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1  | INTRODUC TION

The goal of assisted reproductive technology (ART) is securing a 
live birth. Development failure of embryo, or miscarriage, results 
in gloomy psychological results, the loss of time, and inflicted costs 
for the patients.

Morphological structures, such as smooth endoplasmic reticu-
lum clusters (sERCs), vacuoles or refractile bodies, have been stud-
ied. None of these structures have been found to be prognostic 
with respect to developmental ability of oocytes.1 Conventional 
morphological evaluation has had confined success to identify an-
euploid embryos.2-6 Though time‐lapse information has been re-
ported to be predictive of aneuploidy, the available evidence may 
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Abstract
Purpose: To identify the multivariate logistic regression in a combination (combina-
tion method) involving artificial intelligence (AI) classifiers in images of blastocysts 
along with a conventional embryo evaluation (CEE) to predict the probability of ac-
complishing a live birth in patients classified by maternal age.
Methods: Retrospectively, a total of 5691 blastocysts were enrolled. Images cap-
tured 115 hours or 139 hours if not yet sufficiently large after insemination were 
classified according to age as follows: <35, 35‐37, 38‐39, 40‐41, and ≥42 years old. 
The classifiers for each category were created by using convolutional neural net-
works associated with deep learning. Next, the feasibility of a method combining AI 
with multivariate logistic model functions by CEE was investigated.
Results: The values of the area under the curve (AUC) and the accuracies to predict 
live birth achieved by the CEE/AI/combination methods were 0.651/0.634/0.655, 
0.697/0.688/0.723, 0.771/0.728/0.791, 0.788/0.743/0.806 and 0.820/0.837/0.888, 
and 0.631/0.647/0.616, 0.687/0.675/0.671, 0.725/0.697/0.732, 0.714/0.776/0.801, 
and 0.910/0.866/0.784 for age categories of <35, 35‐37, 38‐39, 40‐41, and ≥42 years 
old, respectively.
Conclusions: Though there were mostly no significant differences regarding the 
AUC and the sensitivity plus specificity in all age categories, the combination method 
seemed to be the best.
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be not enough to ensure introduction of time‐lapse microscopy2. 
Suboptimal embryos can be euploid, while embryos of good mor-
phological quality may be aneuploid.2,7,8 Pre‐implantation genetic 
testing for aneuploidy (PGT‐A)9,10 is another approach to examine 
chromosomal profiles, but it is an invasive method for the embryo 
and is relating to ethical debates. Some countries forbid the transfer 
of an embryo after biopsy. The profile of the chromosome of the 
biopsied sample does not always indicate the profile of the rest of 
the sample because the embryo might have genetic heterogeneity. 
Mosaicism in the trophectoderm (TE) was found. A single biopsy 
for TE may not represent the complete TE.11 There is a report that 
classifiers using artificial intelligence applied toward an image of a 
blastocyst implanted later had a potential to predict the probability 
of live birth.12 Thus, there have been no established procedures to 
predict live birth.

Age is one of the most critical factors in sterility.13,14 The num-
ber and quality of oocyte decrease as age advances. Patients older 
than 35 years should receive fast evaluation for the reason of ste-
rility.15 Women older than 40  years should ensure more imme-
diate evaluation16. An aged oocyte shows dysfunction of cellular 
organelles and increase in chromosomal abnormality.17 Advanced 
age is a risk factor for female sterility, miscarriage, and stillbirth.18 
The delivery rate categorized by age (<35, 35‐37, 38‐39, 40‐41, 
42‐45 years old) affects the developmental speed of the embryo 
significantly (P  <  0.0001).19 The live birth rates associated with 
ART of patients in <35, 35‐37, 38‐39, 40‐41, and ≥42  years old 
were 0.20, 0.17, 0.12, 0.08, and 0.01, respectively, by the Japan 
Society of Obstetrics and Gynecology in 2015.20 Thus, age is one 
of the most critical factors in fertility, and there are no standard 
procedures to treat blastocysts or patients by age. Thus, we re-
ported our system with an application of deep learning in a convo-
lutional neural network21-24 with artificial intelligence (AI), which 
was applied to blastocyst images classified by age to explore 
a means of meeting this study by noninvasively predicting live 
births.25 Deep learning becomes popular among machine learn-
ing methods including logistic regression,26 naive Bayes,27 nearest 
neighbor,28 neural network,29 random forest,30 and deep learning. 
AI can generate the confidence score that is a probability showing 
the estimated value of belonging to the live birth category. The 
score can be recognized as a blastocyst ranking. This approach will 
make it easier for physicians and embryologists to select better 
blastocysts.

