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The measurement of the right and wrong results of cognitive tasks has important applications in many commercial and educational areas such
as the drivers’ training system, the simulation training and online learning system. This Letter aims to distinguish the heartbeat pattern
of cognitively wrong responses to that of cognitively right responses based on the electrocardiogram (ECG) through 36 subjects with
different professional backgrounds. The experimental design methods were double-digit and five-digit addition/subtraction, which were
blindly selected by subjects from a black box. Through the R–R interval (RRI) series obtained from the ECG data, some linear, nonlinear
and moment features were extracted to evaluate the cognitive task results by using pattern recognition methods. The binary classification
of RRI datasets indicated that autonomic nerve patterns of the right and wrong cognitive heartbeat responses were distinguishable.
1. Introduction: The measurement of cognitive task results not
only has important commercial and educational applications in
evaluating the users’ performance in cognitive tests [1], but also
can enable real-time personalised content generation for distant
learning or usability testing of applications related to human–
machine interactions [2]. For example, the mental and physical
states of a driver have been widely recognised as the crucial point
in every issue concerning the development of models headed to
improve vehicle safety. As a result, almost all the new in-vehicle
technologies, currently being developed at a high rate, fertilise
devices to monitor the driver’s psychophysiological state in time
[3]. In the literature [4], a driving support system was designed to
detect the lack of driver’s awareness of the real-time traffic
environment by tracking the driver’s physiological information
such as gaze, head rotation directions and the intervals between
R waves [hereafter, R–R interval (RRI)] in an electrocardiogram
(ECG) waveform. The literature [5] presented a method for
automatic classification of drivers’ mental states using facial
action units as input features, which was similar to the method of
cognitive task result in this Letter. Simulation training has been
an effective way to complement the clinical training of medical
students. The literature [6] was conducted to explore the relation-
ships between emotion and cognitive load, and diagnostic per-
formance during simulation training. The distinguish of
autonomic nerve patterns of the right and wrong cognitive heartbeat
responses was also helpful for the evaluation of simulation training.
In [7], a multimedia teaching system for English courses arranged
learners’ time and learning materials, monitored their learning
state in time, summarised knowledge, deepened learners’ memory
and improved learning efficiency. Assessing cognitive task result
is essential, as it contributes to understanding the complexity
of the learning task. New learning paradigms in [8, 9] have
hypothesised that a system, which monitors working memory cap-
acity in real time and accordingly adjusts training difficulty can
improve learning efficiency.
Previous research have shown that high and low cognitive loads

can be distinguished by using physiological features, e.g. galvanic
skin response [10], electroencephalography [11] and blood volume
pulse [12]. Cognitive tasks targeting different levels of cognitive
difficulty include the Stroop test, math test and event recall test
[12]. Conventionally, the cognitive task performances of many
tests are usually evaluated by human teachers. However, it is not
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convenient for the training or teaching system to involve the
participation of human teachers. Therefore, this Letter tried ECG
signal for automatic cognitive task result evaluation by the
machines.

In terms of classification, Huang et al. [13, 14] put forward the
extreme learning machine (ELM), a learning algorithm for single-
hidden layer feedforward neural network, which not only averts
falling into local optima, but also achieves faster learning speed
and better generalisation performance than traditional feedforward
neural network learning algorithm.

The literature [15] analysed the same everyday activities of
five people working together based on the ECG signal. Therefore,
in this Letter, we tried to apply math test as the cognitive task,
which is equivalent to simulate a working environment, acquired
the ECG signal of the subjects [16] while they were doing the
cognitive tasks, extracted RRI features and distinguished the RRI
data corresponding to the wrong cognitive task result from those
corresponding to the right cognitive task result. The ELM was
applied for pattern recognition of the RRI data.

The rest of this Letter is organised as follows: Section 2 describes
the experiment design; Section 3 presents the data analysis; and
Sections 4 and 5 are the discussion and conclusion.

2. Experiment settings: The cognitive tasks applied in the
current work were double-digit and five-digit addition/subtraction
math tests. The subjects and the experiment procedure will be
introduced in this section.

