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Abstract Nutrition is a principal environmental factor

influencing fertility in animals. Energy deficit causes

amenorrhea, delayed puberty, and suppression of copula-

tory behaviors by inhibiting gonadal activity. When

gonadal activity is impaired by malnutrition, the signals

originating from an undernourished state are ultimately

conveyed to the gonadotropin-releasing hormone (GnRH)

pulse generator, leading to suppressed secretion of GnRH

and luteinizing hormone (LH). The mechanism responsible

for energetic control of gonadotropin release is believed to

involve metabolic signals, sensing mechanisms, and neu-

roendocrine pathways. The availabilities of blood-borne

energy substrates such as glucose, fatty acids, and ketone

bodies, which fluctuate in parallel with changes in nutri-

tional status, act as metabolic signals that regulate the

GnRH pulse generator activity and GnRH/LH release. As

components of the specific sensing system, the ependy-

mocytes lining the cerebroventricular wall in the lower

brainstem integrate the information derived from metabolic

signals to control gonadotropin release. One of the path-

ways responsible for the energetic control of gonadal

activity consists of noradrenergic neurons from the solitary

tract nucleus in the lower brainstem, projecting to the

paraventricular nucleus of the hypothalamus. Further

studies are needed to elucidate the mechanisms underlying

energetic control of reproductive function.
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Introduction

In mammals, the reproductive system is essential for

preservation of the species, but not for organismal survival.

Consequently, in order to maximize the chances that off-

spring will survive, reproductive function in mammals is

influenced by a wide variety of environmental factors. For

instance, when animals find themselves in life-threatening

situations, reproductive function is suppressed because

preservation of the individual organism’s life has the

highest priority. Improvement of such situations restores

reproductive function to ensure the next generation.

Changes in nutritional status have a profound impact on

fertility in animals, because energy deficiency is one of the

critical situations for their lives [1]. Indeed, energy deficit

due to weight loss, excessive exercise, eating disorders, or

dietary restriction causes functional hypothalamic amen-

orrhea through the disruption of neuroendocrine axes in

both women [2–5] and rhesus monkeys [6]. During the

prepubertal period, puberty is delayed in nutritionally

growth-restricted female rats [7, 8] and sheep [9, 10], and

the onset of puberty begins when food intake is increased.

In dairy cows, under-nutrition with high milk yields is

associated with delayed resumption of ovarian activity

after parturition and lower conception rates [11]. Further-

more, women with insulin-dependent diabetes mellitus, a

condition in which cells are starved for energy even if

blood glucose level is high [12], often exhibit menstrual

dysfunction [13]. As illustrated by these examples, the

correlation between fertility and nutrition has been exten-

sively studied for a long time. However, the mechanisms

underlying nutritional control of reproductive function are

not yet fully understood. Here, we describe the mecha-

nisms responsible for energetic control of reproductive

function, which involve a number of components,
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including metabolic signals, sensing mechanisms, and

neuroendocrine pathways.

Neuroendocrine mechanism regulating reproductive

function

Animal reproduction is regulated by the hypothalamic–

pituitary–gonadal (H–P–G) axis, and gonadotropin-releas-

ing hormone (GnRH) is a key determinant of gonadal

activity [14] (Fig. 1). GnRH is a decapeptide synthesized

by the GnRH neurons in the hypothalamus, whose fibers

converge in the median eminence (ME). GnRH is released

into the hypophyseal portal vessels from the nerve termi-

nals in the ME, and it regulates the synthesis and release of

two gonadotropins, luteinizing hormone (LH) and follicle-

stimulating hormone (FSH), from the anterior pituitary.

These gonadotropins control gonadal activity such as

spermatogenesis, follicular development, ovulation, and

sex steroid hormone synthesis. The sex steroid hormones,

in turn, act on the hypothalamus and pituitary to regulate

GnRH and gonadotropin secretion by positive or negative

feedback.

