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Abstract Fertility preservation is an area of immense

interest in today’s society. The most effective and estab-

lished means of fertility preservation is cryopreservation of

gametes (sperm and oocytes) and embryos. Gonadal cry-

opreservation is yet another means for fertility preserva-

tion, especially if the gonadal function is threatened by

premature menopause, gonadotoxic cancer treatment, sur-

gical castration, or diseases. It can also aid in the preser-

vation of germplasm of animals that die before attaining

sexual maturity. This is especially of significance for

valuable, rare, and endangered animals whose population is

affected by high neonatal/juvenile mortality because of

diseases, poor management practices, or inbreeding

depression. Establishing genome resource banks to con-

serve the genetic status of wild animals will provide a

critical interface between ex-situ and in-situ conservation

strategies. Cryopreservation of gonads effectively length-

ens the genetic lifespan of individuals in a breeding pro-

gram even after their death and contributes towards

germplasm conservation of prized animals. Although the

studies on domestic animals are quite promising, there are

limitations for developing cryopreservation strategies in

wild animals. In this review, we discuss different options

for gonadal tissue cryopreservation with respect to humans

and to laboratory, domestic, and wild animals. This review

also covers recent developments in gonadal tissue cryop-

reservation and transplantation, providing a systematic

view and the advances in the field with the possibility for

its application in fertility preservation and for the conser-

vation of germplasm in domestic and wild species.

Keywords Conservation biology � Ovary � Testis �
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Introduction

Cryopreservation is the process of storage of viable bio-

logical samples in a frozen state to preserve them over an

extended period of time. Germplasm cryopreservation has

become a vital tool for the conservation of threatened and

endangered species [1]. Recent advancements in the tech-

niques of intracytoplasmic sperm injection (ICSI), and

isolation and preservation of germ cells and their in-vitro

and in-vivo maturation have led to a renewed interest in

research related to gonadal tissue cryopreservation. In

humans, testicular tissue cryopreservation offers hope for

the preservation of fertility in pre-pubertal boys with can-

cer before exposure to gonadotoxic treatments or after

surgical castration [2]. Similarly, cryopreservation of

ovarian tissue is the only option to preserve fertility in pre-

pubertal girls and women in whom gonadal function is

threatened by premature menopause, cancer therapy, or

pathological conditions [3]. Cryopreservation of gonads

can also be used for the preservation of genetic potential of

valuable, rare, and endangered animals whose population is

affected by high neonatal/juvenile mortality because of

diseases or poor management practices or inbreeding

depression [4–6]. There is a growing interest in under-

standing the underlying fundamental aspects of cryobiol-

ogy to develop more efficient cryopreservation methods

[7]. The earlier slow-cooling process has been replaced by
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simpler and more efficient cryopreservation approaches—

such as vitrification [1]. Further to these technological

advances in cryobiology, various strategies have been

developed that allow long-term storage of gametes and

embryos [8].

Current research is focused on newer technologies for

optimal isolation and preservation of the earliest stage of

male and female germ cells and their subsequent matura-

tion. To produce fertilization-competent haploid gametes

from these early-stage germ cells, methods are needed that

can support their maturation and development. Gonadal

tissue transplantation is one such method. In males, testis

tissue transplantation provides a robust in-vivo method for

studying testicular maturation, spermatogenesis, and can be

used for the production of mature gametes [9]. Similarly,

ovarian tissue transplantation provides a possibility for

understanding the mechanism of follicular development

and ovarian function in females [10]. However, as imme-

diate transplantation of fresh tissues is not always possible

or desirable, preservation of donor tissue for future use is

critical. Gonadal cryopreservation in conjunction with

transplantation is a feasible option for germplasm conser-

vation in animals [11]. In humans, for cancer patients who

need immediate chemotherapy, ovarian cortex and testic-

ular tissue cryopreservation offer a promising technique for

fertility preservation [12].

