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Abstract It is well established that age-related decline of

a woman’s fertility is related to the poor developmental

potential of her gametes. The age-associated decline in

female fertility is largely attributable to the oocyte aging

caused by ovarian aging. Age-associated oocyte aging

results in a decrease in oocyte quality. In contrast to

ovarian aging, there is a concept of postovulatory oocyte

aging. Postovulatory aging of oocytes, not being fertilized

for a prolonged time after ovulation, is known to signifi-

cantly affect the development of oocytes. Both categories

of oocyte aging have similar phenotypes of reproductive

failure. However, the mechanisms of the decline in oocyte

quality are not necessarily equivalent. An age-dependent

increase in aneuploidy is a key determinant of oocyte

quality. The reduced expression of molecules regulating

cell cycle control during meiosis might be involved in the

age-dependent increase in aneuploidy. The mechanism of

age-associated oocyte aging might be involved in mito-

chondrial dysfunction, whose etiologies are still unknown.

Alternatively, the mechanism of postovulatory oocyte

aging might be involved in reactive oxygen species-

induced mitochondrial injury pathways followed by

abnormal intracellular Ca2? regulation of the endoplasmic

reticulum. We suggest that future research into the mech-

anism of oocyte aging will be necessary to develop a

method to rescue the poor developmental potential of aged

oocytes.
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Introduction

The problem of infertility in the developed countries has

increased in the past 30 years [1]. It is difficult to accu-

rately calculate the number of infertility patients. To date,

the numbers of treatment cycles in assisted reproductive

technology (ART) have steadily increased [2]. There are

several factors involved in the increase in infertility

patients. The most important factor is that the average age

of patients seeking infertility treatment has increased [3].

Since the development of effective contraception in the

1960s, women have been able to delay childbearing at their

own discretion, and the average maternal age has increased

by approximately 5 years during the last 30 years [4, 5].

Decreased fecundity with increasing female age has been

recognized from demographic and epidemiological studies

[6]. Thus, delayed childbearing reduces the chance of

achieving spontaneous pregnancy [7]. The age-associated

decline in female fertility is largely attributable to the

decrease in oocyte quality due to ovarian aging [8, 9].

Because the mechanisms of decline in oocyte quality

remain unknown, there are no treatments available for

patients whose infertility arises from this cause, except for

oocyte donation programs [10, 11].

In contrast to ovarian aging, there is a concept of pos-

tovulatory oocyte aging. In mammals, ovulated oocytes are

arrested at the metaphase stage of the second meiotic

division until they are fertilized. The optimal period for

oocyte fertilization lasts less than 10 h [12–14]. Fertiliza-

tion within this narrow window of opportunity results in
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normal embryo development. Postovulatory aging of

oocytes, not being fertilized for a prolonged time after

ovulation, is known to significantly affect the development

of oocytes [15, 16]. Postovulatory oocyte aging also

impairs oocyte quality and results in reproductive failures

[15, 16]. However, it is not well known whether the

mechanism for the impairment of oocyte quality by these

two categories of oocyte aging is similar. The aim of the

present paper is to review in detail the mechanisms of these

two categories of oocyte aging.

Defining oocyte aging

Terminology and definition of ‘‘oocyte aging’’ are very

confusing. There are two categories of oocyte aging; one is

preovulatory and the other is postovulatory oocyte aging

[15]. Classification of oocyte aging is shown in Table 1.

Preovulatory oocyte aging can be further differentiated into

two different types. One of the two types of preovulatory

oocyte aging is a consequence of ovarian aging. Ovarian

aging is seen in reproductive aged women over 35 years

old [17]. The other type of preovulatory oocyte aging is

seen when ovulation does not occur in timely fashion, and

the oocytes stay in the ovarian follicles after LH or hCG

stimulation [15]. In other words, it represents an ‘‘intra-

follicular oocyte aging’’ after ovulation stimulation. This

type of preovulatory oocyte aging can be induced by

treatment of females with a sodium pentobarbital [18], a

gonadotropin-releasing hormone antagonist [19], some

progestins [20], or inosine monophosphate dehydrogenase

inhibitors [21]. It is quite different from the concept of

preovulatory oocyte aging with maternal aging, and is

rather similar to postovulatory oocyte aging.

