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In this Letter, the authors propose a variational mode decomposition method for quantifying diagnostic information of myocardial infarction
(MI) from the electrocardiogram (ECG) signal. The multiscale mode energy and principal component (PC) of multiscale covariance matrices
are used as features. The mode energies determine the strength of the mode, and the PCs provide the representation of the ECG signal with less
redundancy. K-nearest neighbour and support vector machine classifier are utilised to assess the performance of the extracted features for the
detection and classification of MI and normal (healthy control). The proposed method achieved a specificity of 99.88%, sensitivity of 99.90%,
and accuracy of 99.88%. Experimental results demonstrate that the proposed method with the multiscale mode energy and PC features
achieved better output compared to the previously published work.
1. Introduction: Myocardial infarction (MI) is the major cause of
death among cardiovascular diseases according to the report from
the World Health Organisation (WHO) [1]. The electrocardiogram
(ECG) is used widely to diagnose heart-related diseases, including
MI because it is efficient, effective, and non-invasive. Multichannel
ECG records the three-dimensional view of the human heart, and it
captures the pathological characteristics and morphological changes
of MI.
The pathogenesis of MI begins as a result of the plaques, a

substance mostly made of fat, fibrin, and platelets get deposited
in the inner surface of the coronary arteries causing disruption
and occlusion of the circulation of blood to a portion of the heart
[2]. The myocardium is starved of oxygenated blood, and abundant
nutrients and a condition occurs called cardiac ischemia. When the
ischemia lasts for an extended period, the heart tissue dies, leading
to MI, commonly known as a heart attack. During MI, the
morphology of the multi-lead ECG signal will vary from their
normal characteristics. The anomalies of MI in ECG waveform
evolve through the following sequence [2]:

(i) ST-segment elevation: This change depends on the gender and
age of MI patients.
(ii) Hyperacute T waves: This wave is tall, pointed, and symmetric
in at least two consecutive leads [3]. T wave inversion appears after
hyperacute T wave.
(iii) Q waves abnormality: The Q wave is considered pathological
if its duration is >0.04 s in the leads I, II, III, and aVF, or leads
V3–V6.

The normal ECG and the evolution of two pathological
characteristics of MI are shown in Fig. 1. The normal ECG for refer-
ence concerning pathological cases is shown in Fig. 1a. The change
of morphology of ECG due to MI is depicted in Figs. 1b and c. Over
the past several decades, automated detection and classification of
MI have been studied and developed based on the amalgamation
of feature extraction using signal processing tools and machine
learning algorithms. In feature extraction stage, several studies
were adopted to capture the pathological characteristics which
indicate the signature of MI such as Q-wave, ST-segment deviation,
T-wave integral, T-wave amplitude and integral of single ECG
cycle [4–7]. The pyramidal multiresolution decomposition
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technique of discrete wavelet transform (DWT) using different
mother wavelets such as db4, db6 is a popular method for identifi-
cation of MI [8, 9], and some works have implemented Daubechies
biorthogonal wavelet [10, 11]. Empirical mode decomposition
(EMD) was used for feature extraction to discriminate between
normal and MI [8]. In [12] principal component analysis (PCA)
is implemented for different orders of polynomial approximations
and concluded that the 12 principal components (PCs) were
found to be effective for the detection of MI. Alternatively, Liu
et al. [13] use polynomial function and treated polynomial
coefficients as features to classify MI patients and healthy controls.
In the classification stage, the extracted feature vectors are fed as
input to different classification algorithm for detecting MI. The
most popular algorithms for classification are support vector
machine (SVM) [11, 12, 14], K-nearest neighbour (KNN) [8, 15],
neural network [16, 17], decision trees [13, 18], and random
forests [19].