In this review, we discuss different techniques of

gonadal tissue cryopreservation and their outcomes in

animals and humans. This article also presents a systematic

review of recent developments in gonadal tissue cryop-

reservation and transplantation that can have potential

application to fertility preservation in humans and conser-

vation of germplasm in animals.

Implications of gonadal tissue cryopreservation

In humans

Cryopreservation and transplantation of ovarian and tes-

ticular tissue have been practiced for more than a century,

mainly for experimental purposes. However, now it is

considered a potential strategy for preserving fertility in

young patients, including children, undergoing treatment

for cancer and other diseases that cause sterilization.

Indications for cryopreservation of ovarian tissue include

chemo- or radiotherapy in young patients, inflammatory

disorders, pelvic diseases, and chromosomal abnormalities

like mosaic Turners syndrome [13]. Cryobanking of

gonadal tissues and cells retrieved before the initiation of

cancer therapy is an attractive strategy for preserving the

fertility of young and adults of both sexes. However, it is

challenging to study the methodology of cryopreservation

in humans because of limited access to gonadal tissue.

None of the animal species studied so far have proven to be

an appropriate model to study cryopreservation [14].

Nevertheless, since 1996, functional tissue has been

retrieved following the thawing of cryopreserved human

ovarian tissue [15]. Follicles in slices of cryopreserved-

thawed ovarian tissue have been reported to successfully

survive long-term organ culture and transplantation [15–

17]. In 2004, autologous transplantation of frozen–thawed

ovarian tissue led to the successful birth of the first human

baby [18] and since then, 37 children have been born to

date using this technique.

Testicular tissue cryopreservation is the only potential

procedure for preserving the fertility of pre-pubertal males,

allowing preservation of different testicular cells, main-

taining spermatogonial stem cells in their ‘‘niche’’, and

providing cell-to-cell contacts between somatic and germ

cells. The cryopreserved immature testicular tissue can be

later used for various assisted reproductive technologies

(ART) [19]. The developmental stage of the testis deter-

mines the success of cryopreservation as immature testis

differs from adult testis in its tissue texture and future

developmental potential [20]. In adult males, cryopre-

served testicular tissues are a source for sperm. Previous

literature reports cryopreservation of human testicular tis-

sue retrieved from patients with non-obstructive

azoospermia [21, 22] and the subsequent use of the tes-

ticular sperm extracted from such tissue for ART [23].

Although cryopreservation of semen and spermatozoa is a

well-developed technique routinely used in infertility

clinics, there is still an immense scope for improvement

[24]. Transplantation of cryopreserved fetal testicular tis-

sue under the skin has been observed to increase serum

testosterone levels, which leads to improvement in sperm

quality and also the general somatic condition of the

patient [25]. In-vitro hormone production from cryopre-

served pre-pubertal testicular tissue is also reported [26].

In livestock and endangered animals

The genetic diversity of livestock and wild animals has

declined over last few decades due to changing market

demands and intensification of agriculture [27]. It is in the

interest of the international community to conserve live-

stock genomes and to maintain wildlife biodiversity, as the

absence of even a single species can have a huge impact on

the functioning of global ecosystems [28]. Considerable

funds have been allocated by several countries to establish

genome resources banks for safeguarding scientifically,

economically, and ecologically important plants and ani-

mals [29]. Ex-situ conservation programs focus on cryop-

reservation of gametes, embryos, and somatic cells as well

as testis and ovarian tissues of animals. These
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cryopreserved genetic resource banks prolong the genetic

lifespan of animals following their death, providing a

critical interface between ex-situ and in-situ conservation

strategies [30]. Although significant progress has been

made in cryopreservation of semen, oocytes, and embryos

of several domestic species, a standardized procedure is yet

to be established. In addition, maintenance of the func-

tional competency of sperm in cryopreserved semen fol-

lowing insemination into a female tract remains a challenge

[31].