The second category, postovulatory oocyte aging, can be

classified into two types: in vivo- and in vitro-postovula-

tory oocyte aging. If fertilization does not occur during an

optimal period after ovulation, an unfertilized oocyte that

remains in the oviduct (in vivo-postovulatory oocyte aging)

or in in vitro culture (in vitro-postovulatory oocyte aging)

goes through a time-dependent aging process [15, 22–24].

There is no consensus on the duration of postovulatory

oocyte aging. In this review, we discuss these types of

oocyte aging individually.

Effects of oocyte aging on female reproduction

Preovulatory oocyte aging

Ovarian aging

Preovulatory oocyte aging has been considered to be

equivalent to ovarian aging [25]. In general, ovarian aging

is associated with chronological aging (maternal aging),

except in cases of premature ovarian insufficiency (POI)

[17]. It has been shown that female fertility declines in

mammals including humans with increasing maternal age

[1, 7, 17]. In humans, it is well established from demo-

graphic and epidemiological studies that female fertility

begins to decline many years prior to the onset of meno-

pause, despite continued regular ovulatory cycles [1, 4, 6].

Although there is no strict definition, advanced reproduc-

tive age in women is generally accepted as over 35 years

[8, 9]. Under natural conditions, 75% of women who first

try to conceive at age 30 years will have a conception

ending in a live birth within 1 year, 66% at age 35 years,

and 44% at aged 40 years. Within 4 years the success rates

will be 91, 84, and 64%, respectively [26]. The age asso-

ciated decline in female fertility and increased risk of

spontaneous abortion are largely due to oocyte aging [8].

This is demonstrated by the fact that the age-associated

decline in female fertility can be overcome by oocyte

donation from younger women [10, 11].

Intrafollicular oocyte aging

The other type of preovulatory oocyte aging, an intrafol-

licular aging of the oocytes, also impairs female repro-

duction in experimental and domestic animals [15]. The

female rats treated with sodium pentobarbital results in

delayed ovulation and the oocytes exhibit decreased fer-

tilization, polyspermy, chromosomal anomalies, abnormal

embryo development, and increased fetal mortality [27,

28]. These detrimental effects by intrafollicular aging of

oocytes are very similar to those caused by postovulatory

aging of oocytes (discussed later).

Postovulatory oocyte aging

Numerous investigators have reported that in vivo- and in

vitro-aged oocytes frequently exhibit lower fertilization

rates, polyspermy, digyny, chromosomal anomalies, and

abnormal embryo development [15]. These abnormalities

of early embryo development result in decreased litter size

in animals, lower pregnancy rate and an increased spon-

taneous miscarriage in humans [24, 29]. As well as

abnormalities of early embryo development, postovulatory

aging of oocytes is associated with retarded sensorimotor

Table 1 Classification of oocyte aging mechanisms

A. Preovulatory oocyte aging

Oocyte aging caused by ovarian aging (maternal aging)

Intrafollicular oocyte aginga

B. Postovulatory oocyte aging

In vivo oocyte aging

In vitro oocyte aging

a See details in the text
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integration during pre-weaning development, higher

spontaneous motor activity, and higher emotionality in

adulthood in the mouse [30]. A recent study demonstrated

that postovulatory aging affects epigenetic changes in the

mouse oocytes [31].

Cellular and molecular changes in aged oocytes

Preovulatory oocyte aging

Ovarian aging

The morphological changes in the ovary associated with

aging have been extensively analyzed [32]. It is well

known that ovarian aging results in ovarian follicle loss.

Although the mechanism of ovarian follicle loss is still

elusive, it is widely accepted that apoptosis is a driving

force underlying age-related ovarian follicle loss [33–38].

However, little is known about the morphological changes

in the oocyte caused by ovarian aging. There are several

reports about aging-related morphological changes in the

oocytes, such as cellular fragmentation, milky or dark

cytoplasm, and presence of cellular remains enclosed by

the zona pellucida [39, 40]. Oocytes with cellular frag-

mentation in aged mice indicate apoptosis of oocytes [39,

40]. In contrast with the results of previous reports, we

cannot distinguish between the oocytes collected from aged

mice and those from young mice under a microscope.

While ovulation number of oocytes decreases in aged mice

compared to young mice, these oocytes from both mice are

apparently similar in terms of morphology (Takahashi and

Kurachi, unpublished data).