2.1. Subjects: By advertising at various colleges in Southwest
China University, a group of ordinary college students (17–24
years old) with different professional backgrounds voluntarily
responded to the recruitment. The most basic inclusion criterion
for the subject was without the history of the adverse disease.
Before the experiment, the subjects signed the informed consent
and were informed of the procedure of the experiment. They were
also required to have a good sleep the night before the
experiment. About 36 subjects took part in this experiment.

2.2. Experiment procedure: To avoid contingency, each subject
needed to participate in six rounds of experiments, three times
for double-digit addition/subtraction and another for five-digit
addition/subtraction, and there were three sections in each time.
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Table 1 Results of t-test for double-digit addition/subtraction math test

Feature H P Tstat Df Sd

mean 1 4.6 × 10−6 4.8368 118 0.0697
Std 0 0.8496 4.1774 118 0.0169
2diff 0 0.8874 4.5053 118 0.0205
3diff 0 0.7869 3.8229 118 0.0224
E20 1 0.0069 −1.5099 118 0.1472
E30 0 0.1248 −1.1570 118 0.1596
Lp0 1 2.01 × 10−6 4.8368 118 0.0704
Lp2 1 0.0014 3.0539 118 0.0417
Lp3 0 0.8521 −1.0502 118 0.0276
Lp4 1 0.0022 2.2799 118 0.0323
Lp6 0 0.6177 −0.3001 118 0.0303
Lp7 0 0.7753 −0.7590 118 0.0287
Lp8 1 0.0099 1.7669 118 0.0359
Lp9 0 0.0593 1.5720 118 0.0311
Six sets of test papers were numbered from one to six, and the
numbers were written on six sheets of paper, which were placed
in a black box. Subjects could only blindly select test papers
to conduct experiments, achieving the purpose of experimental
randomness. For the test papers, we selected arithmetic problems
from a test library, a database for psychological research in
the School of Psychology, Southwest China University, to form
three sets of two-digit addition/subtraction test papers, in which
the same number of operands and the same arrangement of the
plus and minus signs were to ensure the principle of the same
difficulty. Then, we combined with the principle of maximising
the differences between the questions in the same test paper
to avoid the influence of the law of the test paper itself on the
correct rate, which can also reflect certain randomness.
Furthermore, the five-digit addition/subtraction test papers were
also composed according to this standard.

Before the start of the first section, a Shimmer3 ECG device was
connected to the subject to acquire an ECG signal at a sampling fre-
quency of 512 Hz. In the first section, the subjects were asked to sit
and relax for 5 min, and the ECG data acquired in this section
served as the baseline data. In the second stage, the subjects
randomly selected arithmetic tasks (double-digit or five-digit
addition/subtraction math test) and then performed tasks up to
20 min; meanwhile, the experimental time was precisely controlled
through the alarm clock. Finally, the subjects were still required to
sit and relax for 5 min. The ECG data were acquired throughout the
whole experiment. After the experiment, the ECG data was checked
to exclude the electrode failure data out of the normal ECG data. To
unify the data analysis standards, for two types of arithmetic task
groups (double-digit math task group and five-digit math task
group), we only analysed the data of subjects with three complete
experimental data. Therefore, according to the above screening
principles, only the normal ECG data of 20 subjects in the double-
digit math task group and those of 27 subjects in the five-digit math
task group were obtained for further analysis.

To categorise the ECG data samples according to the right or
wrong cognitive task results, the math test papers of the subjects
were evaluated by the experimenter, and the test time corresponding
to the right and wrong test results were manually marked.
Lp10 1 0.0027 2.8400 118 0.0373
Lp12 0 0.5742 −0.1875 118 0.0286
Lp13 0 0.9274 −1.4666 118 0.0389
Lp14 1 0.0024 2.8758 118 0.0434
Lp16 0 0.0476 1.6818 118 0.0515
Lp18 0 0.0798 1.4156 118 0.0529
Lp19 0 0.6681 −0.4358 118 0.0448

H= 0 is the null hypothesis, H= 1 is the alternative hypothesis, P is the
probability that the null hypothesis is adopted, Tstat is the value of the
t-test statistic, Df is the degrees of freedom and Sd is the standard
deviation.

