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What is the optimal condition for fertilization of IVM oocytes?
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Abstract Application of in vitro maturation (IVM) is

recently increasing for human infertility, especially to

rescue patients of polycystic ovarian syndrome and ovarian

hyperstimulation syndrome. To increase the application of

IVM oocytes for embryo production and the efficiency of

successful production of babies using IVM oocytes, quality

control of oocytes and achievement of fertilization in the

most suitable condition may be very important. In this

paper, suitable conditions for fertilization of IVM oocytes

will be discussed with recent knowledge about IVM and in

vitro fertilization of oocytes in domestic animals. Cur-

rently, human oocytes are collected mainly from patients’

ovaries 36 h following mild gonadotropin stimulation and

used for IVM for 24–26 h. However, asynchronous pro-

gression of those oocytes to reach the metaphase-II stage

may have occurred during the IVM culture. In the oocytes

that have already progressed to the metaphase-II stage,

sudden aging such as reduction in maturation promoting

factor and MAP kinases will start to occur. Application of

specific inhibitors of phosphodiesterase to control intra-

cellular cAMP (cyclic adenosine monophosphate) level

may be effective to synchronize timings of the germinal

vesicle breakdown and consequently the meiotic progres-

sion of oocytes, and to improve the developmental com-

petence. Furthermore, treatment of aging oocytes with

caffeine appears to rescue them from reductions in matu-

ration promoting factor and MAP kinases and to improve

the developmental competence. Assessment methods to

select oocytes with good quality may also be important to

improve the successful rates.
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Introduction

In human assisted reproductive technology (ART), appli-

cation of the in vitro maturation (IVM) technology has

been attempted [1] with oocytes collected from dominant

follicles following gonadotropic stimulation [2–4] and is

effective for patients who have polycystic ovarian syn-

drome and ovarian hyperstimulation syndrome. Although

both the incidence of mature oocytes following IVM cul-

ture and the results of early development after fertilization

have been improved [5], there are still many questions

concerning IVM especially about cytoplasmic maturation

to improve the efficiency of successful production of live

babies by using IVM oocytes. Since the efficiency of IVM

oocytes to develop to term following in vitro fertilization

(IVF) or intracellular sperm injection (ICSI) appears to be

lower than that of mature oocytes collected from gonado-

tropin-stimulated follicles, IVM has not become the main

technology of assisted reproduction for infertile couples. In

order to achieve successful fertilization and to acquire

positive birth results using IVM oocytes, the oocytes are

required to be fertilized in the most ideal state. The

development of markers to select cumulus-oocyte com-

plexes (COCs) with good quality at the time of collection

as well as the culture of COCs in a suitable IVM condition

may be useful to increase the efficiency. Furthermore,

conditions to maintain the quality of IVM oocytes for IVF

or ICSI is also important to improve the efficiency. In
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domestic and laboratory animals, on the other hand, IVM

of COCs is very common for in vitro embryo production.

Information about IVM of oocytes has been integrated

well, and IVM of COCs derived from non-stimulated

middle size follicles of about 3–6 mm in diameter has been

developed successfully [6, 7]. Therefore, the objective of

the current paper is to provide a general review of possible

methodologies for improving the quality of IVM oocytes

and also about optimal fertilization conditions for obtaining

the high quality of embryos, based on the knowledge

mainly obtained by research on IVM–IVF of mammalian

oocytes.

Oocytes as a material for IVM

The reproductive activity of women declines with age,

rapidly beyond the mid-30s [8, 9]. However, the number

of women attempting to have babies through ART

beyond the mid-30s has increased drastically [10]. This

problem is especially serious in Japan since donation of

oocytes from others (younger women) is not permitted.

Decline of oocyte quality with age has been pointed out

to be associated with aneuploidy due to the age-depen-

dent increase of meiotic errors [11, 12]. Recent micro-

array research in mice has shown that not only genes

involved in chromatin structure, DNA methylation,

genome stability and RNA helicases but also those

involved in mitochondrial function and oxidative stress

were altered between mature oocytes derived from young

(5–6 week old) and old mice (42–45 week old) [13].

Mature oocytes have the largest number of mitochondria

of any cells (approximately 2.56 to 7.95 9 105 mito-

chondria DNA copies in human [14, 15], 1.19 to

1.59 9 105 mitochondria DNA copies in mice [16, 17]

and 2.60 9 105 mitochondria DNA copies in cattle [18]).