GnRH is released in a pulsatile pattern at regular intervals

in rhesus monkeys [15]. In rhesus monkeys with electrolytic

lesions of the hypothalamus that abolish endogenous gona-

dotropin release from the pituitary gland, an intermittent

administration of exogenous GnRH at a physiological fre-

quency reestablishes normal pituitary gonadotropin secre-

tion, whereas continuous infusion of GnRH fails to restore

gonadotropin secretion [16]. Thus, the pulsatile pattern of

GnRH release from the hypothalamus is indispensable for

the function of the H–P–G axis, and it is therefore likely that

gonadal activity is regulated by the frequency of GnRH

pulses rather than the quantity of GnRH released. LH is also

secreted in a pulsatile pattern at regular intervals [17–20],

and the temporal relationships between GnRH and LH pulses

have been well documented in monkeys [21–23], ewes [24–

26], and rats [27, 28]. Accordingly, pulsatile LH secretion

has been used as a parameter of fertility.

Pulsatile GnRH secretion is required to synchronize

release of GnRH from individual nerve terminals and

coordinate activation of GnRH neurons by neuronal

afferents. The distinct neural circuitry in the hypothalamus,

termed the ‘‘GnRH pulse generator’’, is generally believed

to possess several characteristics: generation of rhythmic

oscillations, electrophysiological synchronization, trans-

mission of the signal of rhythmic oscillation to GnRH

neurons, and elicitation of a pulsatile GnRH discharge [29].

Therefore, the GnRH pulse generator is accepted to be the

most significant center involved in regulation of repro-

ductive function. Based on the discoveries of kisspeptin

and subsequently of KNDy (kisspeptin/neurokinin

B/dynorphin) neurons in the hypothalamus, it has been

proposed that KNDy neurons in the hypothalamic arcuate

nucleus play a pivotal role in the generation of GnRH

pulses [30, 31]. In other words, it is possible that the KNDy

neurons constitute the GnRH pulse generator.

The GnRH pulse generator plays the most pivotal role in

regulating fertility in proportion to changes in environ-

mental factors such as photoperiod, temperature, nutrition,

stressors, and pheromones (Fig. 1). For instance, in the

energetic control of reproductive function, nutritional sta-

tus is transmitted to the GnRH pulse generator and affects

its activity through various signals. The activity of the

putative GnRH pulse generator can be monitored as the

multiple unit activity (MUA) by recording the electrical

activity of several neurons around an electrode implanted

in the mediobasal hypothalamus. Because periodic bursts

of MUA (termed ‘‘MUA volleys’’) are temporally corre-

lated with LH pulses in peripheral circulation, the interval

of MUA volleys is reflected in the GnRH pulse generator

activity. The MUA recording technique can directly assess

the effects of various environmental factors on the GnRH

pulse generator in conscious animals, in real time, and over

long periods.

GnRH

LH
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Pituitary

Testis Ovary
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GnRH pulse generator

Environmental factors

Portal vessels

Fig. 1 Schematic illustration of the hypothalamic–pituitary–gonadal

axis in mammals. Signals originating from various environmental

factors are finally conveyed to the gonadotropin-releasing hormone

(GnRH) pulse generator. These signals affect the GnRH pulse

generator’s activity, thereby regulating pulsatile GnRH and luteiniz-

ing hormone (LH) secretion, which in turn control gonadal activities
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Energetic influence on reproductive functions