Table 2 Results of sign test for double-digit addition/subtraction math test

Feature H P Sign

RMSSD 1 5.21 × 10−9 52
LZ 0 0.7838 28
E10 1 0.0073 21
E50 0 0.6989 28
Lp1 1 0.0073 21
Lp5 0 0.5190 27
3. Data analysis
3.1. ECG data preprocess: To get the RRI series from the ECG data,
the peaks of the R waves in the ECG signal were located by
an automatic R peak locating algorithm presented in [17]. Then,
the RRI series were calculated from the intervals between two
consecutive R peaks. The wrong RRIs due to the state renewal
of the Shimmer3 ECG device were eliminated from the normal
RRI series.

Since the subjects’ baseline RRI level varied from person to
person, the following formula was applied to eliminate the baseline
difference:

Y i[ ] = X i[ ] −M ; i = 1, 2, 3, . . . , n (1)

where M means the average of the baseline RRI series of a subject
and X represents the RRI series during the cognitive task.

Through (1), a new series called RRI_t series could be obtained
for further analysis. We have extracted several pieces of data of each
subject with right and wrong cognitive heartbeat responses for com-
parative analysis.
Lp11 0 0.2451 25
Lp15 0 0.8974 29
Lp17 0 0.0519 22

H= 0 is the null hypothesis, H= 1 is the alternative hypothesis, P is the
probability that the null hypothesis is adopted and Sign is sign statistic
value.
3.2. Feature extraction: In this Letter, we extracted the common
statistical features, LZ complexity, the energy features based
on wavelet packet decomposition and the n-order (n= 0–19)
Legendre moments of RRI_t series. In terms of statistical
characteristics, the mean, the standard deviation, the first and
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second differences between consecutive RRI_t and the root mean
square (RMS) were extracted.

3.3. Two sample t-test and sign test: To detect whether the two
samples existed significant difference or not for five-digit or
double-digit addition/subtraction math test, two sample t-test and
sign test were done for the features. First, it was necessary to
verify whether the feature samples conformed to the normal
distribution, and then perform t-test on the samples subjected to
the normal distribution and carry out sign test to the non-normal
distribution samples. The significant level was set to 0.01. The
test results were shown in Tables 1 and 2 for double-digit
addition/subtraction and Tables 3 and 4 for five-digit addition/
subtraction, from which we could know that there existed
significant difference for some features.

3.4. Feature selection and data classification: In the previous
section, we have extracted 30 features, where they probably
contained features that were either redundant or irrelevant
Healthcare Technology Letters, 2020, Vol. 7, Iss. 2, pp. 41–44
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Table 4 Results of sign test for five-digit addition/subtraction math test

Feature H P Sign

2diff 1 1.18 × 10−11 70
3diff 1 8.62 × 10−10 66
RMSSD 1 3.81 × 10−10 68
LZ 0 0.0817 40
E50 1 0.0073 28
Lp7 0 1 41

Table 6 Confusion matrix of cognitive task results for five-digit addition/
subtraction

Right task
result,%

Wrong task
result,%

classified as right task result 80 20
classified as wrong task result 20 80

Table 5 Confusion matrix of cognitive task results for double-digit
addition/subtraction

Right task
result,%

Wrong task
result,%

classified as the right task result 84.75 15.25
classified as the wrong task result 15.25 84.75