In this work, the authors’ objective is to establish a new method
for automated detection of acute MI. Variational mode decompos-
ition (VMD)-based feature extraction is proposed in this study.
The main advantage of the VMD technique over the other decom-
position techniques, such as empirical mode decomposition (EMD)
is that it is built on a sound foundation of mathematical theory. In
contrast, the latter lacks and is sensitive to noise and sampling.
One caveat of DWT for analysis of MI is the hard band-limits of
wavelet and inability to select appropriate mother wavelets. The
VMD method has the edge over wavelet transform multiresolution
technique because the latter one requires a predefined basis
function like Daubechies, Symlet, Daubechies biorthogonal, etc.
Implementation of different wavelet functions can result in a
different outcome. Hence, the DWT efficiency depends on the
choice of the mother wavelet and the decomposition level. In the
existing literature, there is no proper justification for the use of a
particular mother wavelet. So the selection of mother wavelet and
analysis based on wavelet transform is a challenging task. In
contrast, VMD is a data-driven and adaptive, decomposition
model that assesses the relevant bands, and determines the
associated modes simultaneously. This decomposition algorithm
can reconstruct the decomposed ECG signal optimally (perfectly
or in a least-squares sense). The main building blocks of VMD
are the Wiener filter for denoising, the Hilbert transform to obtain
single-side (non-negative) spectrum, and the harmonic mixing to
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Fig. 1 Normal ECG and the evolution of MI
a Normal ECG signal
b, c Pathological characteristics observed due to MI

Fig. 2 Block diagram for detection of MI from multi-lead ECG
translate the frequency spectrum to the baseband. Due to these
inherent properties ingrained in this decomposition model, it
outperforms its decomposition counterparts vis-à-vis EMD and
DWT. The VMD method is a recently introduced decomposition
technique that decomposes the AM–FM signal into multiple
subbands. It has gained wide popularity since its inception
to analyse one-dimensional signals, such as in grid-connected
distributed generation system, epileptic seizure detection from the
EEG signals, and estimation of electroglottographic (EGG)
signals [20–22]. The VMD technique is found to be effective to
eliminate noise, baseline wandering, and detection of cardio-
vascular diseases of the ECG signal. Prabhakararao and
Manikandan [23] have used the VMD method to extract baseline
wander using frequency criterion and then subtract from the original
signal. The performance results of their study ascertained that the
VMD algorithm can effectively get rid of the baseline wanders
without mangling the vital clinical information of the ECG
signal. Lahmiri et al. [24] have used VMD and DWT for denoising
of ECG signals. Tripathy et al. [25] decompose the ECG signal into
five modes and extracted three different features from the first three
modes for the detection of an arrhythmia. To the best of our knowl-
edge, there is no article in the literature reporting MI diagnosis
using VMD technique. Therefore, in this paper, we propose a
new algorithm for automated detection and classification of acute
MI from HC subjects using 12-lead ECG signals.

The remaining portions of this Letter are structured as follows.
The proposed VMD-based method to extract features that are
related to MI, including preprocessing of an input ECG signal is
described in Section 2. Furthermore, in Section 3, the ECG database
used in this work is introduced briefly and presents the results and
discussions in detail. In Section 4 conclusions are drawn.

2. Method: The structure of the proposed method contains four
main stages: preprocessing and beats segmentation,
decomposition of the MECG signal by VMD method, feature
analysis, and binary classification of the extracted features
between MI and HC, as shown in Fig. 2.

2.1. Preprocessing: MECG signal is corrupted with various types of
noise. The preprocessing involves filtering unwanted noise and
artefacts from a raw ECG signal. A moving average filter is
utilised to remove the low-frequency baseline wandering [26].
The frame-based processing of MECG exploited the inter-lead,
intra-beat, and intra-sample correlation information of the MECG
signal [27]. This information can facilitate to diagnose various
CVD, including MI. The beat segmentation of the noise-free
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MECG signal is carried out by detecting R-peaks using Pan
Tompkins algorithm, and segment 250 samples and 400 samples
to the left of R-peaks and to the right of R-peaks, respectively,
resulting in 651 points in each sample at a sampling rate of
1 kHz [28, 29]. The first and last beats in all the datasets were
excluded to maintain uniformity of the segmented beats. The
R-peaks of lead I are used as a reference point to segment the
remaining leads of MECG signals since all the 12 leads are
recorded simultaneously. Each ECG beat has 651 samples, which
covers all the characteristics of the ECG cycle.
2.2. Proposed method: VMD method adaptively decomposes
MECG signal into a K ensemble number of band-limited
sub-signals or principal modes vk , where the modes are
compactly supported around their centre frequency [30]. The H1

Gaussian smoothness determined the bandwidth of each mode of
the shifted signal. The resulting constrained problem is
formulated as

min
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where v(t) is the ECG signal, {vk} := {v1, v2, . . . , vK} represents
the set of decompose modes, {vk} := {v1, v2, . . . , vK} denotes
the set of each centre pulsation corresponding to the kth mode, t
is the time the number of modes is signified by K, ∂t stands for
the differential operation, and ∗ is the convolution.

