by our re-implemented train-
ing setup differ from the results reported in [19]. However, batch
normalisation and image pre-processing are reasons why results
may differ. It seems that GoogLeNet is trained without batch
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Fig. 3 Accuracy and loss during training in five-fold cross-validation aver-
aged over each epoch and line shadows represent standard deviation
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Table 1 Overall accuracy of different training setups in five-fold cross-validation at each epoch; the re-implemented setup based on [19] to train a multiclass
classifier M in comparison to our experimental setup using BN-GoogLeNet to train a binary classifier B for different parameters — learning rate « and € of

the Adam [21] optimiser. Highest values are bold

Epoch 40 50 60 70 80 90 100 150
Re-implemented [19]

M 193 =108 0.47+0.04 0.54+0.18 0.59+0.10 0.59+0.08 0.58+0.16 0.58+0.08 0.60+0.12 0.67+0.06
Ours

From scratch

B10-3 =108 0.70+0.16 0.72+0.08 0.68+0.19 0.78+0.14 0.62+0.14 0.83+£0.17 0.77+0.16 0.59+0.11
B10-2.=102 0.83+0.08 0.87+0.07 0.80+0.14 0.85+0.08 0.88+0.01 0.82+0.12 0.84+0.09 0.84+0.08
Tuning on ImageNet

B 104 =102 0.98+0.01 0.98+0.00 0.98+0.00 0.98-£0.00 0.98-+0.00 0.98-:0.00 0.98-:0.00 0.97+0.00
Tuning on InstCnt

B 104 =102 0.97+0.01 0.97+0.01 0.97+0.01 0.97+0.01 0.97+0.01 0.97+0.01 0.97+0.01 0.97+0.01

Table 2 Details of classification performance for the best accuracy in
training the network from scratch in five-fold cross-validation. Reported
results in [19] compared to re-implemented training setup for multi-class
(epoch 150) and proposed binary classification (epoch 80)

Classification Precision Sensitivity F1
Original [19]
Zero instruments 0.92 0.93 0.93
One instrument 0.82 0.79 0.80
Two instruments 0.79 0.76 0.77
Three instruments 0.84 0.90 0.95
Re-implemented
Scratch,,_ 93 10
Zero instruments 0.76 £0.06 0.95+0.02 0.84+0.03
One instrument 0.60+£0.07 0.71+0.05 0.65+0.06
Two instruments 0.56+0.07 0.56+0.10 0.56+0.08
Three instruments 0.89+0.04 0.49+0.15 0.61+0.12
Ours
Scratch,,_ g2 12
Non-instrument 0.81+£0.02 0.99+0.00 0.89+0.01
Instrument 0.99+0.00 0.76 £0.03 0.86+0.02

normalisation since this is not implemented in the provided network
version used in [19]. On the other hand, the precision in each class
is similar to the original results, where zero and three instrument
classifications achieve higher precision compared to other classes.
Also, precision is zero (76%) instrument and three (89%) instru-
ment class shows that classification in only two classes is much
more promising. The results of the binary classification show that
the number of incorrectly classified instrument images as non-
instrument images is low because the precision yields a value of
99%. However, this means that instrument images are perfectly
classified, but there are many non-instrument images that are clas-
sified as an instrument image, as can be seen with a precision of
81% for the non-instrument class. Also, the sensitivity shows that
99% of all non-instrument frames are correctly classified, which
means that the classifier classifies more instrument frames as non-
instrument frames, which can be attributed to the fact that some in-
strument frames shows instrument parts that are difficult to learn
and distinguishable from non-instrument frames.

4.2. Visual explainability: To understand how instrument images
are distinguished from non-instrument images, we visualise the
regions of the trained BN-GoogLeNet model for the inception
layers 4a, 4d and the last layer 5b (listed in Table 1 in [9]). This
should help to understand which regions seem to be important for
a specific instrument class. We use the gradient-weighted class
activation map, described in [22] to visualise the trained weights
of different layers for a specific class. Fig. 4 shows the resulting
activation maps for instrument and non-instrument images,
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Fig. 4 Activation maps of different GoogLeNet layers 4a, 4b, and 5b for a
different number of visible instruments. Red regions within the yellow area
represent a high activation for the instrument image class in (a—c) and non-
instrument image class in (d), whereas the blue colour represents a very
weak activation

a Three instruments — layers (4a, 4b, 5b)

b Two instruments

¢ One instrument

d Zero instruments

Table 3 Throughput of different network architectures. Time in
milliseconds is measured for one forward and backward pass for one batch
of 64 images. Inference time is measured in FPS using GPU and CPU