We here demonstrate the retrospective predictions of live 
birth by using the multivariate regression function in combina-
tion with a conventional embryo evaluation (CEE) method that 
includes clinical information, observation, and grading of the 
morphological features of blastocysts and is applied with AI to 
blastocysts images categorized by age. In this article, we demon-
strate the advanced outcome by introducing the multivariate 
regression function defined as the combination method and by 
investigating the optimal cutoff points of the receiver operator 
characteristic (ROC) curves generated by AI, CEE, and the com-
bination method, respectively. We present the feasibility of the 

combination method to predict the probability of accomplishing 
a live birth.

2  | MATERIAL S AND METHODS

2.1 | Patients and data preparation

This study was approved by the Institutional Review Board (IRB) at 
Okayama Couples’ Clinic (IRB no. 18000128‐05) and was performed 
with explanations to the patients and a Web site with additional in-
formation with an opt‐out option. A total of 5691 blastocysts ob-
tained from patients from January 2009 to April 2017 with fully 
deidentified data were enrolled. All of blastocysts were tracked. 
Whether the outcome was a live birth or a non‐live birth was con-
firmed. All data were divided into training datasets and test datasets 
randomly at a ratio of 4 to 1 (Figure 1).

2.2 | CEE

Every blastocyst with the morphological features and clinical in-
formation, such as maternal age, body mass index, time of in vitro 
fertilization, time of embryo transfer, FSH value, anti‐Müllerian 
hormone value, blastocyst grade on day 3, embryo cryopreserva-
tion day, blastomere number on day 3 after insemination, grade of 
TE, grade of inner cell mass, antral follicle count, average diame-
ter of the blastocyst, existence of oviduct infertility, existence of 
endometriosis, existence of immune sterility, insemination proce-
dures, ovarian stimulation methods, refractile body, sERC grade, 
degree of blastocyst expansion, existence of a vacuole, male body 
mass index, and male age, were pursued to assess the outcome of 
live birth or non‐live birth. The information above is defined as CEE 
in this study.25 This information was provided by embryologists and 
doctors who were engaged in clinical practice for at least twenty 
years and were thought to be specialists who carried out the stand-
ardized laboratory practice related to embryo morphology assess-
ment according to the international consensus meeting in 2011.31

The relationships between live birth and each factor in the CEE 
were examined, and then, we obtain univariate regression functions. 
The significant factors without multicollinearity, indicating a state of 
strong correlations among the independent variables, were chosen 
in the multivariate analysis. Then, a multivariate regression function 
for the CEE to predict live birth was obtained.

2.3 | Blastocyst images

An image of the blastocyst was captured on about at 115 hours or 
139 hours if the blastocyst was not yet large enough after insemi-
nation. The image was saved and deidentified, containing no data, 
which could be used to identify the person. The images were sent 
to the AI system offline. The images were classified by maternal age 
into five categories of patients who were <35, 35‐37, 38‐39, and 
40‐41, or ≥42  years old. The numbers of non‐live births and live 
births were 1389 and 876, respectively, in the <35 group; 863 and 
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F I G U R E  1   A flowchart for making classifiers



     |  347MIYAGI et al.

381, respectively, in the 35‐37 group; 545 and 164, respectively, in 
the 38‐39 group; 674 and 130, respectively, in the 40‐41 group; and 
633 and 36, respectively, in the ≥42 group. The probabilities of live 
birth for the age groups <35, 35‐37, 38‐39, 40‐41, and ≥42 years old 
were 0.387, 0.306, 0.231, 0.162, and 0.054, respectively. The images 
of blastocysts which resulted in live births and those of blastocysts 
which resulted in miscarriages and resulted in non‐live births were 
used to create the AI classifiers.25

2.4 | Preparation for AI

All of images that were deidentified were transferred to the AI sys-
tem offline. Each image was cropped to a square and then saved 
in 100 × 100 pixel size. Eighty percent of the training dataset was 
used as the AI training dataset. The rest of the dataset was defined 
as the validation dataset. Thus, the AI training dataset, validation 
dataset, and test dataset were not overlapped. The AI classifier was 
trained by an AI training dataset with simultaneous validation and 
then tested with the test dataset. The training datasets were aug-
mented, because the blastocyst image processing of the arbitrary 
any degrees of rotation can yield to images resulting in the different 
vector data of the same category.25