Mitochondrial abnormalities and mutations are believed

to contribute to reproductive aging [19]. Mitochondria

injection into porcine oocytes has significantly improved

fertilization rates following both IVF and ICSI [20].

Improvement or replacement of mitochondrial functions

in oocytes derived from aging women could be required

to obtain a good result in human ART. As a result,

interest in age-related changes in mitochondrial function

in oocytes is increasing [21, 22].

In contrast with human oocytes that are collected for

IVM from dominant follicles [4] of patients who are rela-

tively mature and have various backgrounds following

gonadotropic stimulation [2, 3], those of domestic animals

have been obtained as COCs from follicles of 3–6 mm in

diameter on the surface of ovaries of females slaughtered

just before puberty [6]. In domestic animals, a majority of

follicles on the surface of ovaries are small, such as less

than 2 mm in diameter in pigs [23], and oocytes derived

from them are not fully grown yet so the incidence of

mature oocytes following IVM culture is known to be

lower than those from middle follicles [24, 25]. Develop-

mental competence of oocytes also varies among the

source, i.e., prepubertal, adult or aged donor females.

Oocytes from prepubertal gilts appeared to be less meiotic

and have lower developmental competences as compared

with their adult counterparts [26–28]. Differences in the

morphologies of oocytes from gilts and sows, such as the

diameter of oocytes, thickness of the zona pellucida or the

perivitelline space, are known to coincide with the oocyte

developmental competence [29]. Integration of information

about IVM of oocytes derived from various origins (e.g.,

size of follicles and the donor status) may make it possible

to develop a new IVM methodology of oocytes from non-

stimulated follicles of patients.

A possible marker to select oocytes with good quality

Brilliant cresyl blue (BCB) has been used to detect the

activity of glucose-6-phosphate dehydrogenase (G6PD), a

key enzyme in the pentose phosphate pathway which reg-

ulates the reaction from glucose-6-phosphate to 6-phos-

phogluconate. This blue dye is digested and the color

disappears in the cells with a high G6PD activity. Appli-

cation of BCB assessment to COCs as demonstrated is used

to select oocytes with developmental competence [30–32],

since there are variations in the G6PD activity among

oocytes collected from middle follicles for IVM and the

G6PD activity is negatively correlated with competence

following IVM and IVF [33]. Furthermore, it has recently

been reported that BCB activity of oocytes also appears to

be negatively reflected in the mitochondrial DNA copy

number of the oocytes [20]. Since injection of mitochon-

dria into the BCB- (G6PD active) oocytes improves fer-

tilization rate similar to the rates of BCB? (relatively

G6PD inactive) oocytes following IVF or ICSI [20], oocyte

mitochondria content appears to be a direct indicator of the

developmental competence of oocytes, as well as viability

[34–36]. In fact, it has been reported that embryos con-

taining relatively lower mitochondrial DNA copy numbers

fail to develop during embryogenesis after embryo transfer

[37]. Recently, we have found that higher RNA contents in

cumulus cells of COCs positively reflected the result

(BCB?) of staining selection of oocytes (Fig. 1) [38].

Since application of BCB staining selection for human

ART may be avoided due to fear of potential toxicity threat

to the oocytes, this selection method may be altered by

another suitable method to reflect the selection results.

RNA content in the cumulus cells bisected from COCs may

be a good candidate for the alternative method. Therefore,
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this methodology may valuable in selecting the COCs that

have ability to achieve meiotic maturation and develop-

mental competence.

Oocyte-secreted factors associated with developmental

competence of oocytes

Recently, it has been reported that two oocyte-secreted

paracrine factors, growth-differentiation factor 9 (GDF9)

and bone morphogenetic protein 15 (BMP15), are pro-

moting their own cytoplasmic maturation and develop-

mental competence through Sma- and Mad-related

(SMAD) signaling pathways to regulate the function of

cumulus and granulosa cells [39–42]. Although the apop-

tosis of cumulus cells was increased when the cumulus cell

mass was cultured in the absence of oocytes, this was

reversed by exposing the cumulus cell mass to denuded

oocytes [43]. Oocyte-secretion factors also appear to

stimulate growth [44], and prevent luteinization of their

cumulus cells [45, 46]. Furthermore, oocyte-derived factors

appear to be associated with the promotion of glycolysis

[47], EGF receptor expression [48] and sterol biosynthesis

[49] in cumulus cells. Thus, cumulus cells stimulated by

gonadotropins appear to be maintained in a healthy state by

oocyte secretions, and sufficient materials from the

cumulus cells could be also essential for successful cyto-

plasmic maturation of oocytes [45]. Healthy auto-regula-

tory loop mechanisms between oocytes and cumulus cells

[42] and clarification of the detailed mechanism to control

cytoplasmic maturation will permit the improvement of the

developmental competence of oocytes.