Model Forward Backward FPS GPU FPS CPU
BN-GoogLeNet 10.2 16.0 111 15
ResNet-50 15.8 253 90 12
ResNet-101 26.1 179.8 47 8

respectively. The first three images in Figs. 4a—c represent the
activation maps for different number of visible instruments at
different layers. The second image of Fig. 4a shows the
activation of an earlier layer (4a); the third is obtained from a
layer in the middle (4d) and the fourth image is from the last
layer (5b). As can be seen, instrument regions are localised
more precisely in earlier layers and the deeper the image
representation is learned, the more coarse-grained the activated
weights for this specific class. However, we found that in
comparison to instrument images, non-instrument images have no
activation patterns in common. Sometimes the entire area leads
to high activation, sometimes only small regions in the centre,
but also quite often a small region in a corner, which can be seen
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Table 4 Classification performance on test datasets using fine-tuning on ImageNet in comparison to InstCnt data at epoch 80 (see Table 1). Precision and
Fl-score are weighted according to the total number of labels in each class. Highest values are bold

Classification InstBin validation data M2CAI Cholec data GYN data
Precision;z Sensitivity;z Flp Precisioncy Sensitivity ¢z Fley Precisiongy Sensitivity gy Flgy

Tuning on ImageNet

Non-instrument 0.99 0.99 0.99 0.85 0.82 0.84 0.89 0.94 0.92

Instrument 0.99 0.99 0.99 0.83 0.86 0.92 0.94 0.89 0.93
Tuning on InstCnt

Non-instrument 0.97 1.00 0.98 0.96 0.86 0.97 0.77 0.95 0.85

Instrument 0.99 0.97 0.98 0.85 0.75 0.86 0.94 0.72 0.83

in the last image (Fig. 4d) showing the activation map of the
inception layers (4a, 4d and 5b), when processing a
non-instrument image.

4.3. Throughput: Finally, we measure the throughput in terms of
inference time and training time, with frames per second (FPS)
on GPU and CPU. In training, we compared the required time in
milliseconds to pass a batch of 64 images forward and backward.
For inference time, we average the time over 10 runs for 1000
images. As a baseline, we additionally train a model using
ResNet [11] on a pre-trained model on ImageNet, which yields a
similar maximum accuracy of 98% for the binary classification
task of InstBin data.

Results are reported in Table 3, where BN-GoogLeNet yields a
high throughput in training and inference with approximately 111
FPS on GPU and 15 FPS on CPU. However, if we compared this
throughput to the required time with ResNet [11], measured for
two different network sizes, it becomes clear that for a binary clas-
sification task BN-GoogLeNet as well as ResNet-50 and
ResNet-101 are sufficiently fast to classify frames of laparoscopy
videos in real-time on GPU with reasonable accuracy.

4.4. Generalisability: To test the accuracy of classification
independently from the training data, we evaluate the
performance of the trained model with two further datasets.
Among them 1is a self-annotated dataset of laparoscopic
gynaecology videos as well as a publicly available dataset of
laparoscopic cholecystectomy videos that are used in the M2CAI
challenge [16] for detecting tool presence. For distinguishing
between them, we introduce the terms ‘M2CAI Cholec dataset’
and ‘GYN dataset’.

Data: The M2CAI Cholec dataset comprises 15 videos of chole-
cystectomy procedures, separated into two subsets: a set consisting
of 10 videos for training and a test set with five videos. In total, test
videos have a duration of 3.65 h and each video is accompanied by
annotations indicating the presence or the absence of seven specific
laparoscopic instruments. These annotations are provided for one
FPS. For the following evaluation, only the test set is used and
we process samples as non-instrument images when no label for
the presence of any instrument is available and the remaining
ones are used as instrument samples. This results in 1880 non-
instrument and 10,653 instrument image samples. The second
dataset consists of five videos of gynaecologic laparoscopy with a
total duration of 5.07 h. Similar to the M2CAI Cholec dataset,
one FPS is labelled with instrument or non-instrument, which
results in 12,542 instrument samples and 5682 non-instrument
samples.

Classification performance: Table 4 summarises the results for
the InstBin validation data of the training phase. Both classifiers
tuned on ImageNet and InstCnt data achieve a maximum precision
of 99% on the validation dataset for instrument classifications. The
precision for the M2CAI Cholec and GYN data is lower, but it is
higher for the GYN data compared to the Cholec data. However,
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the InstBin dataset comprises images of cholecystectomy and
gynaecology, but it seems that the number of images from
gynaecology is higher than the number of images from chole-
cystectomy. Also the classifier tuned on InstCnt data achieves
similar results but is less precise in identifying non-instrument
images in GYN data and instrument images in M2CAI Cholec
data. One reason could be that instruments differ in appearance
for cholecystectomy procedures as well as for gynaecologic
laparoscopy.