The constrained problem of (1) can be addressed by introducing
Lagrangian multiplier and quadratic penalty term are employed to
make the problem unconstrained. The augmented Lagrangian
function is expressed as follows:
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where l(t) denotes the Lagrangian multiplier, a is the balancing
parameter that control bandwidth, and d(.) is the Dirac distribution.
An optimisation technique called alternate direction method of
multipliers (ADMM) is rendered to solved (2). All the modes
Healthcare Technology Letters, 2020, Vol. 7, Iss. 6, pp. 155–160
doi: 10.1049/htl.2020.0015



Fig. 5 Visualization of VMD mode 5 and its corresponding spectrum
a Decomposed HC signal of mode 5
b Mode 5 spectrum
gained is obtained in the Fourier domain and is given as

v̂n+1
k (v) = f̂ (v)−∑

i=k v̂i(v)+ l̂ (v)/2
( )

1+ 2a(v− vk )
2 (3)

The optimisation of wk also takes place in the Fourier domain, the
updated equation of wk is shown as

vn+1
k =


1
0 v v̂k (v)

∣∣ ∣∣2dv
1
0 v̂k (v)
∣∣ ∣∣2dv (4)

VMD is a parameterised method, and it has to initialise two tuning
parameters in advance. These parameters are the bandwidth control
parameter (a), and the number of modes (K) to be decomposed
from the ECG signal. The correct choice of the values of a, and
K capture the characteristics of the ECG signal in different decom-
position mode. The experimental results reveal that a big value of a
permits a low bandwidth in the decomposed modes. This results in
mode mixing and also causes spurious mode in the higher level of
mode decomposition. On the other hand, small values of a give rise
to noise in the estimated mode. In this analysis, we have found that
the corresponding parameters a of 1400 and K of 5 are considered
the optimised parameters as it can capture the relevant components
of the ECG signal. The different modes of the healthy control signal
by VMD are illustrated in Figs. 3–5. Figs. 3a, c, 4a, c, 5a show the
time-domain signals of the first mode, second mode, third mode,
fourth mode, and fifth mode, respectively, and Figs. 3b, d, 4b, d,
5b depict the corresponding frequency spectra of the decomposed
Fig. 3 Visualization of VMD mode 1 and mode 2 and its corresponding
spectrum
a Decomposed HC signal of mode 1
b Mode 1 spectrum
c Decomposed HC signal of mode 2
d Mode 2 spectrum

Fig. 4 Visualization of VMD mode 3 and mode 4 and its corresponding
spectrum
a Decomposed HC signal of mode 3
b Mode 3 spectrum
c Decomposed signal of mode 4
d Mode 4 spectrum
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mode. The dominant frequency of the spectrum of mode 1 is
3 Hz, which captures the P-wave and the T-wave. Mode 2 and
mode 3 contain the characteristics of the QRS complex, and its
dominant frequencies are around 12 and 15 Hz, respectively. The
spectrum of mode 4 and mode 5 depicts that the higher frequency
of the QRS complex is observed in these two modes. Their domin-
ant frequencies are 20 and 28.4 Hz, respectively.

When the standard 12 leads ECG is decomposed with the same
number of mode, it results with an equal number of kth mode coef-
ficient at the jth level. Mode coefficients obtained from the decom-
position are arranged in the matrices. The rows correspond to mode
coefficients while the columns represent the corresponding ECG
leads. The mode matrix is given by

Mj = cM1
j,k , cM

2
j,k , . . . , cM

i
j,k

[ ]
(5)

where k is coefficients and i = 1, 2, . . . , 12 is the number of leads.
Assuming that the significant information of the ECG signal will

reflect in the distribution of energy in different decomposition
levels, the energy can be computed at different modes. The
energy obtained from the coefficients along each decomposed
mode is considered as multiscale mode energy [9, 11], and it is
given as

EcMi
j,k
=

∑Nj

k=1 cMi
j,k

[ ]2
Nj

(6)

where Nj is the number of coefficients. In this study, the multiscale
mode energy features from five decomposed modes of 12-standard
leads are evaluated. Five multiscale mode energies of 12 features
are extracted from one mode matrices. A total of 60 multiscale
mode energies are chosen from the five mode matrices.