On the other hand, numerous data support that oocyte

aneuploidy increases with ovarian aging in mammals,

including humans [41–43]. Increasing evidence shows that

aneuploidy by ovarian aging results from a defective cell

cycle control during meiosis I, especially metaphase I to

anaphase I [25]. Ovarian aging affects some key molecules

for cell cycle control in oocytes: there is a reduced number

of transcripts for ‘cohesion proteins’ such as SMCb1 and

for ‘spindle check point proteins’ such as MAD2 [44–46].

Intrafollicular oocyte aging

Intrafollicular oocyte aging affects morphological and

cellular changes in oocytes treated with sodium pentobar-

bital, resulting in irregularities in the oolemma, decreased

number of cortical granules, disruption of cytoskeleton

arrangement, and changes in mitochondrial structure [18,

27, 47–49]. These morphological changes in oocytes by

intrafollicular oocyte aging are very similar to those caused

by postovulatory oocyte aging [15].

Postovulatory oocyte aging

It is well established that in vivo- and in vitro-postovula-

tory aging of oocytes is associated with changes in various

morphological, biochemical, and molecular pathways

involved in intracellular signaling [15, 16]. In vivo- and in

vitro-postovulatory aging of oocytes share many common

properties.

Morphological and cellular changes

Postovulatory oocyte aging affects numerous morpholog-

ical and cellular changes: changes in structure of

oolemma, zona pellucida, cortical granules, mitochondria,

cytoskeleton, meiotic spindle, and chromosome alignment

[15, 16]. The lining of the oocyte cortex in the fresh

oocytes is composed of thick and thin microfilament

domains. Aged oocytes show disruption or loss of the

thick microfilament domain beneath the oolemma [50–54].

The zona pellucida in fresh oocytes appears as a granu-

lofibrillar, interconnected reticulum with pores, while the

zona pellucida in aged oocytes shows a ‘cobblestone’

appearance [55]. Chymotrypsin-mediated dissolution of

the zona pellucida takes more time in aged oocytes

compared to fresh oocytes [16, 56, 57]. This indicates that

zona pellucida hardening occurs naturally in aged oocytes.

The reason for zona hardening in aged oocytes is that

cortical reaction, exocytosis of cortical granules, is easily

triggered spontaneously without fertilization [47, 56, 58].

Aged oocytes show an increase in the number of phos-

phatase positive organelles (lysosomes), aggregation of

tubuli of smooth endoplasmic reticulum, and aggregation

of small mitochondria-vesicle complexes [51, 59]. Meiotic

spindle assembly is a cellular structure important for

accurate chromosomal distribution [60]. The meiotic

spindle consists of a central region of chromosomes and of

microtubules radiating from the chromosomes to the two

opposite spindle poles, which consist of foci of pericent-

riolar material [61]. The pericentriolar material consists of

a network of 12–15 nm filaments with which the other

components associate [62]. One well-characterized com-

ponent of the pericentriolar material is the c-tubulin ring

complex [63]. There are many reports that postovulatory

aging of oocytes results in disruption and loss of the

meiotic spindle assembly in experimental animals and

humans [50, 64–68]. In mouse studies, although the

meiotic spindle is barrel-shaped and microtubules are

clearly detected in fresh oocytes, microtubules become

gradually lost from the spindle in aged oocytes [16].

In vitro-aged human oocytes, like those of experimental

animals, show aberrant expression of c-tubulin, which

indicates disruption of centrosome structure at the meiotic

poles [60, 69]. These changes in aged oocytes lead to
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premature chromosomal separation, which is strongly

associated with aneuploidy [44, 67].

Biochemical and molecular changes

Postovulatory aging of oocytes affects various biochemical

and molecular changes in mammalian oocytes [15, 16].

After fertilization, recruitment of maternal mRNAs occurs

and results in changes in the spectrum of polypeptides

synthesized in oocytes [70]. The newly synthesized protein

expression patterns change in fertilized aged oocytes [56].

The intracytoplasmic level of glutathione (GSH), which

plays a major role in protection against reactive oxygen

species (ROS), decreases in aged oocytes [71]. The level of

lipid peroxidation, which indicates the degree of oxidative

stress, increases in in vivo-aged oocytes [72]. Moreover,

the amount of ROS increases in aged oocytes with

increasing time of in vitro culture [73]. The intracyto-

plasmic level of ATP decreases in aged oocytes [74, 75].