Cryopreserved sperms are used for artificial insemina-

tion and oocytes and embryos for embryo transfer tech-

nology in the livestock industry [1]. Gamete preservation

may assist in the development, protection, and distribution

of domestic animals and restoration of endangered species.

Long-term storage and utilization of cryopreserved germ-

plasm also help in prolonging the length of population

generation and allow higher levels of genetic variation to

be maintained in smaller populations [32]. Cryopreserva-

tion and transplantation of gonads promote the improve-

ment of reproductive efficiency and are potential means for

the conservation of endangered wildlife species. However,

except for our recent study on the Indian mouse deer

(Moschiola indica) [33], there are no other reports avail-

able on the transplantation of cryopreserved testes of wild

or endangered species.

Methods of gonadal tissue cryopreservation

Slow freezing

Slow freezing is a conventional method for testicular tissue

cryopreservation. Slow freezing uses an optimal cooling

rate specific to a given cell to avoid the production of

intracellular ice crystals. However, it is a challenge to

optimize conductivity to achieve a uniform cooling of the

organ during the slow-freezing process [34]. There are two

popular strategies of slow freezing for cryopreservation of

tissues; controlled slow freezing (CSF) and uncontrolled

slow freezing (USF). CSF uses programmable freezers to

control variations in temperature for freezing tissues. In the

CSF method, tissues at 20–25 �C are cooled at a freezing

rate of 1–3 �C/min with 25 min of equilibration until the

temperature reaches 3 �C. The tissues are then frozen at a

rate of 1–3 �C/min to -30 �C, and further to -60 �C at a

cooling rate of 30–50 �C/min. Finally, the tissues are

plunged and stored in liquid nitrogen at -196 �C. In USF,

tissue pieces are equilibrated in a comparatively low con-

centration of cryoprotectant and then frozen gradually at

approximately 1 �C/min in a -80 �C freezer overnight

before plunging and storing in liquid nitrogen [35]. To

date, ovarian tissue has been cryopreserved only by CSF or

vitrification. The current standard procedure for ovarian

tissue cryopreservation is CSF [36]. CSF has been more

promising than vitrification for human ovarian tissues due

to the higher developmental potential of retrieved oocytes

[37, 38]. This is further proven clinically with the occur-

rence of pregnancies and live births. Studies comparing

vitrification with slow freezing have conflicting results

[39]. Using CSF and ovarian transplantation, the single

graft method has resulted in four pregnancies [two after in-

vitro fertilization (IVF) and two spontaneous conceptions]

in one patient [40] and three consecutive live births in

others [41]. The first live birth from frozen to thawed

ovarian cortex after orthotopic autotransplantation was

reported by a Belgian group [18]. To date, slow freezing

has resulted in 36 documented live births worldwide after

orthotopic autotransplantation [42–44].

In animals, ovarian tissue cryopreservation and trans-

plantation were first practiced in rodents during the 1950s

[45–47]. Parrott demonstrated the restoration of fertility

after orthotopic grafting of frozen–thawed ovarian tissue

in mice [48]. Similar reports have been published on rats

[49] and rabbits [50]. The gradual decrease in the number

of wild and domestic species in the past few decades has

shifted the focus on ovarian tissue preservation. Gosden

et al. reported live births after autografting frozen–thawed

ovarian tissue in sheep [51]. Promising results were

obtained after cryopreservation of ovarian tissue from

domestic and several wild species using conventional

freezing protocols [52]. In domestic species, live births

have been reported in sheep [51, 53–55] and Japanese

quail [56] using slow-freezing protocols for ovarian tis-

sues. Reports on the cryopreservation of ovarian tissue of

wild animals are scant and show only partial success [57–

60]. The technique of cryopreserving ovarian tissue

avoids several practical limitations encountered in

obtaining and cryopreserving fully mature oocytes from

wild mammals. Results from studies on ovarian cryop-

reservation and transplantation are presented in Table 1.