MI causes variation in electrical conduction properties of heart
tissues due to obstruction in the inside wall of the coronary
artery. These variations in values lead to a change in the morpho-
logical features of ECG signals, and they can be captured in differ-
ent modes when subjected to the VMD algorithm, as shown in
Figs. 3–5. In order to quantify these changes, covariance structures
of the multiscale mode matrices (MSMMs) are analysed. When
eigenanalysis is computed on mode matrices, the clinical diagnostic
information related to MI presumably appears in eigenspaces. The
covariance matrices are assessed from the MSMM, and it is evalu-
ated as [31]

CMj
= 1

Nj − 1
( ) Mj

[ ]T
Mj

[ ]( )
(7)

where CMj
is the covariance matrix at the jth mode. When (7) is

subjected to eigendecomposition the expression appears in the fol-
lowing equation:

CMj
VMj

= VMj
LMj

(8)

where LMj
and VMj

are the eigenvalues and eigenvectors of the
mode matrix, respectively. Eigenvector matrix VMj

diagonalise
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the covariance matrix CMj
as

VMj
CMj

V−1
Mj

= LMj
(9)

LMj
is the diagonal matrix. The eigenvalues are the diagonal ele-

ments of the diagonal matrix. The eigenvectors constitute the
vector directions of the new feature space of the covariance
matrix, and the eigenvalues represent the magnitudes of those
vectors. The eigenvector corresponding to the highest eigenvalue
is the first PC. The eigenvalues are sorted from largest to smallest
value and accordingly, the corresponding eigenvectors as it pro-
vides the significance of the components. The ordered eigenvalues
in the mode matrix are

lMj1
, lMj2

, lMj3
, . . . , lMjN

(10)

In this work, six dominant eigenvalues from a single covariance
matrix are evaluated to create feature vectors. A total of 30
feature vectors are extracted from five covariance matrices.
2.3. Classifiers and performance measures: Two supervised
learning classifiers, KNN, and SVM are used to carry out the
classification task of HC and MI. KNN is a non-parametric
algorithm employed for classification and regression problems.
The algorithm predicts the target label by discovering the KNN
of the test data by using distance measures. In this analysis, we
have used Euclidean distance and K= 5.

SVM is a two-category classification model defined by a separat-
ing hyperplane. The algorithm outputs the given labelled training
data by defining optimal hyperplane in an N-dimensional space
which categorises the test feature set [32]. The training features
set is (xm, ym), m = 1, 2, . . . , n, x [ Rj , y [ (+ 1, − 1). The
feature matrix of input multi-lead ECG can be represented, Z [
Rj,k with each feature vector zm [ Rk , i [ 1, 2, . . . , j, where j is
the number of feature sets, and k is the length of the feature
vector and (k= 90). The optimisation is based on the maximisation
of the hyperplane, given by

min
1

2
wTw+ C

∑j

m=1

1m (11)

subjected to ym(w
Tf(xm)+ b) ≥ 1− 1m, 1m ≥ 1, where w is the

hyperplane, and C is the regularisation parameter. The kernel func-
tion f(xm) transform the training feature set xm

( )
to the high-

dimensional space. The constrained problem of (11) is translated
into the Lagrangian dual problem in order to make the problem un-
constrained. The dual quadratic optimisation problem produce a
new equation, given by

max
m

L(m) =
∑q
m=1

mm − 1

2

∑q
m=1

∑q
n=1

mmmnymynR zm, zn
( )

(12)

subjected to 0 ≤ mm ≤ C, m = 1, 2, . . . , n and
∑q

m=1 mmym = 0.
mm is the Lagrange multiplier for every training point. The predicted
output yp for the test feature subset zt from MECG is computed as

yp = sgn
∑̂q
m=1

mmymR zm, zt
( )[ ]

(13)

where R(zm, zt) is the kernel function and q̂ is the support vector. In
this study, the linear kernel and radial basis function (RBF) kernel
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are used. The RBF kernel used in this work is given as

R(zm, zt) = exp
‖ zt − zm ‖2

2s2

( )
(14)

where the variance parameter s2 controls the width of Gaussian.
The classifier’s performance is assessed using specificity, sensi-

tivity, and accuracy. Specificity (Sp) of a test is the percentage of
data that did not have MI and were correctly identified by the
test. It is also called the true negative rate. The sensitivity (Se) is
defined as the percentage of data that truly had MI and were correct-
ly identified by the classifier. Accuracy (Acc) measurement system
is the degree to which the result of a measurement conforms to the
correct value. Specificity, sensitivity, and accuracy are then formu-
lated in the following equations:

Sp = TN

FP+ TN
× 100 (15)

Se = TP

TP+ FN
× 100 (16)

Acc = TP+ TN

TP+ FP+ FN+ TN
× 100 (17)

where TP, FP, TN and FN represent the MI patient correctly pre-
dicted as MI, healthy patient incorrectly diagnosed as MI, healthy
patient predicted as healthy, and MI patient predicted as healthy,
respectively.