The inactivation of MPF, which consists of two subunits of

p34cdc2 and cyclin B, and MAPK occurs earlier in aged

oocytes [56, 76–78]. The expression of BCL2, anti-apop-

totic protein, is decreased in in vivo-and in vitro-aged

oocytes [73, 78, 79]. Postovulatory aging of oocytes

impairs intracellular Ca2? regulation, which is most

important for early events after fertilization and also for

subsequent embryo development [80–83]. Abnormal

intracellular Ca2? regulation in aged oocytes will be dis-

cussed later in the section regarding mechanisms of

oocytes aging.

Mechanisms of oocyte aging

We describe the mechanisms of two categories of oocyte

aging: oocyte aging caused by ovarian aging and postov-

ulatory oocyte aging.

Ovarian aging

Ovarian aging impairs both the quantity and the quality of

oocytes [3, 5, 8]. The decrease in oocyte quantity is a part

of ovarian follicle loss. As mentioned above, although the

mechanism of ovarian follicle loss remains unknown, it is

widely accepted that the age-dependent decline of ovarian

follicles is involved in apoptotic pathways [33, 36, 38].

Activation of apoptotic pathways results in ovarian follicle

atresia. Although every primordial follicle has the potential

to grow, mature, and ovulate, this is not the case in reality

[84]. The mechanism of follicle recruitment from the pri-

mordial follicle pool is still unknown. A recent study using

genetically targeted mice reveals that PTEN/PI3K signal-

ing pathways within oocytes are important for follicle

recruitment [85–88]. The balance between follicle recruit-

ment and follicle atresia might be important for ovarian

follicle loss. Premature ovarian insufficiency is defined as

cessation of ovarian function before the age of 40 years

and affects about 1% of women in the general population

[89]. POI cases without an obvious cause provide a model

for the study of genetic mechanisms of ovarian aging [17,

90]. Many candidate genes have been reported to be

involved in POI (see review in [17, 90]). A recent genome-

wide association study reveals new loci of single-nucleo-

tide polymorphisms in natural menopause cohorts [91, 92].

However, the mechanism of age-dependent decline of

oocyte quality remains unknown [25]. Age-dependent

increase in aneuploidy is a key determinant of oocyte

quality. Little is known of how aneuploidy originates by

increase in maternal age [3, 93]. As mentioned above,

ovarian aging affects expression of some key molecules

involved in cell cycle control, such as SMC1b and MAD2

[45, 46, 94]. The impairment of cell cycle control during

meiosis might be involved in the age-dependent increase in

aneuploidy.

Microarray methods reveal that ovarian aging changes

the expression patterns of accumulation of maternal RNAs

required for oocyte-specific processes and metabolism in

mouse and human oocytes [95–97]. Ovarian aging nega-

tively affects the expression of oocyte genes involved in

mitochondrial functions, oxidative stress, cell cycle regu-

lation, and DNA and chromosome stability [95–97].

Because mitochondria are organelles producing ATP via

oxidative phosphorylation, they are most important for

maintenance of oocyte quality. Ovarian aging changes

mitochondrial morphology and functions in oocytes.

Aberrant mitochondrial arrangement has been observed in

aged-mouse oocytes [39]. Ovarian aging results in abnor-

mal mitochondrial ultrastructure with high density of the

matrix, vacuolization, and swelling in aged-human oocytes

[98]. Wilding et al. [99] reported that the mitochondrial

membrane potential, which indicates mitochondrial func-

tion of oocytes from reproductive-aged women is

decreased compared to that of oocytes from young women.

Moreover, oocytes from reproductive-aged women present

an accumulation of the mitochondrial DNA point muta-

tions and higher levels of mitochondrial DNA deletions

[100, 101]. These results suggest that age-dependent

impairment of mitochondrial function might be a cause for

a decline of oocyte quality. A question that arises from

these results is what mechanism of impairment of mito-

chondrial functions is involved? One relevant idea about

aging involves the accumulation of damage exerted by

increased levels of ROS, a condition known as oxidative

stress [15, 102]. In fact, the levels of GSH and GSH-

transferase activity, which play an important role in cel-

lular defense against ROS, decreased in oocytes from aged
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mice [103]. Moreover, the genes involved in protecting

against oxidative stresses, such as Sod1 and the thioredoxin

family (Txn1 and Apacd) are downregulated in aged-mouse

oocytes [95, 96]. However, there is no evidence that

ovarian aging directly affects oxidative stress to the

oocytes. Further studies are needed to determine whether

oxidative stress is involved in the age-dependent decline of

oocyte quality.