The table also provides detailed information on the sur-

vival of follicles, their morphology, and ultra-structure

after thawing; follicular growth after in-vitro culture; the

recovery of reproductive and endocrine function and

antral follicle formation after xenotransplantation; mature

oocyte formation after auto-transplantation and xeno-

transplantation; blastocyst formation after auto-transplan-

tation and in-vitro maturation/IVF-ICSI followed by

embryo culture; and live births after auto-transplantation

and mating.

In humans, preservation of testicular tissue is pursued

for the preservation of fertility in pre-pubertal boys due for

cancer chemotherapy and infertile men. Testicular tissues

from boys and men have been cryopreserved either as a cell

suspension or small testicular pieces. CSF of testicular
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tissues is based on a lengthy cryopreservation procedure

requiring an expensive rate-controlled freezer and liquid

nitrogen supply. At present, CSF using dimethylsulphoxide

(DMSO) as a cryoprotectant is the method of choice to

cryopreserve immature testicular tissue in animals like

mice [61–65], rabbit [62], hamster [61], and pig [66, 67].

Successful cryopreservation of human testicular tissues

following the CSF protocol has been reported [24, 26, 68,

69]. Compared with CSF, USF is a shorter process and

requires a smaller, cheaper, and portable -80 �C freezer.

Cryopreservation of human testicular tissues by USF

protocol was first reported by Baert and colleagues. They

demonstrated that the testicular tissues cryopreserved by

USF could maintain cellular ultra-structure, tubular mor-

phology, and tissue function [70]. Thereafter, USF has also

proven to be a successful cryopreservation method for

testicular tissue of mice [9, 70–73], buffalo [74], cattle

[75], sheep [35], cat [76], pig [77], and monkey [61, 78].

Chicken testicular tissues have also been cryopreserved

using the USF protocol [79]. A live birth has been reported

using transplanted sperm retrieved from USF cryopre-

served-thawed testicular tissue. Studies on testis

Table 2 Achievements in testis tissue cryopreservation

Species Method of

cryopreservation

Application/analysis post-thaw Main outcome Live

birth

Mouse [9,

61, 62, 65,

70, 73,

224]

USF [9, 70]

CSF [61, 62, 65,

224]

Vitrification

[70]

USF and

vitrification

[73]

Orthotopic allografting [62, 70]

Ectopic allografting [9, 65, 224]

Ectopic autografting [61]

IVC of tissues [73]

Completion of spermatogenesis [65, 70, 224]

Birth of live offspring from the cryopreserved and

transplanted immature testicular tissue following

ICSI [9, 62] and IVC of tissues [73]

Yes [9,

62,

73]

Rat [223] CSF Allografting and analysis of grafts [223] Damage in Sertoli cells, no sperm production in

grafted tissues

No

Human [69,

107, 141]

CSF [69, 107,

141]

Vitrification

[107]

Orthotopic xenografting [69, 107, 141]

Ectopic xenografting [141]

Establishment of spermatogenesis with germ cells

differentiating until spermatocytes

No

Rhesus

monkey

[78, 104]

USF [78]

Vitrification

[104]

Ectopic xenografting [78]

Ectopic and orthotopic xenografting [104]

Cat [76] USF Ectopic xenografting Complete loss of germ cells No

Pig [9, 103] USF [9]

Vitrification

[103]

Ectopic xenografting Completion of spermatogenesis [9]

Birth of live offspring from the cryopreserved and

transplanted immature testicular tissue following

ICSI [103]

Yes

[103]

Sheep [35] USF and

vitrification

Ectopic xenografting Completion of spermatogenesis No

Cattle [75] USF Viability assessment

IVC of tissues and testosterone assay

Cryopreserved tissues maintained cell viability and

secreted testosterone

No

Buffalo [74] USF Viability assessment, in IVC of tissues/

isolated cells, protein expression analysis,

TUNEL analysis, testosterone assay

Cryopreserved tissues maintained cell viability,

lower apoptosis, expressed germ and somatic

cells-specific proteins, secreted testosterone

No

Rabbit [62] CSF Orthotopic xenografting Completion of spermatogenesis No

Indian

mouse deer

[33]