Nutrition is a principal factor influencing fertility in

mammals. Inadequate nutritional status impairs gonadal

activity, which in turn induces reproductive difficulties in

many animals, and nutritional infertility manifests itself in

a variety of ways. Most typically, nutritional infertility is

expressed as delayed puberty in juveniles [10, 32], pro-

longing postpartum anestrus [33] and suppressing ovula-

tory cycles and copulatory behaviors in adults [34]. Short-

term food deprivation suppressed the activity of the GnRH

pulse generator by prolonging the intervals of MUA vol-

leys in goats [35, 36] and pulsatile LH secretion in sheep

[37], rats [38], and monkeys [39]. Chronic food restriction

also prevents the pulsatile LH secretion in sheep [10, 39,

40]. Growth-retarded hypogonadotropic lambs, induced by

dietary restriction, also exhibited reduced pulsatile GnRH

release [41]. These facts indicate that the signal originating

from the undernourished state is ultimately conveyed to the

GnRH pulse generator and induces the suppression of

pulsatile GnRH and LH secretion, which in turn impairs

gonadal activity.

Metabolic substrates as energetic regulators

of reproductive function

Several lines of evidence have revealed that changes in the

availability of blood-borne energy substrates such as glu-

cose and fatty acids are related to changes in pulsatile

GnRH and LH release and gonadal activity [42–47]

(Fig. 2).

Pharmacological glucoprivation induced by administra-

tion of 2-deoxy-D-glucose (2DG) suppresses pulsatile LH

secretion in rats [48, 49]. Similarly, insulin-induced

hypoglycemia inhibits pulsatile LH secretion in rats [50,

51] and monkeys [52, 53]. In ruminants, pulsatile LH

secretion is also suppressed by insulin-induced hypogly-

cemia [54, 55] and 2DG-induced glucoprivation [56].

Studies using the MUA recording method have revealed

that the activity of the GnRH pulse generator in goats is

suppressed by 2DG-induced glucoprivation or insulin-

induced hypoglycemia [57]. Based on these results, alter-

nation of glucose availability is considered to be an

important energetic regulator of GnRH pulse generator

activity. Moreover, Ohkura et al. [57] demonstrated that

GnRH pulse generator activity responds sharply to changes

in glucose availability, suggesting that the activity of the

GnRH pulse generator is fine-tuned and sensitive to slight

fluctuations in glucose availability.

Pharmacological blockade of the oxidation of fatty

acids, another blood-borne energy substrate, eliminates

estrous cyclicity and sexual behavior in rats and hamsters

[43, 45]. Acute lipoprivation induced by peripheral

administration of mercaptoacetate (MA), an inhibitor of

fatty acid oxidation, suppresses pulsatile LH secretion in

female rats [58]. According to these observations, the

availability of fatty acids could be an additional energetic

signal that regulates reproductive function. In addition, the

inhibition of pulsatile LH release by lipoprivation with MA

is more severe in fasted animals than ad libitum-fed ani-

mals [58], suggesting that availability of fatty acids may be

more indispensable for maintenance of reproductive func-

tion, especially when fatty acids are a major fuel source

under energy-deficient conditions. On the other hand,

peripheral administration of MA does not affect GnRH

pulse generator activity in goats [57], suggesting that fatty

acid oxidation may not be a regulator of GnRH pulse

generator activity in this species. The inconsistency in the

effects of lipoprivation between rats and goats may be due

to differences in these animal models: rats are monogas-

trics, whereas goats are ruminants, and the two species

consequently have different pathways for energy

metabolism.

In ruminants, other metabolites such as volatile fatty

acids (VFAs) are the major energy substrates. VFAs such

as butyric acid, propionic acid, and acetic acid are derived

Energy deficiency

GnRH/LH suppression
Suppression

Metabolic singnals
Glucose, Fatty acids
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Fig. 2 Possible neuroendocrine mechanism for the energetic control

of reproductive function. During energy deficiency, low glucose and

fatty-acid availabilities and high ketone-body availability are sensed

by the ependymocytes in the solitary tract nucleus (NTS). Information

about energy status activates noradrenergic neurons in the paraven-

tricular nucleus (PVN), projected from the NTS. The resultant neural

activity inhibits gonadotropin-releasing hormone (GnRH) pulse

generator activity, and thereby suppresses GnRH/luteinizing hormone

(LH) secretion, via elevated release of corticotropin releasing

hormone (CRH)

Reprod Med Biol (2015) 14:39–47 41

123



from microbial fermentation in the rumen. Supplementa-

tion of a maintenance diet with VFAs stimulates pulsatile

LH secretion in sheep [59], suggesting that VFAs play

some role in the regulation of reproductive function.