Asynchronous meiotic progression of oocytes

during IVM

Commonly, for commercial IVM in human ART clinics,

COCs are aspirated from never or gently stimulated ovaries

and then cultured for 24–48 h in vitro [50]. In human,

oocytes have usually been collected from patients around

36 h following mild stimulation with gonadotropins and

then cultured for IVM during 24–26 h before IVF or ICSI.

However, the efficiency of IVM, in terms of embryo

development, implantation and live birth rates is lower than

that of conventional IVF with oocytes matured in vivo [42].

In the conventional IVM culture system of domestic ani-

mals, the timing of these oocytes to reach the metaphase-II

stage is known to be asynchronous [51]. Oocytes that have

already reached the metaphase-II stage will suddenly

experience aging effects, such as reduction in maturation

promoting factor and MAP kinases [52]. Therefore, an

IVM culture system to achieve synchronous meiotic pro-

gression of oocytes will reduce the incidence of aged

oocytes at the time of IVF/ICSI (Fig. 2). Since both the

synchronous meiotic progression of oocytes and develop-

mental competence have been improved in biphasic

IVM such that a cAMP analog, dibutyryl cAMP, was
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Fig. 1 Total RNA contents of cumulus cell mass from COCs

classified by BCB assay at 0 and 20 h of IVM culture. COCs were

collected from middle or small follicles (MF and SF, respectively)

and then classified by BCB assay (DB dark blue showing a low G6PD

activity, LB light blue showing a high G6PD activity). RNA contents

were assessed before or after IVM culture with gonadotropins and

dibutyryl cAMP for 20 h. a–gP \ 0.05

Fig. 2 Schematic illustration of the relation between asynchronous

meiotic progression and the aging of oocytes. Asynchronous matu-

ration of oocytes produces aged oocytes with reduced developmental

competence at the time of IVF/ICSI (black line). A suitable IVM

culture system to achieve synchronous meiotic progression (dotted
line) will increase the quality of oocytes

Table 1 Effect of cAMP modulating agents during the first half of

IVM

Agents Species Effect on

embryo

development

References

cAMP analogues

Invasive adenylate

cyclase

PDE inhibitors

Porcine Improved [51]

Bovine Improved [53]

Bovine Improved [54]

Murine Improved [55]

Human Modestly

improved

[56, 57]
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supplemented with gonadotropins during a first half-period

of IVM culture only [51], various agents modulating

intracellular cAMP level [53–57] have been applied to

IVM systems and were found to be effective (Table 1).

Supplementation of IVM medium with FSH plus milri-

none, a specific inhibitor of type 3 PDE, or rolipram, a

specific inhibitor of type 4 PDE, maintained the relative

intracellular gap junctional communication and signifi-

cantly improved the early development of the oocytes to

the blastocyst stage following IVF [55]. In human oocytes,

the presence of a specific inhibitor of type 3 PDE, cilo-

stamide, in IVM medium synchronized GV morphology

[58] to the similar phase, which was observed in porcine

oocytes following dibutyryl cAMP [51]. Since type 3 PDE

is principally expressed in the oocytes but not in the

cumulus cells, use of a type-3 PDE inhibitor may target

intracellular cAMP of oocytes [42]. In fact, the presence of

cilostamide maintained gap junctional communication

between cumulus cells and oocytes 6 h longer than controls

[59]. Although supplementation of IVM medium with

cilostamide and forskolin did not improve the incidence of

blastocyst formation following IVF of the IVM oocytes

(17.6 vs. 5 % in control, p \ 0.066), the developmental

competence has been significantly improved by pre-IVM

culture for 1–2 h with forskolin and IBMX before extended

IVM in the presence of cilostamide and FSH in cattle [60].

Less successful response of COCs against type 3 specific

PDE inhibitor and gonadotropins in humans may be

overcome by using pre-IVM culture for 1–2 h in the

presence of regulator(s) of intracellular cAMP and exten-

ded IVM, as it has in cattle.