USF Ectopic xenografting Establishment of spermatogenesis with germ cells

differentiating until spermatocytes

No

Chicken [79] CSF Orthotopic allografting Production of live offspring following intra-magnal

insemination

Yes

Japanese

quail [106]

Vitrification Ectopic allografting Production of live offspring following intra-magnal

insemination

Yes

CSF controlled slow freezing, USF uncontrolled slow freezing, ICSI intracytoplasmic sperm injection, IVC in-vitro culture, TUNEL terminal

deoxynucleotidyl transferase dUTP nick end labeling, DMSO dimethyl sulfoxide, FBS fetal bovine serum
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cryopreservation and transplantation and their outcomes

are listed in Table 2.

Cryopreservation of gonads of wild animals is extremely

challenging due to a dearth of information on the physio-

logical and biochemical characteristics of this process.

Samples are also not readily available and hence, devel-

opment of efficient cryopreservation protocols is difficult.

Recently, we cryopreserved an immature testis from an

endangered tragulidae, the Indian mouse deer (Moschiola

indica), using USF protocols [33]. We observed that the

combinations of cryoprotectants that showed superior

preservation in domestic species, monkey, human and

rodents were unsuitable for the cryopreservation of mouse

deer testes [33]. Only testis tissues that were cryopreserved

in 10 % DMSO with 80 % fetal bovine serum (FBS) could

establish spermatogenesis and induce germ cell differenti-

ation following xenografting onto nude mice (Fig. 1).

These results indicate that it is likely that optimal combi-

nation(s) of cryoprotectants differ and need to be evaluated

for efficient gonadal cryopreservation of different species.

Vitrification

The solidification of liquid upon rapid cooling due to a

sudden increase in viscosity is termed vitrification. Theo-

retically, the formation of ice crystals and their growth can

be eliminated by vitrification. This process is simple as

well as cost effective. Vitrification protects both intracel-

lular and extracellular components of tissue from ice for-

mation during cryopreservation [80]. Vitrification uses a

solution with a higher osmolality than that used for slow

freezing. This is followed by rapid submersion in liquid

nitrogen, thereby significantly shortening the freezing time.

Vitrification has been applied to the preservation of ovarian

tissues of different species. Initially, vitrification of oocytes

showed potential benefits in humans [81, 82]. However,

further attempts to vitrify human ovarian tissue were not

encouraging due to increased necrosis in frozen tissues [83,

84]. Later, a novel technique of needle immersion vitrifi-

cation demonstrated improved survival of follicles in both

human and murine ovarian tissue [85]. With the advance-

ment in technology over time, vitrification has been

established as a reliable strategy for the cryopreservation of

oocytes [86–88]. A recent report showed no differences in

fertilization, cleavage, and clinical pregnancy rates

between fresh and vitrified oocytes in humans, although the

ongoing pregnancy rate was reduced in the vitrified group

[89]. So far in humans, only one live birth has been

reported by transplanting vitrified-thawed ovarian tissues.

Domestic animals are used as model species to develop

cryopreservation protocols for primordial ovarian follicles

from wild species. Initial experiments in mice showed

encouraging results using vitrified whole mouse ovaries

[90, 91]. These vitrified-thawed ovaries showed robust

preservation of oocytes with developmental competency

[90] and full recovery of endocrine function [91]. In

domestic species, whole-ovary cryopreservation is reported

in sheep [92, 93] and cow [84, 94]. However, live birth has

been reported only in sheep following the transplantation

of vitrified-thawed ovarian tissue [93]. Since fewer live

births were achieved after whole-ovary cryopreservation,

ovarian cortex preservation is being looked at as a

promising technique. Vitrification of cortical pieces is

reported in rabbit [50, 95, 96], monkey [59], dog [97], cow

[84, 94], sheep [98], goat [99], pig [84], and cat [100].