2.5 | AI classifier

AI classifier programs in each age category were developed. The 
classifiers consisted of convolutional neural networks32 that 

attempted to imitate the visual cortex of the brain of the mam-
mals21-24,32-37 and L2 regularization38,39 to acquire the probability for 
predicting either live birth or non‐live birth.25 We conducted deep 
learning with a convolutional neural network of 11 layers consisting 
of convolution layers with various kernel sizes40-42 and output chan-
nels, pooling layers,43-46 flattened layers,47 linear layers,48,49 recti-
fied linear unit layers,50,51 and one softmax layer.52,53 The softmax 
layer generated confidence score that was the probability of a live 
birth (Table 1). We used cross‐validation.54-56 The suitable number 
of images for the training data was studied by evaluating variances 
and accuracy using the fivefold cross‐validation method (Figure 1): 
First, the test data consisted of the initial twenty percent of the data 
collected in each category, and a classifier was trained. Next, the 
test data were changed to the next twenty percent of the data. We 
repeated this procedure five times to encompass all data. The num-
ber of augmented training data was investigated until the accuracy 
and the variance of accuracies were likely to show the maximum and 
minimum values, respectively. This procedure reveals the suitable 
number of training data to validate the prediction performance more 
accurately by combining five times. Then, the best classifier showing 
the smallest variance and the best accuracy was chosen by varying 
the architecture of the neural network and by varying hyperparam-
eters and an image size (40 × 40, 50 × 50, 75 × 75, and 100 × 100 
pixels). In case of the accuracies were not clearly different, the best 
classifier was selected based on the values of the summation of the 
specificity and the sensitivity. The AI classifiers were obtained for 
each age category.

Layers  

Age (years)

<35 35‐37 38‐39 40‐41 ≥42 All ages

1. Convolution 
layer

Output channels 50 40 50 64 50 50

Kernel size 5 × 5 5 × 5 5 × 5 5 × 5 5 × 5 5 × 5

2. ReLU              

3. Pooling 
layer

Kernel size 2 × 2 2 × 2 2 × 2 2 × 2 2 × 2 2 × 2

4. Convolution 
layer

Output channels 64 64 64 64 64 64

Kernel size 5 × 5 5 × 5 5 × 5 5 × 5 5 × 5 5 × 5

5. ReLU              

6. Pooling 
layer

Kernel size 2 × 2 2 × 2 2 × 2 2 × 2 2 × 2 2 × 2

7. Flatten layer              

8. Linear layer 
size

  210 210 210 210 210 210

9. ReLU              

10. Linear 
layer size

  2 2 2 2 2 2

11. Softmax 
layer

             

Notes: The proper convolutional neural network structures, which consisted of eleven layers in 
convolutional deep learning, were obtained. The numbers of output channels in the first convolu-
tion layer were different.
Abbreviation: ReLU, Rectified linear units.

TA B L E  1   Architectures of the best 
classifier that showed the best accuracy 
for each age category
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2.6 | Live birth prediction function of AI and CEE

By using both the value, x1, calculated by the multivariate regres-
sion function for the CEE, and the confidence score, x2, derived from 
the AI classifier, the multivariate logistic model functions, y  =  1/
(1 + Exp(β0 + β1x1+β2x2)); β0, β1, β2: coefficients, were developed to 
predict the probability of live birth. The area under the receiver op-
erator characteristic curve (AUC); the optimal cut‐point value cor-
responding to the point with the lowest distance to the upper‐left 
corner of the ROC curve57; and the sensitivity, specificity, and ac-
curacy of AI, CEE, and the combination of AI and CEE were obtained.

2.7 | Development environment

The environment for development used in this study was as fol-
lows: Intel Core i5, 3.30 GHz, 32 GB (Santa Clara, California, USA) 
and NVIDIA GeForce GTX 1080 Ti (Santa Clara, California, USA), 
Windows 10 (Redmond, Washington, USA) and Mathematica 11.3 
(Wolfram Research, Champaign, IL, USA).

2.8 | Statistics

Mathematica 11.3 was used for statistical analyses.

3  | RESULTS

The live birth ratio of all data was 0.279. The live birth ratios for the 
age groups <35, 35‐37, 38‐39, 40‐41, and ≥42 years old were 0.387 
(876/2265), 0.306 (381/1244), 0.231 (164/709), 0.162 (130/804), 
and 0.054 (36/669), respectively.25

Univariate regression functions and the multivariate regression 
function of the CEE for predicting the probability of live birth are 
shown in Tables 2 and 3, respectively. Ten independent variables for 
the multivariate function with no multicollinearity were detected. 
The variables demonstrated in Table 3 were acquired using the for-
mulae in Table 2. The results demonstrated that the age seemed to 
be the most important because the P‐value of the age was the min-
imum, as shown in Table 3. When the ten values were substituted 
into the multivariate logistic regression function, the calculated 
value was the predicted probability of live birth by the CEE.