3. Results and discussion: The ECG data used in this study are
taken from the Physikalisch–Technische Bundesanstalt (PTB)
database [33]. The 15 concurrently measured signals (standard
12-lead + 3 Frank leads) comprise 549 records from 290 subjects.
52 subjects are related to HC, and 148 subjects are related to MI
out of 290 subjects. The dataset consists of 81 women, average
age 61.6, and 209 men, average age 55.5. The 16-bit resolution
over a ± 16.384 mV range of each ECG signal was sampled at
1000 Hz.

The features extracted from the multiscale mode energy and co-
variance matrices are concatenated and form a 90-dimensional
feature vector. These feature subsets are provided as input to the
KNN and the SVM algorithm to discriminate the two classes, i.e.
healthy control and MI. Each of these feature vectors corresponds
to an instance. In this work, 8000, 12,000, and 20,000 instances
are utilised for evaluation to investigate the performance of the
models. Balanced datasets with a 1:1 class ratio of the instances
are implemented for training and testing the classification models
since the performance of the classifiers relies on the balance of
the dataset to a great extent. In this study, five-fold and ten-fold
cross-validation statistical methods are used to ensure the reliability
of the predictive models of SVM and KNN classifiers, respectively.
The performance of the classification models is shown in Table 1.

With 8000 instances the best performance is obtained for both
KNN and SVM linear kernels with the specificity of 86.20 and
96.80%, the sensitivity of 79.20 and 98%, and the accuracy
values of 82.70 and 97.40%, respectively. Average specificity,
average sensitivity, and average accuracy of SVM with RBF
kernel function classifier are found to be 98.88, 99.90, and
99.88%, respectively, for 8000 instances. In this study, the best
results for SVM with RBF kernel of s = 0.5 are achieved for all
the three different instances. The result shows that the less
number of instances achieved better results compared to the
higher number of instances. This may be because the sample
values of the recorded data are different for different subjects. As
a result, the variability of the subjects may affect the performance
of the classifiers.
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Table 2 Summary of the classification performance of the proposed method in comparison with the other existing methods

Author Number of leads Database Techniques and features Classifier Performance,%

Sun et al. [19] 12 leads beat specific ST segment detection SVM Sp= 88.1
HC: 79 records multiple instance learning Se = 92.3
MI: 369 records

Safdarian et al. [6] 1 lead beat specific integral of ECG cycle Naive Bayes Acc = 94.74
(lead II) subjects: 290 subjects

Sharma et al. [11] 12 leads frame specific DWT SVM Sp= 99
1074 frames for MI and HC multiscale energy Se = 93

multiscale eigenanalysis Acc = 96
Acharya et al. [29] 1 lead beat specific no feature extraction CNN Sp= 94.19

(lead II) HC: 10,546 or feature selection Se = 95.49
MI: 40,182 Acc = 95.22

Liu et al. [35] 4 leads beat specific no feature extraction multi-lead CNN Sp= 97.37
HC: 80 records or feature selection Se = 95.40
MI: 167 records Acc = 96.22

proposed work 12 leads beat specific VMD SVM Sp= 99.83
HC: 8000 multiscale mode energy Se = 99.89
MI: 8000 eigenvalues Acc = 99.86