Recent evidence suggests that epigenetic mechanisms in

oocytes may be altered by ovarian aging. In mouse oocytes,

several transcripts encoding proteins involved in epigenetic

modifications, such as chromatin remodeling and DNA

methylation, are affected by aging, including the DNA

methyltransferases (Dnmt)-1, 1o, 3a, 3L and 3b, and

DNMT-associated protein-1 (Dmap1) [95, 104].

Postovulatory oocyte aging

As described in the section regarding cellular and molec-

ular changes in postovulatory aged oocytes, these mor-

phological and biochemical changes are translated into

detrimental early and late phases of embryo development,

such as lower fertilization rate, polyspermy, dingy, chro-

mosomal anomalies, abnormal embryo development, and

post-implantation mortality [15]. Although the mechanism

of poor embryo development by postovulatory aging of

oocytes remains unknown, there are some clues to help

researchers puzzle out the mechanism. Unfertilized aged

oocytes undergo spontaneous cytoplasmic fragmentation

[105]. Like unfertilized oocytes, embryos derived from

aged oocytes exhibit fragmentation after fertilization [73].

The fact that these fragmented oocytes and embryos show

TUNEL-positive staining [40, 73, 105] suggests the acti-

vation of apoptosis pathways during the period of postov-

ulatory aging. Mammalian oocytes express several

caspases and anti- and pro-apoptotic members of the BCL2

gene family [106, 107]. Pro-apoptotic molecules such as

Bax induce the release of cytochrome c, which activates

caspases, while anti-apoptotic molecules such as BCL2

prevent it [108]. In mouse and pig oocytes, the expression

of BCL2 is decreased and the percentage of TUNEL-

positive unfertilized oocytes is increased with in vitro-

aging [78, 79]. In addition, we and Gordo et al. have

reported that the expression of BCL2 protein is decreased

whereas that of BAX protein is unchanged in oocytes aged

in vitro [73, 109]. We also confirmed that the expression

of BCL2 was decreased in in vivo-aged mouse oocytes

(Takahashi and Kurachi, unpublished data). These results

suggest that the postovulatory aged oocytes are prone to

undergo apoptosis due to the decreased BCL2 expression.

In mammalian oocytes at fertilization, sperm induces

drastic changes in intracellular Ca2? concentration

([Ca2?]i), which consists of a single long-lasting rise in

[Ca2?]i, followed by short repetitive changes in [Ca2?]i

lasting for several hours. These temporal changes in

[Ca2?]i are termed as ‘‘Ca2? oscillations’’ [110]. The

increase in [Ca2?]i plays important roles in fertilization,

cortical granule exocytosis, resumption of meiosis, pronu-

cleus formation, and subsequent embryo development

[111–114]. In addition, the patterns of Ca2? oscillations,

such as amplitude and frequency of Ca2? oscillations,

affect early and post-implantation embryo development

[115]. We have demonstrated that in vivo-and in vitro-

postovulatory aging alter the patterns of Ca2? oscillations

at fertilization in mouse oocytes [73, 81]. Frequency of

Ca2? oscillations at fertilization in aged oocytes is higher

than that in freshly ovulated oocytes, while the amplitude

of individual Ca2? oscillations is lower in the former than

in the latter [73, 81]. Jones and Whittingham [83] also

reported that both the amplitude and rate of rise of indi-

vidual Ca2? oscillations at fertilization are decreased in in

vivo-aged mouse oocytes. We and other groups have

reported the Ca2? release from the inositol 1,4,5-triphos-

phate (InsP3)-sensitive Ca2? stores is decreased in in vivo-

aged oocytes compared to that in fresh oocytes [82, 83].

Furthermore, we have reported that both the Ca2? reuptake

by Ca2?-ATPases and Ca2? stores in the endoplasmic

reticulum (ER) in in vivo-aged oocytes are decreased

compared to those in fresh oocytes [81, 82]. We have

reported that Ca2? stores in the ER in in vitro-aged oocytes

are also decreased [73]. Collectively, these results indicate

the impaired Ca2? homeostasis in postovulatory aged

oocytes.

The abnormal intracellular Ca2? handling in aged

oocytes leads to the apoptosis of oocytes [14]. Gordo et al.