Table 3 Results of t-test for five-digit addition/subtraction math test

Feature H P Tstat Df Sd

mean 1 0.0024 2.8563 160 0.0469
Std 0 0.7856 5.0883 160 0.0172
E10 1 0.0096 2.0911 160 0.0865
E20 1 5.54 × 10−5 −3.9642 160 0.1290
E30 1 1.65 × 10−5 −4.2724 160 0.1293
Lp0 1 0.0024 2.8563 160 0.0474
Lp1 0 0.8512 −4.3362 160 0.0297
Lp2 0 0.7184 −0.5792 160 0.0277
Lp3 0 0.4834 0.0417 160 0.0269
Lp4 0 0.3473 0.3934 160 0.0301
Lp5 0 0.4529 0.1185 160 0.0335
Lp6 1 0.0090 2.0924 160 0.0337
Lp8 0 0.3504 0.3849 160 0.0325
Lp9 0 0.9380 −1.5460 160 0.0353
Lp10 0 0.3582 0.3639 160 0.0359
Lp11 0 0.6982 −0.5203 160 0.0379
Lp12 1 0.0094 0.9203 160 0.0402
Lp13 0 0.9084 −1.3366 160 0.0360
Lp14 0 0.1909 0.8768 160 0.0382
Lp15 0 0.8097 −0.8793 160 0.0420
Lp16 1 0.0059 1.2002 160 0.0497
Lp17 0 0.9915 −2.4100 160 0.0453
Lp18 1 0.0081 2.4291 160 0.0445
Lp19 0 0.5357 −0.0897 160 0.0478
and should be removed from the set of original features. It
meant that feature selection was inevitable, which could eliminate
irrelevant or redundant features, to decrease the number of
features, improve the precision of the model and lessen running
time. Sequential backward selection (SBS) [18] was the choice in
this Letter. Its basic idea was to remove one of the remaining
features at a time from the complete set of features so that the
post-evaluation function value was optimal.
As the SBS is a wrapper-type algorithm, the accuracy of classifi-

cation was applied as a criterion to judge if the model of feature
subsets was good or bad. ELM was chosen as the classifier, and
leave-one–subject-out cross-validation [19] was employed for the
model’s training and testing. Since the recognition was to distin-
guish autonomic nerve patterns of right and wrong cognitive heart-
beat responses, thus the sum of false-negative rate and false-positive
rate could be regarded as the standard to judge the feature subsets’
performance for the recognition. Moreover, the error rate of each
iteration’s optimal solution could be calculated.
The results shown that the error rate of the 26th iteration’s

optimal solution was the lowest, the corresponding feature subset
contained the first and second differences between consecutive
RRI_t, the RMS and n-order (n= 0, 1) Legendre moments for
double-digit addition/subtraction math test. Besides, the first and
second differences between consecutive RRI_t and n-order (n= 1,
17) Legendre moments of the RRI_t series were the optimal
feature subset for five-digit addition/subtraction.
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According to the feature subset, the classification rate of auto-
nomic nerve patterns of right and wrong cognitive heartbeat
responses could be obtained, which were shown in Tables 5
and 6 for double-digit and five-digit addition/subtraction. The
results indicated that autonomic nerve patterns of right and wrong
cognitive heartbeat responses were distinguishable.

4. Discussion: Autonomic control of the heart is achieved through
sympathetic and parasympathetic effects on the cardiac muscle,
adjusting the duration between sequential heartbeats. Many existing
studies have found that tension could cause excess sympathetic
activation and parasympathetic withdrawal [20]. Therefore, to
explore whether the right and wrong cognitive heartbeat responses
were distinguishable, we evaluated cognitive task results through
heart rate pattern analysis in this Letter. Moreover, the related
RR interval was applied to investigate the influence of different
cognitive task results on the heart. This was based on the fact that
the RR interval is highly credible and assures the randomness
property [21]. The advantage of this method over previous
methods was that previous methods did not conduct research on
cognitive task result through ECG signal. For example, in the litera-
ture [22], initiatory experimental consequences, which performed
on only four channels of EEG, manifested that the proposed
system was capable of precisely detecting the cognitive workload
of the driver with tremendous potential for improvement by using
deep learning on EEG signal. Addition to the methods on EEG,
the methods on ECG developed in the present Letter are valuable
because of their easy accessibility to the accurate and convenient
measurement of physiological information.

From the test results of all features, we could know that the heart
rate patterns of autonomic activity were distinguishable through
some features between right and wrong cognitive task result
states. However, due to the imbalance of the gender distribution
in the school, there were fewer male participants in this experiment,
which can be improved in future research.

5. Conclusion: This Letter suggested using RR intervals
to determine whether autonomic nerve patterns of right and
wrong cognitive heartbeat responses were distinguishable. A
total of 30 features were extracted such as the mean and
Legendre moment. SBS was the choice for feature selection.
ELM and leave-one–subject-out cross-validation were applied
for recognition and classification. The result indicated that
autonomic nerve patterns of right and wrong cognitive heartbeat
responses were distinguishable, and have been demonstrated to
be of far-reaching significance in plenty of areas such as driver
monitoring system and learning system.
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