Aging of IVM oocytes

Mature oocytes are usually penetrated by sperm within

12 h in various species and within 12–14 h in humans after

ovulation [52, 61]. As described above, oocytes that have

reached the metaphase-II stage will soon begin aging and

decrease in quality over time. The morphological changes

during aging have been well reviewed [52, 61]. In aging

oocytes, failures in plasma membrane reaction to sperm

penetration and in the second metaphase spindle mor-

phology have been observed [61]. Oocyte aging is one of

the largest obstacles to overcoming ART failures. Appli-

cation of specific inhibitors of phosphodiesterase to control

intracellular cAMP level may be effective in synchronizing

the timing of the germinal vesicle breakdown, and conse-

quently the meiotic progression, of oocytes and in

improving the developmental competence. Furthermore,

treatment of aging ovine oocytes with caffeine appears to

rescue them from reductions in maturation promoting

factor and MAP kinases and improves developmental

competence. In addition, when denuded mature oocytes

were exposed to about 10 mM caffeine, the loss of oocyte

quality due to spontaneous aging was prevented for 6 h,

and consequently improved the incidences of normal fer-

tilization and development to the blastocyst stage. There-

fore, exposure of mature oocytes to caffeine may be

effective in preventing aging of oocytes following

collection.

IVF conditions affecting the quality of oocytes

To obtain IVF embryos of the highest success potential, the

most ideal conditions for fertilization with good quality of

oocytes and sperm are required. Failures in male pronuclear

formation, polyspermy and early development have been

observed in domestic animals when oocytes of less than ideal

quality were used [6, 62, 63]. Since glutathione content in

IVM porcine oocytes decreased drastically if cumulus cells

were removed, the oocytes may not be strong against oxi-

dative stress. In fact, intracellular glutathione content was

lower in denuded oocytes than cumulus-enclosed ones.

In conventional IVF system, in which 10–50 oocytes were

co-cultured with a number of sperm (1 to 10 9 105 cells/ml)

in a small-volume droplet (about 50–100 ll), a relatively large

number of sperm flock around the oocyte at one time and try to

enter into the oocyte simultaneously. It is possible that the

efficiency of successful penetration is reduced by oxidative

stress from near dead and dying sperm. Efforts to reduce the

oxidative stress during IVF may be one of the important fac-

tors for achieving the best fertilization conditions.

Higher rates of normal fertilization and blastocyst for-

mation were obtained after IVF in the new system using the

microfluidic sperm sorter than in a conventional system.

Supplementation of IVF medium with cysteine for 3 h after

ICSI improved both incidences of blastocyst formation and

litter size from the embryos. The regulation of the number

of sperm around the oocyte during IVF and the reduction of

oxidative stress at the time of fertilization may be impor-

tant conditions for obtaining better results of early devel-

opment of IVM oocytes following IVF/ICSI.

In IVF and IVC involving porcine oocytes, we have studied

the effect of a strong reducing agent, beta-mercaptoethanol,

on sperm penetration and early development [64]. Interest-

ingly, in the presence of beta-mercaptoethanol, sperm

capacitation and the spontaneous acrosome reaction were

partially inhibited even in an IVF medium containing caffeine

[64]. If sperm were co-cultured with oocytes in beta-mer-

captoethanol-free IVF medium containing caffeine for

30 min and then the oocytes binding with sperm on the zona

pellucida were transferred to caffeine-free IVF medium con-

taining beta-mercaptoethanol (biphasic IVF method), the

statement of cortical reaction, the incidence of monospermic

18 Reprod Med Biol (2013) 12:15–20
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penetration and the quality of blastocyst formation were sig-

nificantly improved [65]. Therefore, the reduction of oxida-

tive stress at the time of fertilization, except during sperm

capacitation, should be very important to maintain the quality

of the oocytes, to normalize both the reaction of oocytes at

sperm penetration and, consequently, to result in a high pro-

duction of normal embryos and babies.

In conclusion, use of oocytes with a high degree of

development competence should be essential for obtaining

a good result in human ART. For effective selection of the

oocytes, the amount of total RNA in the surrounding

cumulus cells may be a useful marker since the content

reflects the result of BCB assay, which has been shown to

relate with the mitochondrial DNA copy number. Ana-

logues of cAMP or PDE inhibitors will be effective in

synchronizing the meiotic progression of oocytes. To pre-

vent aging of mature oocytes, caffeine may be effective in

the maintenance of MPF and MAPK activities. Biphasic

IVF methods may also be beneficial for reduction of oxi-

dative stress during fertilization.
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