Although utilization of VFAs as metabolic fuels is a dis-

tinctive feature of ruminants, butyric acid and propionic

acid are converted to ketone bodies [60] and glucose [61],

respectively. By contrast, acetic acid is not converted to

another substrate but is itself used as a metabolic fuel in

ruminants. During 4-day fasting in goats, the plasma acetic

acid concentration decreases, and this change accompanies

the suppression of GnRH pulse generator activity [36]; the

restoration of the GnRH pulse generator activity during the

subsequent re-feeding period is coincident with the

recovery of plasma acetic acid concentrations to the pre-

fasting levels. Therefore, it is possible that the availability

of acetic acid is a ruminant-specific signal that controls the

GnRH pulse generator activity.

Ketone bodies, a general term for acetone, acetoacetate,

and 3-hydroxybutyrate (3HB), are present at higher levels

in circulating blood of undernourished animals, due to

acceleration of fatty acid oxidation in the liver. During

energy deficiency, uptake of ketone bodies into the brain is

increased [62–64], where ketone bodies are primarily uti-

lized as an alternative to glucose [64–66]. Diabetes melli-

tus causes enhanced fatty acid oxidation and ketosis, and

reproductive dysfunction often occurs in women with type

1 diabetes [13, 67]. Both the suppression of GnRH pulse

generator activity during fasting in goats [36] and the low-

LH pulse frequency during early postpartum periods in

dairy cows [68] are concomitant with increases in plasma

3HB concentrations. In addition, central injection of 3-HB

suppresses pulsatile LH secretion in rats [69] and GnRH

pulse generator activity in goats (unpublished data).

Accordingly, it has been proposed that ketone bodies,

which are overproduced during energy deficiency, may

function as a negative energy signal on the regulation of

reproductive function.

Energy availability sensing in the brain

In order to control feeding, reproduction, and energy

homeostasis, the brain integrates information derived from

changes in blood levels of energy substrates through spe-

cific sensing systems. Electrolytic lesions of the lateral

hypothalamic nucleus (LHA) and ventromedial hypotha-

lamic nucleus (VMH) in the hypothalamus cause anorexia

and hyperphagia, respectively, in rats and cats [70]. Based

on this result, the LHA and VMH in the hypothalamus have

been classically considered to be the feeding and satiety

centers, respectively. Moreover, neurons in the LHA and

VMH respond to hyper- or hypoglycemic stimulation in

rats [71, 72] and cats [73]. On the other hand, several lines

of evidence suggest that glucose sensors involved in

feeding and the gonadal axis are located outside of the

hypothalamus, in particular in the hindbrain [46]. The

injection of 5-thioglucose (5TG), a potent antimetabolic

glucose analogue, into the fourth ventricle but not the lat-

eral ventricle causes increased food intake and hypergly-

cemia in rats in which cerebrospinal fluid flow has been

blocked by silicon glue in the aqueduct [74]. Local

implantation of 5TG in the ventrolateral and dorsomedial

medulla, but not in the hypothalamus, induces food intake

and hyperglycemic response [75]. Administration of 2DG

into the fourth ventricle suppresses pulsatile LH secretion

in rats [48] and sheep [56]. All of these studies strongly

suggest that a glucose sensor involved in control of feeding

and reproductive function is located in the lower brainstem

(Fig. 2).