Isolated follicles have also been preserved by vitrification

in goat to study their viability [101]. However, studies on

the cryopreservation of isolated follicles are scarce because

ovarian tissue cryopreservation and transplantation is less

time-consuming when compared to follicle

Fig. 1 Histological evaluation of cryopreserved Indian mouse deer

(Moschiola indica) testicular tissues and xenograft with most

advanced germ cell types. Typical morphology of the most advanced

germ cell types in the tubule is indicated by arrows. a Donor tissue

from 15-day-old Indian mouse deer showing gonocytes/

spermatogonia. b Grafts from recipient athymic nude mice that were

grafted with testicular tissues cryopreserved in cryomedium contain-

ing 10 % DMSO and 10 % FBS and collected after 6 months, which

contain pachytene spermatocytes as the most advanced germ cells.

Scale bar 50 lm
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cryopreservation, which demands specific technical skills.

Recently, solid-surface vitrification (SSV) has been repor-

ted to yield better preservation of testicular tissue in pre-

pubertal mouse [70] and piglet [67]. However, there is a

need for improvement in the vitrification of ovarian tissue

for wider clinical application and conservation of germ-

plasm of animal species.

Encouraging results have been achieved using vitrifi-

cation for the preservation of testicular tissue of mice [2,

70, 73, 102], pigs [66, 67, 103], and rhesus monkeys

[104]. Felid testicular tissues showed better survival fol-

lowing vitrification than the laboratory rodent tissues

[105]. In birds, Japanese quail testicular tissue has been

vitrified successfully, resulting in live birth after trans-

plantation [106]. However, there are limited reports on the

vitrification of testicular tissues in humans [70, 107, 108].

Although vitrification is a promising technique, it is still

at an infantile stage for testicular tissue cryopreservation.

Therefore, further optimization of this technique is

required for use in several mammalian species including

humans.

Applications of cryopreserved gonadal tissues
for fertility restoration

Autografting of gonadal tissues

Transplantation as a procedure for follicle maturation was

first suggested by Gosden in the year 1994 [51]. Auto-

grafting of cryopreserved ovarian tissue has the potential to

restore endocrine function in cancer survivors with pre-

mature ovarian failure. Ovarian tissue can be transplanted

orthotopically to the pelvis [109, 110] or heterotopically to

subcutaneous areas such as the forearm or abdomen [111,

112]. Regardless of the site of transplantation, potential

follicular atresia due to ischemia in the ovarian grafts after

transplantation remains a limitation of this technique.

Nevertheless, there has been a rapid increase in the number

of ovarian tissue cryopreservation and autografting proce-

dures performed worldwide. Transplantation of frozen–

thawed ovarian tissues has been successful in both labo-

ratory and domestic animals. Live births have been

reported after orthotopic transplantation of frozen–thawed

ovarian tissues or whole ovary in mouse [48], rat [49],

rabbit [50], and sheep [51, 53–55, 93]. In birds, live birth

has been reported after orthotopic transplantation of cry-

opreserved ovary of Japanese quail [56].

Restoration of ovarian function after chemotherapy or

radiotherapy has two main goals in humans: to improve

quality of life and restore reproductive function. There are

several case reports of ovarian tissue autografting for

restoring fertility in humans [18, 113–120]. Donnez et al.

reported the first live birth from orthotopically autografted

ovarian tissue fragments in a woman who was undergoing

chemotherapy for stage IV Hodgkin’s lymphoma [18].

Live birth after autografting of cryopreserved pre-pubertal

ovarian tissue was also reported recently [121]. To date, 37

live births have been reported following autografting of

cryopreserved ovarian tissue.