Miss-classification: For the fine-tuned model on ImageNet data,
the confusion matrix of classification results is shown in Fig. 5.
Interestingly, more images are classified as instruments in the
M2CAI Cholec dataset, although they are labelled as non-
instrument images and the opposite is the case for the GYN

000

82.3% 17.7%
1554/1888 334

non-instrument
non-instrument

Actual
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Actual

14.4%
1534
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nen-instrument AON-iRStrument instrument

instrument
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Fig. 5 Confusion matrix of the instrument and non-instrument image clas-
sifications on two test datasets using fine-tuning on ImageNet, one randomly
selected training phase and best performing classifier at epoch 80

a M2CAI Cholec dataset

b GYN dataset

instrument classified as
classified as instrument non-instrument
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Fig. 6 Examples of miss-classifications using fine-tuning on ImageNet, one
randomly selected fold and best performing classifier at epoch (80)

a M2CAI Cholec dataset

b GYN dataset
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dataset. Therefore, we take a closer look at miss-classified exam-
ples, which are represented in Fig. 6. In both datasets, images
that show out-of-patient scenes are wrongly classified as instrument
images. The reason could be that such scenes are not included in
the InstBin training dataset and are rather classified as instru-
ment images than non-instrument images. We also observe
miss-classifications due to heavy smoke, instruments at the corner
and strongly deformed appearance of instruments. Furthermore,
we notice that many examples in the M2CAI Cholec and the
GYN dataset are labelled as non-instrument, although they show
at least a piece of an instrument, which explains the lower precision
in non-instrument classes.

5. Conclusions: In this Letter, we evaluate different approaches
for training CNN models in order to identify the instrument and
non-instrument images in laparoscopy videos. This is a relevant
problem, because it can be used as pre-processing step for any
other content classification task in surgery videos such as action
recognition or adverse event analysis. In doing so, we use the
GoogLeNet [9] in its first version with batch normalisation [18]
and train the network with three different initialisation
approaches: randomly with training from scratch and transfer
learning using two different models for initialisation. For learning
from scratch, we use a subset of the publicly available instrument
count dataset [19] and compare several initialisation setups of
the Adam [21] optimisation algorithm for binary classifying
laparoscopy data. For transfer learning, we use two pre-trained
models: one model is trained on the ImageNet [8] data and one
on the instrument count data (InsCnt). The latter model is
obtained by re-implementing the training setup in [19]. Finally,
each of these pre-trained models is used to initialise the network
while fine-tuning a model for the instrument and non-instrument
classification tasks. We compared the classification performance
of both approaches using two independent datasets: the
M2CAI-tool [1] dataset of cholecystectomy procedures (M2CAI
Cholec data) and a self-annotated dataset of gynaecology
procedures (GYN data).

In our experiments, we found that learning the binary classifica-
tion task of the instrument and non-instrument images from scratch
is unstable for several initialisation setups of the Adam [21]
optimiser and an optimal parameter configuration could not be
determined. However, fine-tuning a network model for this classi-
fication task results in a faster and more stable training and the
classification performance is more accurate (98% =+ 0%) than train-
ing from scratch (88% + 1%), evaluated in five-fold cross-
validation. Also, the classification performance on two independent
test datasets indicates that instrument images can be identified with
94% precision in gynaecology procedures. However, the non-
instrument class yields a lower precision because out-of-patient
images are often classified as instrument images, while labelled
as non-instrument images. Therefore, we additionally investigate
in this Letter which regions are activated at different inception
layers for instrument and non-instrument frames, respectively. We
found that instrument frames have in common similar activation
patterns and these patterns reflect instrument regions, whereas
non-instrument frames have arbitrary activated regions and it
seems that the tissue does not lead to these activations. This
could be one reason why frames with unusual structures like
out-of-patient images are rather classified as instrument frame
than as non-instrument frame.

Finally, the most important findings are twofold: (i) simple
network architectures for simple classification tasks achieve simi-
larly accurate results but with much higher throughput and (ii)
even though application domains may strongly differ, it can be
worthwhile to consider transfer learning for specific domain classi-
fication tasks, while additionally having the advantage of faster con-
verging models.
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