Prior to creating the best AI classifier, the best numbers of the 
training dataset were determined to be 18 120, 17 910, 8505, 7716, 
and 12 840 in the groups <35, 35‐37, 38‐39, 40‐41, and ≥42 years 
old, respectively, in this study.25 Then, the best values in the L2 reg-
ularization were determined to be 0.01, 0.0005, 0.01, 0.0001, and 
0.00015 for the groups <35, 35‐37, 38‐39, 40‐41, and ≥42 years old, 
respectively. Next, the best AI classifiers were obtained. The best 
image size was 50 × 50 pixels. It took 0.15 seconds/image to classify 
and generate the confidence score.

Next, the multivariate regression functions in combination with 
CEE and with AI applied to the blastocyst images of patients cate-
gorized by age, which were defined as combination methods, were 

obtained as shown in Table 4. The AUC values for predicting live 
birth accomplished by the CEE/AI/combination methods were 0.6
51 ± 0.027/0.634 ± 0.027/0.655 ± 0.027, 0.697 ± 0.037/0.688 ± 0.

TA B L E  2   Univariate regression functions of the CEE parameters 
for predicting the probability of live birth

Independent 
variables Formulae Coefficients

Age k/(1 + Exp(β0 + β1x)) β0 = −10.742 ± 4.106 
(P = 0.0089)

    β1 = 0.284 ± 0.109 
(P = 0.0088)

    k = 0.451

Times of embryo 
transfer

1/(1 + Exp(β0 + β1x)) β0 = 0.635 ± 1.158 
(P = 0.584)

    β1 = 0.156 ± 0.123 
(P = 0.204)

Anti‐Müllerian 
Hormone (ng/ml)

1/(1 + Exp(β0 + β1x)) β0 = 1.282 ± 2.640 
(P = 0.627)

    β1 = 0.062 ± 0.139 
(P = 0.678)

Blastomere num-
ber on Day 3

k/(2πσ2)1/2 
Exp(‐(x‐m)2/(2σ2))

σ = 4.668 ± 0.773 
(P = 4.179 × 10−5)

    m = 11.624 ± 0.663 
(P = 1.969 × 10−10)

    k = 4.643 ± 0.611 
(P = 3.91 × 10−6)

Grade on Day 3 k/(1 + Exp(β0 + β1x)) β0 = −7.967 ± 8.012 
(P = 0.320)

(Class A = 1, B = 2, 
C = 3, D = 4)

  β1 = 2.584 ± 2.582 
(P = 0.317)

    k = 0.319

Embryo cryo-
preservation day

β0 + β1x β0 = 0.435

(Day 5 = 1, Day 
6 = 2)

  β1 = −0.131

Inner Cell Mass β0 + β1x β0 = 0.479 ± 0.037 
(P = 0.049)

(A = 1, B = 2, 
C = 3)

  β1 = −0.131 ± 0.017 
(P = 0.083)

Trophectoderm β0 + β1x β0 = 0.526 ± 0.002 
(P = 0.0026)

(A = 1, B = 2, 
C = 3)

  β1 = −0.124 ± 0.001 
(P = 0.005)

Averaged diam-
eter (µm)

1/(1 + Exp(β0 + β1x)) β0 = 2.623 ± 5.312 
(P = 0.621)

    β1 = −0.011 ± 0.030 
(P = 0.723)

Body mass index 
(kg/m2)

1/(1 + Exp(β0 + β1x)) β0 = −0.631 ± 0.844 
(P = 0.454)

    β1 = 0.079 ± 0.035 
(P = 0.026)

Notes: Independent variables, which were related to live birth and were 
also used in the multivariate regression, are presented. Each formula is 
determined to fit the data distribution. Coefficients are shown as the 
mean ± SE.
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036/0.723 ± 0.036, 0.771 ± 0.052/0.728 ± 0.054/0.791 ± 0.050, 0.
788 ± 0.063/0.743 ± 0.066/0.806 ± 0.061, and 0.820 ± 0.106/0.83
7 ± 0.103/0.888 ± 0.089 (mean ± SE) for <35, 35‐37, 38‐39, 40‐41, 
and ≥42 years old, respectively, as shown in Figure 2 and Table 5. 
The AUC values of the CEE/AI/combination methods were 0.745 
±  0.069/0.726  ±  0.075/0.773  ±  0.088 (mean  ±   SD), respectively. 
There were no significant differences between CEE, AI, and com-
bination methods in each age category. The AUC value significantly 
increased as a function of age in all methods because the slopes of 
the linear regression were more than zero in the CEE/AI/combina-
tion methods with P‐values of 0.00425/0.00580/0.00219, respec-
tively, by linear regression analysis. Furthermore, the optimal cutoff 
points from the ROC curve of the CEE/AI/combination methods 
were 0.420/0.414/0.388, 0.279/0.314/0.281, 0.190/0.226/0.219, 
0.190/0.268/0.142, and 0.184/0.118/0.037 for <35, 35‐37, 38‐39, 
40‐41, and ≥42 years old, respectively (Table 5).