Transplantation of testicular tissue provides an alterna-

tive strategy to the use of spermatogonial stem cell (SSC)

suspensions. This approach maintains the SSCs within their

natural niche, therefore retaining the interactions between

the germ cells and their supporting somatic cells. At first

glance, testis did not appear very promising for trans-

plantation or grafting because of its tough capsule, complex

vascular architecture and sensitivity to ischaemia. Testis

grafting as an experimental endeavour has a long history in

reproductive biology [122, 123]. Grafting of testis tissue

was developed as a tool for androgen substitution in the

1950s [124] and, consequently applied to study steroido-

genesis and Sertoli or Leydig cell functions [125]. Histor-

ically, autografting of frozen testicular tissue in monorchid

rats was performed to understand testicular tissue function

[126]. Till date, autografting of cryopreserved testicular

tissues is reported only in rhesus monkey. In this study,

spermatozoa were detected in the autologous-grafted cry-

opreserved tissues [127]. To the best of our knowledge

there is no report on autografting of testicular tissues in

humans.

Xenografting of gonadal tissues

Xenografting of gonadal tissues is an alternative strategy

for fertility preservation in young cancer patients and

endangered species. Immunodeficient mice (severe com-

bined immunodeficiency and athymic nude) have proven to

be a useful in-vivo model for the xenografting of human

ovarian tissue to investigate ovarian function and follicle

development. Xenografting allows for the maturation of

follicles and also helps in the detection of cancer trans-

mission and relapse in humans. The use of laboratory

animals for medical research has major ethical advantages

when compared to clinical trials. The development of

mature (MII) oocytes from cryopreserved human ovarian

cortex has been reported [128]. Xenografting of frozen

ovarian tissue in mouse [129], human [130–134], cat [135],

cow [136], African elephant [57], marmoset monkey [137],

common wombat [138], and wallaby [58] to immunodefi-

cient mice has resulted in antral follicle development.

However, no live births have been reported in domestic or

wild animal species from oocytes collected from xeno-

grafts of cryopreserved ovarian tissue to date. A study in

mice demonstrated that in contrast to mature oocytes and

embryos, ovarian tissues can be collected irrespective of
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age or reproductive cycle and even following death [139,

140]. These findings may have a significant impact on the

germplasm preservation of animals, as ovarian tissues can

be collected and preserved from young females who die

due to unknown etiology.

Xenografting of testicular tissues provides a lucrative

process for the differentiation of germ cells into gametes

without re-introducing cancer cells into a cured patient.

Testicular tissue transplantation is effective in inducing

spermatogenesis in a small piece of immature testis tissue.

The main advantage of this method is that it is applicable to

diverse mammalian species using immunodeficient mice as

a host animal. Testis cryopreservation, when combined

with testis tissue xenografting, can be a powerful method

for the conservation of germplasm of rare and endangered

species [11]. Frozen–thawed testicular tissues following

xenografting onto mice showed the establishment of sper-

matogenesis and germ cell differentiation into spermato-

cytes in monkeys [78, 104], humans [69, 107, 141], cats

[76], and Indian mouse deer [33], while in pigs [9, 103,

142], sheep [35], mice [61, 62, 65], and rabbits [62], the

completion of spermatogenesis with production of haploid

spermatids was observed. Spermatozoa retrieved from

cryopreserved-xenografted immature testicular tissue have

produced live offspring in mice [62], rabbits [62], and pigs

[103] after ICSI. The establishment of spermatogenesis and

proliferation of spermatogonia following the xenografting

of cryopreserved immature testicular tissuehas been

reported in humans [69, 141]. Taken together, testis tissue

transplantation is a feasible option for retrieving sperm

from immature testis tissues, but its efficiency varies across

species.

In-vitro culture of gonadal tissues

Identification of factors that affect the regulation of ovarian

function during in-vitro culture is a topic of great interest.