[116] reported that injection of Ca2? oscillators, such as

sperm cytosolic factor and adenophostin A, a potent ago-

nist of InsP3 receptor, into in vitro-aged oocytes causes

increase in the fragmentation and caspase activity of

oocytes. They also reported that injection of Ca2? oscil-

lators into in vitro-aged oocytes induces abnormal Ca2?

oscillations with low amplitude and abrupt cessation [116].

Moreover, we and other groups reported that decrease in

the ER Ca2? stores of fresh oocytes by thapsigargin, which

is a specific inhibitor of smooth endoplasmic reticulum

Ca2?-ATPases (SERCA), results in abnormal Ca2? oscil-

lations, with low amplitude and high frequency at fertil-

ization compared to those observed in the vehicle-treated

fresh oocytes [73, 83, 117]. Moreover, we have reported

that thapsigargin treatment of fresh oocytes causes lower

fertilization rate, lower blastocyst formation rate, and

higher rate of fragmented embryo after in vitro fertilization

compared to those in the vehicle-treated fresh oocyte [73].

These results suggest that abnormal Ca2? handling in the

postovulatory aged oocytes might be related to poor

embryo development after fertilization.
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What mechanisms are involved in the impairment of

Ca2? homeostasis in postovulatory aged oocytes? In

mammals, the ER is the major intracellular Ca2? storage

site and the type I InsP3 receptor of the ER membrane

mediates Ca2? oscillations in oocytes [118, 119]. As

mentioned above, we have reported that the activity of

SERCA is decreased in in vivo-aged mouse oocytes [81]

and the Ca2? store of the ER is decreased in in vivo- and in

vitro-aged mouse oocytes [73, 82]. The Ca2? stores are

maintained within the ER by the replenishment of Ca2?

from the cytosol through the activity of the SERCA [120,

121]. The activity of SERCA is highly dependent on

availability of intracellular ATP [122]. In fact, Chi et al.

[74] reported that in vitro culture decreases ATP content in

unfertilized mouse oocytes. In addition, we have reported

that the ATP content of fertilized in vivo aged oocytes is

significantly decreased compared to that in fertilized fresh

oocytes [75]. Mitochondrial ATP production is prerequisite

for Ca2? oscillations at fertilization and Ca2? homeostasis

in oocytes [123, 124]. Thus, impairment of fertilization-

triggered mitochondrial ATP production possibly links to

impairment of Ca2? homeostasis and abnormal patterns of

Ca2? oscillations at fertilization in aged oocytes. On the

other hand, reduced amount of BCL2 may negatively affect

the function of SERCA. Overexpression of BCL2 main-

tains Ca2? stores of the ER and prevents thapsigargin-

induced apoptosis in lymphoma cells [125]. In addition,

BCL2 prevents Ca2? store of the ER by upregulating

SERCA [126]. In fact, as mentioned above, the expression

of BCL2 is decreased in aged oocytes [73, 109]. Taken

together, these results suggest that reduction in both ATP

production and BCL2 expression might be involved in the

impairment of Ca2? homeostasis in aged oocytes.

A second question that arises from these results is what

mechanisms are responsible for impairment of mitochon-

drial function and reduced expression of BCL2 in aged

oocytes? Mitochondria are organelles that produce ATP by

oxidative phosphorylation to supply energy for various cell

functions. Mitochondrial dysfunction has been linked with

pathological conditions, including various reproductive

Fig. 1 Scheme of the mechanism of poor embryo development in

postovulatory oocyte aging. We show the model of the mechanism of

poor embryo development in postovulatory-aged oocytes. Postovula-

tory aging of oocytes results in increase in mitochondrial oxidative

stress. Oxidative stress-induced mitochondrial dysfunction results in

low ATP production followed by impairment of intracellular Ca2?

regulation, such as decrease in the Ca2? stores of the endoplasmic

reticulum (ER) and the Ca2? release from the ER via inositol 1,4,

5-triphosphate (InsP3) receptor. When postovulatory aged-oocytes,

which are impaired in the intracellular Ca2? regulations, are fertilized

with sperm, the abnormal Ca2? oscillations occur at fertilization.