The sensitivities at the optimal cut‐point of the CEE/AI/com-
bination methods were 0.580/0.530/0.652, 0.714/0.655/0.786, 
0.727/0.697/0.758, 0.700/0.650/0.700, and 0.667/0.833/1.000 for 
<35, 35‐37, 38‐39, 40‐41, and ≥42 years old, respectively, as shown 

in Figure 3 and Table 5. There were no significant differences in any 
of the methods with respect to the sensitivities in each age category 
except age <35 years old. In the age category of <35 years old, the 
sensitivity of the AI was significantly lower than that of the combi-
nation method (P = 0.019, by the chi‐square test). The sensitivity sig-
nificantly increased in all methods as a function of age because the 
P‐values by the Cochran–Armitage test in the CEE, the AI, and the 
combination methods were 0.01248, 0.0623, and 0.00453, respec-
tively. The sensitivities of the CEE/AI/combination methods were 0.
678 ± 0.059/0.673 ± 0.109/0.779 ± 0.134 (mean ± SD), respectively.

The specificities at the optimal cut‐point of the CEE/AI/com-
bination methods were 0.665/0.724/0.592, 0.673/0.685/0.612, 
0.725/0.697/0.725, 0.716/0.794/0.816, and 0.922/0.867/0.773 for 
<35, 35‐37, 38‐39, 40‐41, and ≥42 years old, respectively, as shown 
in Figure 4 and Table 5. There were no significant differences in any 
of the methods with respect to the specificities in each age category 
except age <35, 40‐41, and ≥42 years old. In the age of <35 years 
old, the specificity of AI was significantly higher than that of the 
combination method (P  =  0.0014, by the chi‐square test). In the 
age category of 40‐41 years old, the specificity of the combination 

Independent variables Coefficients P‐value Odds ratio

Constant (β0) β0 = 6.642 ± 0.500 2.81 × 10−40 ‐

Age value (β1) β1 = −4.047 ± 0.368 3.68 × 10−28 57.24

Average diameter value 
(β2)

β2 = −4.628 ± 0.749 6.359 × 10−10 102.34

TE value (β3) β3 = −2.164 ± 0.462 2.832 × 10−6 8.71

Embryo cryopreservation 
day value (β4)

β4 = −3.202 ± 0.862 2.230 × 10−4 24.59

ET times value (β5) β5 = −2.652 ± 0.817 1.158 × 10−3 14.19

ICM value (β6) β6 = −0.837 ± 0.537 0.119 2.31

AMH value (β7 ) β7 = −1.078 ± 0.767 0.160 2.94

Blastomere number value 
(β8)

β8 = −0.618 ± 0.593 0.298 1.85

Body mass index value 
(β9 )

β9 = −0.819 ± 0.838 0.328 2.27

Grade on day 3 value (β10) β10 = 0.266 ± 0.93 0.778 1.31

Notes: The values of independent variables except constant β0 are calculated values by univariate 
regression functions, shown in Table 1. Multicollinearity is not observed between any two inde-
pendent variables. Coefficients are shown as the mean ± SE.
AMH, Anti‐Müllerian hormone; Embryo transfer; ICM, Inner cell mass; Trophoectoderm.

TA B L E  3   Multivariate 
logistic regression function, 1/
(1 + Exp(β0 + β1x1 + ... + β10x10), of the CEE 
for predicting live birth

Patient age (years) β0 (±SE) β1 (±SE) β2 (±SE)

Age < 35 4.326 (±1.686) −4.150 (±1.010) −5.634 (±4.648)

35 ≤ age < 38 3.628 (±0.672) −4.266 (±1.685) −5.508 (±2.408)

38 ≤ age < 40 7.314 (±2.346) −9.123 (±2.896) −18.988 (±11.408)

40 ≤ age < 42 5.044 (±0.833) −10.929 (±4.119) −4.031 (±2.593)

42 ≤ age 8.087 (±1.995) −19.341 (±7.444) −20.985 (±12.226)

Abbreviations: β0, β1, β2, Coefficients; SE, Standard error; x1, Score of the CEE; x2, Confidence score 
of the blastocyst; y, Probability of live birth.