Research is focused on understanding the in-vitro follicle

growth to develop methods that support maturation of a

competent egg [143]. The various approaches adopted to

study follicle development include hormone production by

ovaries and gamete maturation. To date, no in-vitro model

has been identified that replicates a complete human

ovarian cycle. The ovulation process poses a unique

investigative challenge and studies are limited to in-vivo or

in-vitro-perfused ovary models [144, 145]. In-vitro culture

of pre-antral follicles is an attractive strategy for generating

mature oocytes. Live birth after in-vitro culture of mouse

primordial follicles has been reported [146]. Following

encouraging results in mouse, newer methods for in-vitro

oocyte maturation for human follicles were attempted.

Culturing of human ovarian follicles did result in follicle

activation; however, individual follicles failed to survive

[147]. Nevertheless, live birth from cultured human ovar-

ian tissue following IVF has been reported [148]. A recent

report showed that exposure to an increased dose of alky-

lating agents prior to ovarian cryopreservation significantly

lowers the survival of human ovarian follicles in culture

[149]. To the best of our knowledge, there is no report so

far on follicular growth in cryopreserved human ovarian

tissue.

Gonads of domestic animals are used as models for

developing and testing the culture methods that maybe

applicable to endangered animal species. Culture of cry-

opreserved ovarian cortex resulted in follicular survival

and growth in sheep [150], goat [151, 152], cow [153],

and monkey [59]. The possibility of retrieving mature

oocytes from the frozen pre-antral follicles following

culture is of immense interest to researchers. Whole

ovaries, cortical strips, and follicles of laboratory animals

are used extensively to test the toxic effects of different

cryoprotective agents and subsequent transplantation out-

comes [154, 155]. A report showed that markers for early

follicular development were expressed even after freezing

and 48 h culture of primordial follicles in rhesus monkey

[156]. These results are optimistic for the cryopreserva-

tion of ovarian tissue from human and wild animal

species.

Spermatogenesis is one of the most complex processes

of sequential cell proliferation and differentiation in the

body. Infertility is one of the side effects of cancer therapy

that has a huge psychological impact on cancer survivors

[157]. Therefore, in addition to cancer treatment, fertility

preservation is important for improving the psychological

health of these survivors, especially young patients [158].

However, there is a possibility of reintroduction of

malignant cells after autografting of testicular tissues in

cancer patients. A study reported that even 20 leukemic

cells, introduced into seminiferous tubules of the host, were

sufficient to cause a leukemic state [159]. To avoid such

adverse effect of autografting, attention was diverted

towards in-vitro spermatogenesis in testicular tissues.

Studies on in-vitro spermatogenesis were initiated with

organ culture experiments about a century ago. The earliest

report demonstrated progress of spermatogenesis up to the

pachytene stage of meiosis in testis tissues of a newborn

mouse placed on a clot [160]. Later, the air–liquid inter-

phase method was developed as an organ culture system

for spermatogenesis, which succeeded in obtaining func-

tional sperm from neonatal mouse testis [161]. The

extension of this method to cryopreserved testis tissues

resulted in haploid gametes and birth to live pups following

micro-insemination and ICSI [162]. Feasibility of the air–

liquid interphase method needs to be evaluated in other

species including humans before it could see widespread

application.
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Future prospective

Assessment of viability and quality of cryopreserved

gonadal tissue is the primary requirement for the success of

cryopreservation techniques. Additional insights into the

prevention of cryoinjury will contribute toward the estab-

lishment of improved cryopreservation protocols for fer-

tility preservation. The genetic abnormalities in the embryo

generated from frozen to thawed gonads prior to transfer

need to be studied. Although currently the success of

ovarian cryopreservation is very low, strategies are being

developed to preserve unfertilized oocytes and induce

maturation in artificial ovaries, which can improve preg-

nancy rates. Further refinement of the techniques and

modification of cryopreservation strategies will help in

further improvements in germplasm preservation in

humans and animals in the near future.
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