What kinds of cells in the lower brainstem monitor the

changes in glucose availability? Because pancreatic b-cells

control insulin secretion in response to changes in plasma

glucose concentrations, they are accepted to be equipped

with a glucose-sensing system. In particular, glucose

transporter 2 (GLUT2) and glucokinase (GK) in pancreatic

b-cells have been proposed to play a critical role in sensing

blood glucose levels. GLUT2 is one of several isoforms of

GLUTs, which are embedded in the plasma membrane;

these transporters uptake glucose molecules into the cyto-

plasm in order to initiate glucose oxidation inside the cell.

GK, also called hexokinase IV, converts glucose to glu-

cose-6-phosphate after cellular glucose uptake. GLUT2

and GK are distinguished from other GLUTs and hexo-

kinases, respectively, by their low affinities for glucose and

high Km values, which are relatively close to the physio-

logical range of blood glucose levels [76, 77]. Furthermore,

because pancreatic GK activity is not inhibited by glucose-

6 phosphate, changes in GK-mediated glucose phosphor-

ylation always parallel extracellular glucose levels [78].

Thus, GK activity is proportional to the blood glucose

level, and it could therefore contribute to sensing of glu-

cose levels.

Several studies have revealed that pancreatic GK protein

and mRNA are expressed in the brain [79–85]. In partic-

ular, immunoreactivity to pancreatic GK can be detected in

the wall of third ventricle [79], and GK mRNA is expressed

in hypothalamic nuclei, include in the VMH, in rats [81,

82]. These observations support the classical idea that

neurons in the satiety and feeding centers of the hypo-

thalamus play pivotal roles in the glucose-sensing mecha-

nism. On the other hand, in the hindbrain of rats,

particularly in the lower brainstem, immunoreactivities to

pancreatic GK and GLUT2 [83] and the expression of

pancreatic GK mRNA [86] can be detected in the epend-

ymocytes lining the wall of the fourth ventricle. Thus, the
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ependymocytes in the lower brainstem could monitor glu-

cose levels in the cerebrospinal fluid in order to control

physiological functions. Administration of alloxan, a spe-

cific GK inhibitor, into the fourth ventricle suppresses

pulsatile LH secretion in rats [87]. In addition, GK-con-

taining ependymocytes of the cerebroventricular wall in the

lower brainstem increase intracellular calcium concentra-

tions in response to changes in extracellular glucose con-

centrations in vitro [86]. These results lead us to the idea

that GK-containing ependymocytes in the lower brainstem

are involved in the glucose-sensing mechanism that con-

trols gonadal activity.

The localizations of the sensors of fatty acid and ketone

bodies have also been investigated in the context of regu-

lation of reproductive functions. Fourth-ventricular injec-

tion of MA or trimetazidine, inhibitors of fatty acid

oxidation, inhibits pulsatile LH release, suggesting that

fatty-acid availability is sensed in the lower brainstem to

control gonadotropin secretion in rats [88]. In the regula-

tion of feeding, it is possible that fatty-acid availability is

detected by peripheral sensors. The increase in food intake

induced by intraperitoneal injection of MA is abolished by

subdiaphragmatic vagotomy [89]. In addition, induction of

Fos-like immunoreactivity in the rat brain by MA is

blocked by vagotomy [90]. On the other hand, vagotomy

does not eliminate the lipoprivation-induced anestrus in fat

fasted hamsters [91], and lipoprivic LH inhibition is not

blocked by the vagotomy [58]. These studies raise the

possibility that lipoprivation induces feeding through a

peripheral sensor, but suppresses reproductive functions

through a central sensor in the lower brainstem (Fig. 2).

Proton-coupled monocarboxylate transporters (MCTs)

are indispensable for transport of ketone bodies into the

cell [92, 93]. Immunoreactivity to MCT1, which is the

major isoform of MCTs, can be detected in the ependy-

mocytes around the fourth ventricle in rats [94]. Moreover,

injections of pCMBS, an MCT1 inhibitor, into the fourth

ventricle normalizes hyperphagia in diabetic rats. CSF 3HB

levels are elevated in diabetic rats, and positively corre-

lated with plasma 3HB levels. Administration of 3HB into

the fourth ventricle suppresses pulsatile LH secretion [69]

and increases food intake [94] in rats. Based on these facts,

ketone bodies in the CSF are likely to be sensed in the

ependymocytes of the lower brainstem, through MCT1, in

order to control feeding and reproductive functions.