TA B L E  4   Coefficients 
of logistic regression, y = 1/
(1 + Exp(β0 + β1x1 + β2x2)), that show the 
probability of live birth as a function of 
the CEE score and of the confidence 
score that is the AI‐generated predicted 
probability for live birth from a blastocyst 
image
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method was significantly higher than that of CEE (P = 0.049, by the 
chi‐square test). In the age category of ≥42 years old, the specificity 
of CEE was significantly higher than that of the combination method 
(P = 0.001, by the chi‐square test). The specificity significantly in-
creased in all methods as a function of age because the P‐values by 
the Cochran–Armitage test in the CEE, the AI, and the combination 
methods were 1.577 × 10−8, 3.721 × 10−5, and 2.216 × 10−8, respec-
tively. The specificities of the CEE/AI/combination methods were 0.
740 ± 0.105/0.753 ± 0.076/0.704 ± 0.098 (mean ± SD), respectively.

The sensitivities plus specificities at each optimal cut‐point 
of the CEE/AI/combination methods were 1.245/1.254/1.244, 
1.387/1.340/1.398, 1.452/1.394/1.483, 1.416/1.444/1.516, and 
1.589/1.700/1.773 for <35, 35‐37, 38‐39, 40‐41, and ≥42  years 
old, respectively, as shown in Figure 5 and Table 5. The sensitivity 
plus specificity significantly increased in all methods as a function 
of age because the slopes of the linear regression were more than 
zero in the CEE/AI/combination methods with P‐values of 0.0288/ 
0.0199/0.0091, respectively, by the linear regression analysis. The 
sensitivities plus specificities of the CEE/AI/combination meth-
ods were 1.418 ± 0.124/1.426 ± 0.168/1.483 ± 0.193 (mean ± SD), 
respectively.

The accuracies at the cut‐points for predicting live birth 
accomplished by the CEE/AI/combination methods were 
0.631/0.647/0.616, 0.687/0.675/0.671, 0.725/0.697/0.732, 
0.714/0.776/0.801, and 0.910/0.866/0.784 for <35, 35‐37, 38‐39, 
40‐41, and ≥42 years old, respectively, as shown in Figure 6 and 
Table 5. No significant differences in any methods with respect 
to accuracies in each age category except for age ≥42  years old 
were observed. In the age category of ≥42 years old, the accuracy 
of the combination method was significantly lower than that of 
CEE (P = 0.004 by the chi‐square test). The accuracy significantly 

increased in all methods as a function of age because the P‐values 
by the Cochran–Armitage test in the CEE, the AI, and the combina-
tion methods were 3.812 × 10−10, 7.306 × 10−8, and 1.238 × 10−7, 
respectively. The accuracies of the CEE/AI/combination methods 
were 0.733  ±  0.105/0.733  ±  0.089/0.721  ±  0.077 (mean  ±  SD), 
respectively.

4  | DISCUSSION

Here, we developed new multivariate logistic functions in combina-
tion with both the CEE and the AI that we had previously published25 
with improvement for predicting live birth in patients categorized by 
age, as shown in Table 4. The values of independent variables of the 
function are values calculated by multivariate regression functions 
of the CEE parameters and values as confidence scores generated 
by the AI classifiers of deep learning with a convolutional neural net-
work using images of blastocysts that were categorized by age. This 
multivariate logistic function, defined as the combination method, 
demonstrated the best results, although there were mostly no sig-
nificant differences from those of the CEE or the AI.

We believe the values of AUC, sensitivity, and specificity are the 
most important statistics for evaluating test methods because they 
are independent of patient distribution. On the other hand, accuracy 
is dependent on patient distribution. For example, if a test method 
that always outputs non‐live birth for any inputted data would be 
applied to the images of patients aged ≥42 years, it would demon-
strate very high accuracy because most patients aged ≥42 years be-
long to the non‐live birth category.

The AUC values for predicting live birth accomplished by the 
CEE/AI/combination methods are shown in Figure 2 and Table 5. 
Although there were no significant differences in each age category, 
the combination method showed the best predictive results in each 
category. There seems to be no comparable study for predicting live 
birth. However, in terms of the AUC from pre‐implantation genetic 
screening, there is a report that a prediction model classifying em-
bryos into low‐, medium‐, or high‐risk categories achieved an AUC 
of 0.74.58 The AUC values of the combination method, especially for 
ages ≥38 years old in this study, were better. The AUC values of the 
combination method for age ≥40 years in this study were higher than 
0.8, indicating good predictive results.