Representative data show that sperm triggers Ca2? oscillations in the

fresh (14 h after hCG treatment) and the aged (20 h after hCG

treatment) mouse oocytes. The patterns of Ca2? oscillations at

fertilization are changed by postovulatory oocyte aging: In the aged

oocytes, the abnormal Ca2? oscillations with lower amplitude and

high frequency are shown. The abnormal Ca2? oscillations may result

in poor embryo development in postovulatory-aged oocytes. Arrow-
heads indicate the individual Ca2? oscillations. IP3, InsP3. IP3R, InsP3

receptor
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failures [127, 128]. ROS, such as superoxide anion radical,

hydrogen peroxide (H2O2), and hydroxyl radical, are pro-

duced endogenously by proton electrochemical gradient

during mitochondrial respiration. Because the mitochon-

dria are a major source of ROS, mitochondria need con-

tinuous protection from free radical attack by ROS

scavenger systems [129]. Tarin et al. [15] proposed a

mechanism based on the ‘‘the oxygen radical mitochondrial

injury hypothesis of aging’’ to explain the effects of pos-

tovulatory aging on impairment of early and embryo and

fetal development. This mechanism is based on the idea

that ROS harm mitochondrial DNA, proteins, and lipids

[15]. In fact, we have reported that the magnitude of lipid

membrane peroxidation in in vivo-aged oocytes is

increased compared to that in fresh oocytes [72]. And we

have also reported that the levels of ROS in in vitro-aged

oocytes compare to those in fresh oocytes [73]. Boerjan

and de Boer [71] reported that the amount of GSH, which is

a ROS scavenger, is decreased in in vivo-aged mouse

oocytes. These results suggest that aged oocytes are prone

to oxidative stresses by decrease in ROS scavengers. Fur-

thermore, we have reported that exposure of fresh oocytes

to 100 lM H2O2 results in abnormal patterns of Ca2?

oscillations with low amplitude and high frequency, which

are similar to those in postovulatory aged oocytes [72]. We

have also reported that the H2O2-pretreated fresh oocytes

results in poor embryo development after fertilization [73].

In somatic cells, ROS are important mediators of intra-

cellular signaling for numerous cell functions, including

Ca2? homeostasis through modulating SERCA and InsP3

receptor functions [130, 131]. The increase in ROS pro-

duction in aged oocytes might directly affect Ca2?

homeostasis and/or impair mitochondrial function followed

by ATP depletion. On the other hand, the mechanism for

the decrease in BCL2 expression in aged oocytes remains

unknown. Although transcriptional control of BCL2 has

been reported, increasing evidence suggests that an

important component of BCL2 regulation is post-tran-

scriptional, such as micro RNAs (miR15A and miR16-1)

[132]. There are very few reports about the mechanism of

BCL2 regulation in oocytes. We have reported that treat-

ments of H2O2 and thapsigargin to fresh oocytes result in

decreased expression of BCL2 [73]. As mentioned above,

BCL2 expression is closely related to the Ca2? store of the

ER [125, 126]. Alternatively, ROS control the expression

of BCL2 by regulating its phosphorylation and ubiquiti-

nation in cancer cells [133]. In addition, ROS downregulate

the expression of BCL2 in T cells [134]. These results

suggest that the increase in ROS levels in postovulatory

aged oocytes might result in both mitochondrial dysfunc-

tion and reduced expression of BCL2. We show a model of

mechanism of poor embryo development in post-ovulatory

aging of oocytes (Fig. 1).

Conclusion

We here review that there are two categories of oocyte

aging: oocyte aging caused by ovarian aging and postov-

ulatory oocyte aging. Both categories of oocyte aging have

similar phenotypes of reproductive failure. However, the

mechanisms for the impairment in oocyte quality are not

necessarily equivalent. The mechanism of oocyte aging

caused by ovarian aging might be a chronic process of

damage to the oocytes and/or ovarian follicle cells, such as

thecal and granulosa cells. There are several problems with

studying the oocyte aging caused by ovarian aging; it takes

over 1 year for experimental animals to grow older and the

numbers of oocytes available are very small. Moreover,

there is no animal model anaologous to the ovarian aging

study. In contrast to the limitations of the data in the

ovarian aging study, a model to study the postovulatory

aging of oocytes is more easily accessible and more data

are available. ROS-induced mitochondrial injury pathways

followed by abnormal intracellular Ca2? regulation of the

ER may be involved in the mechanism of postovulatory

oocyte aging. According to this scenario, the antioxidant

treatment in vivo and in vitro might prevent the oocyte

damage by postovulatory aging. We suggest that future

research into the mechanism of oocyte aging will be nec-

essary in order to develop a method to rescue the poor

developmental potential of aged oocytes.
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