Neuroendocrine pathway mediating energetic

regulation of gonadotropin release

The dominant noradrenergic neurons from the lower

brainstem, including the solitary tract nucleus (NTS),

project to the paraventricular nucleus (PVN) of the

hypothalamus [95]. Moreover, noradrenaline released in

the PVN activates corticotropin-releasing hormone (CRH)

neurons, and then increases their release into the portal

circulation [96]. Based on these lines of evidence, it has

been studied the neural pathway in the brain that mediates

suppression of GnRH/LH pulses in response to decreased

availability of several energetic substrates. Peripheral

administration of 2DG induces Fos-like immunoreactivity

in the NTS and PVN of rats [90]. The suppression of

pulsatile LH secretion induced by administration of 2DG is

associated with an increase in noradrenaline in the PVN of

rats [97]. In addition, administration of noradrenaline into

the PVN suppresses the pulsatile LH secretion in rats,

whereas pretreatment with a-helical CRF, an antagonist of

CRH, in the third ventricle blocks this inhibition [98]. The

inhibitory effect of 2DG administration on LH pulses can

also be prevented by the intracerebroventricular injection

of a-helical CRF in rats [99]. The administration of MA

[88] and 3HB [69] into the fourth ventricle also suppresses

LH pulses and increases noradrenaline release in the PVN.

Moreover, injection of a catecholamine synthesis inhibitor

or a1-, a2-adrenergic receptor antagonist into the PVN

blocks the suppressive effect of MA and 3HB injections on

LH pulses [69, 88, 100]. Taken together, these data suggest

that the noradrenergic pathway from the NTS to the PVN is

involved in the glucoprivic suppression of pulsatile LH

secretion. It is possible that low glucose and fatty-acid

availabilities in conjunction with high ketone-body avail-

ability, all of which are sensed by the ependymocytes in the

lower brainstem, activate noradrenergic neurons in the

PVN, which receive projections from the NTS, and inhibits

LH secretion by increasing CRH release (Fig. 2).

The suppression of pulsatile LH secretion induced by

2DG-induced glucoprivation, MA-induced lipoprivation,

or administration of 3HB is enhanced by estrogen. In rats,

glucoprivation induces an increase in estrogen receptor a
(ERa) expression in the PVN and the brainstem [101], and

the induction of ERa expression in the PVN could be

mediated by the catecholaminergic inputs to the PVN from

the brainstem [102]. Thus, it is possible that the increases

in ERa expression in these brain areas enable estrogen to

potentiate the neural pathway mediating LH suppression

via reductions in the availabilities of several energetic

substrates. However, further studies will be required to

elucidate the action of estrogen on the energetic control of

reproductive function.

Summary

In the energetic control of gonadal activity, the availabili-

ties of blood-borne energy substrates such as glucose, fatty

acids, and ketone bodies act as metabolic signals to
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regulate the GnRH pulse generator activity and GnRH/LH

release. These metabolic signals are sensed by specific

sensors in the brain, which constantly monitor variations in

nutritional status. One of the candidate energetic sensors is

located in the lower brainstem. The ependymocytes in the

lower brainstem detect the availabilities of glucose and

fatty acids as positive energetic factor, and ketone-body

availability as negative energetic factor, for the regulation

of gonadal activity. The nutritional information received at

the ependymocytes is integrated, and then transmitted to

the PVN through the noradrenergic pathway from the NTS

to control gonadotropin secretion. Further understanding of

the mechanisms underlying energetic control of reproduc-

tive function is needed in order to treat reproductive dif-

ficulty caused by malnutrition.
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