The sensitivities at the optimal cut‐point of the CEE/AI/combi-
nation methods are shown in Figure 3. There were no significant 
differences among all methods for sensitivities in each age category 
except age <35 years, at which the sensitivity of the AI was signifi-
cantly lower than the combination method. The sensitivities of AI 
were lower than those of the combination method in other age cat-
egories, although these values were not significantly different. The 
AI classifiers of deep learning with a convolutional neural network 
with architectures in this study seemed to demonstrate moderate 
sensitivity. Because the incidences of live birth in each category 
were lower than those of non‐live birth, it might be more difficult to 
prepare a good training dataset of live births for the AI to create the 

F I G U R E  2   The AUC values for predicting live birth achieved 
by conventional embryo evaluation (CEE), artificial intelligence (AI) 
applied to blastocyst images from patients categorized by age and 
a combination method of CEE and AI. No significant differences 
were observed in each age category. The AUC value significantly 
increased as a function of age in all methods because the slopes 
of the linear regression were more than zero in the CEE/AI/
combination methods with P‐values of 0.00425/0.00580/0.00219, 
respectively, by linear regression analysis. AI, artificial intelligence; 
CEE, conventional embryo evaluation; CEE + AI, combination 
method with CEE and AI
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classifiers. Therefore, more datasets of blastocysts that result in live 
births might improve the sensitivity.

The specificities at the optimal cut‐point of the CEE/AI/combina-
tion methods are shown in Figure 4. There were no significant differ-
ences among the CEE, AI and combination methods for specificities 
in each age category except age <35, 40‐41, and ≥42 years old. In 
the age category of <35 years old, the specificity of the AI was sig-
nificantly higher than the combination method. In the age category 
of 40‐41 years old, the specificity of the combination method was 
significantly higher than the CEE. In the age category of ≥42 years 
old, the specificity of the CEE was significantly lower than the com-
bination method. These complicated results suggest that many and 
various morphological feature types of blastocysts result in non‐live 
births. Therefore, more datasets of blastocysts that result in non‐live 
births might improve the specificity.

The sensitivity plus specificity‐1, known as Youden's index,59 is 
a statistic value that is useful for the performance of a dichotomous 
diagnostic test and is often used in ROC analysis. The value of sen-
sitivity plus specificity provides equal weight to false‐negative and 
false‐positive values. Therefore, we investigated the sensitivity plus 
specificity. The sensitivities plus specificities at each optimal cut‐
point of the CEE/AI/combination methods are shown in Figure 5. 
The sensitivities plus specificities of the combination method were 
higher than those of the CEE or the AI in all age categories. The com-
bination methods seemed to be the best from the viewpoint of the 
performance of a dichotomous diagnostic test.

The accuracies to predict live birth accomplished by the CEE/
AI/combination methods are shown in Figure 6. There were no 

significant differences among all methods for accuracies in each 
age category except the category of age ≥42  years, in which the 
accuracy of the CEE was significantly higher than the combination 
method, probably because the specificity of the CEE, 0.922, was 

F I G U R E  3   The sensitivity for predicting live birth achieved 
by conventional embryo evaluation (CEE), artificial intelligence 
(AI) applied to blastocyst images from patients categorized by 
age and a combination method with CEE and AI. There were no 
significant differences in all methods for sensitivities in each age 
category except age <35 years. In the age category of <35 years, 
the sensitivity of the AI was significantly lower than that of the 
combination method (P = 0.019, by the chi‐square test). The 
sensitivity significantly increased as a function of age in all methods 
because the P‐values in the CEE, the AI, and the combination 
method were 0.01248, 0.0623, and 0.00453, respectively, by the 
Cochran–Armitage test. AI, artificial intelligence; CEE, conventional 
embryo evaluation; CEE + AI, combination method with CEE and AI. 
*P < 0.05

F I G U R E  4   The specificity for predicting live birth achieved 
by conventional embryo evaluation (CEE), artificial intelligence 
(AI) applied to blastocyst images from patients categorized by 
age and a combination method with CEE and AI. There were no 
significant differences in all methods for specificities in each age 
category except age <35, 40‐41 and ≥42 years. In the age category 
of <35 years, the specificity of the AI was significantly higher than 
the combination method (P = 0.0014, by the chi‐square test). In the 
age category of 40‐41 years old, the specificity of the combination 
method was significantly higher than the CEE (P = 0.049) by the 
chi‐square test. In the age category of ≥42 years old, the specificity 
of the CEE was significantly higher than that of the combination 
method (P = 0.001, by the chi‐square test). The specificity 
significantly increased as a function of age in all methods because 
the P‐values in the CEE, the AI and the combination method were 
1.577 × 10−8, 3.721 × 10−5 and 2.216 × 10−8, respectively, by the 
Cochran–Armitage test. AI, artificial intelligence; CEE, conventional 
embryo evaluation; CEE + AI, combination method with CEE and AI. 
*P < 0.05; **P < 0.005