Table 1 Performance evaluation for KNN and SVM classifiers

No. of instances KNN SVM Lin SVM RBF

Sp,% Se,% Acc,% Sp,% Se,% Acc,% Sp,% Se,% Acc,%

8000 86.20 79.20 82.70 96.80 98 97.40 99.88 99.90 99.88
12,000 82.60 77.20 79.20 96.93 97.52 97.22 99.77 99.70 99.73
20,000 77.34 93.20 85.27 96.20 95.93 96.06 99.83 99.89 99.86
From the acquired results of the classification algorithms, the end
result of the RBF kernel function of SVM surpassed the SVM with
linear kernel function and KNN classifiers. The linearly non-
separable input features of the RBF kernel function of SVM is
mapped to a high-dimensional feature space [34]. Presumably,
this is the reason the RBF kernel function of SVM achieved a
better result than KNN and linear kernel SVM.
Summary of the classification results of the proposed method is

compared with the previously published works for automated detec-
tion and diagnosis of MI and is reported in Table 2. Safdarian et al.
[6] extracted two time-domain features (integral of T wave and the
whole integral of an ECG cycle) to detect MI primarily in the left
portion of the heart. The extracted features are given as input to
four different classification models, namely, naive Bayes, KNN,
multilayer perceptron, and probabilistic neural network. Naive
Bayes give the best performance with an accuracy of 94.74%. A
new technique to automatically detect MI called latent topic
multiple instances learning without labelling heartbeats is devel-
oped in [19]. Their study shows specificity values of 88.1+2.3
and sensitivity values of 92.3+0.84. In [11], DWT decomposed
segmented ECG beats up to 6th level of decomposition of standard
12 leads ECG. Multiscale energy features and eigenvalues features
are extracted from wavelet subbands to form a 72-dimensional
feature vector. Their method for detection of MI obtained specifi-
city, sensitivity, and accuracy of 99, 93, and 96%, respectively.
The approach presented in [29] utilised convolution neural
network (CNN) algorithm to detect and discriminate the healthy
control, and MI ECG beats from single-lead ECG. They analysed
the ECG beats with noise-contaminated and noise eliminated and
gained 93.53 and 95.22% accuracy, respectively.
Pathological characteristics of MI, such as T-wave inversion,

abnormal Q wave, and ST-segment elevation, are regarded by
physicians as symptoms of MI [4]. These features are highly
dependent on correct delineation and segmentation of the ECG
Healthcare Technology Letters, 2020, Vol. 7, Iss. 6, pp. 155–160
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wave. Hence, the robustness of the extraction of these time-domain
features is an issue that must be handled. Several methods using
single-lead ECG have been proposed and developed to detect the
presence of MI [6, 29]. Liu et al. [35] used four leads (aVL, V2,
V3, and V5) to detect anterior MI, including anteroseptal MI and
anterolateral MI. The segmented ECG beats are used as input to
multi-lead-CNN and obtained specificity of 97.37%, sensitivity of
95.40%, and accuracy of 96.00%. Since MI occurs in different
leads of MECG, analysis on all 12 leads will provide more useful
information and yield a better result than single lead and fewer
leads in detection. In this work, we have used standard 12 leads
ECG signal for analysis. The framework for feature extraction in
this study is similar to the method used in [11]. In their work,
1074 frames of within-class variations data of HC and MI multi-
lead ECG are used for evaluation. Each frame consists of four
ECG beats. They have used DWT to decompose the ECG signal
up to the 6th level of decomposition, whereas in this work,
the VMD technique is implemented. In our study, subject-wise
validation approach is performed [36]. 10,000 beats of MECG,
both from HC and MI, are utilised for analysis in this work.
Comparative analysis of the results shows that our proposed
method exhibited better performance than the DWT-based
approach and other methods, as shown in Table 2.

4. Conclusions: In this study, a novel method to investigate the
pathological characteristics of MI from MECG is proposed.
Normal and pathology MI MECG signals are analysed using
VMD based approach. Initially, the MECG signal is preprocessed
prior to further processing to remove low-frequency artefact and
noise, among others. The noise-free signal is subjected to the
VMD algorithm. The changes that are observed in the mode
coefficients from the VMD caused the variations in the values of
different features that can capture useful information from a given
ECG signal. The multiscale mode energy is one such feature
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acquired from the different decomposed mode that reflects the
significant change of the pathological signal. Also, the interlead
correlations of the MSMM affect the covariance structures, and
the eigenvalues of the MSMM exhibit these changes. Therefore,
the change in the ECG signal of a pathological signal can be
represented by the computed eigenvalues and can be used as a
feature. Hence, these extracted feature subsets can further be
employed to train the classification models to discriminate
between healthy control and MI. The proposed method achieved
the highest classification performance from the SVM classifier
with an RBF kernel and obtained 99.88% specificity, 99.90%
sensitivity, and accuracy of 99.88%. The yielded results indicate
that the proposed method is capable of successful detection of MI
and achieved better results than existing methods.
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