F I G U R E  5   The specificity plus specificity for predicting live 
birth achieved by conventional embryo evaluation (CEE), artificial 
intelligence (AI) applied to blastocyst images from patients 
categorized by age and a combination method with CEE and AI. 
The sensitivity plus specificity significantly increased as a function 
of age in all methods because the slopes of linear regression were 
more than zero in the CEE/AI/combination methods with P‐values 
of 0.0288/0.0199/0.0091, respectively, by linear regression 
analysis. AI, artificial intelligence; CEE, conventional embryo 
evaluation; CEE + AI, combination method with CEE and AI
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superior to that of the other methods and the incidence of non‐live 
birth was 94.6%. If a test with high specificity will be applied to a 
dataset in which the incidence of a negative result is close to one, the 
accuracy will be very high. Therefore, we believe the superiority of 
CEE in terms of the accuracy for age ≥42 years should be acceptable 
as data bias. The live birth rate for each transfer was reported to be 
0.668 based on some clinical factors, such as body mass index.60 
There is another study reported that the TE grade is the single sta-
tistically significant independent factor to predict live birth and the 
live birth probabilities of TE grade A, B, and C are 0.499, 0.339, and 
0.080, respectively.61 The accuracies of the combination method we 
obtained were superior to the accuracies in these reports. Attention 
should be paid to the fact that the prediction of the probability of 
live birth cannot reach 1.00 because there are clinical disincentives 
to accomplish live birth that the AI classifiers cannot detect, such as 
uterine factors60 (eg, uterine myomas,62 intrauterine adhesions,63,64 
and endometrial polyps65); endometriosis66; ovarian function67; ovi-
duct obstruction68,69; immune disorders,70,71 maternal diseases such 
as diabetes mellitus,72 and chronic endometritis73,74; and the uterine 
microbiota75,76).

The more advanced the age, the greater was the value of the 
AUC, sensitivity, specificity, sensitivity plus specificity, and accuracy 
in the function of the CEE, AI, and combination methods, and this 
trend was significant. Because the morphological findings in CEE are 
not modified by age, we believe that the phenomenon could be par-
tially derived from the appropriate selection of the optimal cutoff 
point of the multivariate regression functions of the CEE parameters 
and of the confidence score of the AI. In particular, because the inci-
dence of live birth decreases as age advances, lowering the optimal 
cutoff point could improve the accuracies and the values of the sen-
sitivity plus specificity. In our previous work,25 in which the cutoff 
points were set at 0.5 and were derived from the logistic regression 
model for binary data, the accuracies, sensitivities, and specificities 
were lower than those in the present study, in which the optimal 
cutoff points were lower than 0.5 (Table 5). As such, the improve-
ment of the values of AUC, accuracies, sensitivities, and specificities 
in this study might be achieved not by the progressive skill of the 
embryologists or physicians but by the improvement of the classifier 
and selecting the appropriate cutoff point. On the other hand, age 
is very important for live birth from the viewpoint of biology. The 
contribution of age was observed in the combination method as well 
as in the CEE and the AI. Thus, AI seems to recognize some findings 
related to age from the blastocyst images. There could be some dif-
ferences in the morphological features of the blastocyst at the same 
timepoint after insemination in patients of different ages.

It is important to create a good AI classifier to acquire a mul-
tivariate logistic function of both CEE and AI. Our AI classifiers 
have a classification potential almost identical to that of the CEE 
classifiers. Because the embryologists and physicians who were 
thought to be specialists provided the CEE in this study, the AI 
classifiers might be useful in clinical practice. The AI classifiers 
and the CEE by well‐trained embryologists and physicians will im-
prove the combined method. Even for highly skilled embryologists 

and physicians, it would be useful to refer to the prediction values 
calculated by the combination method. When the morphological 
grades of the blastocysts77-79 are identical, the several‐digit real 
number of the calculated prediction values would be helpful to de-
termine the order of blastocyst selection. We think it is desirable 
for embryologists and physicians to refer the combination method 
that shows the predicted probability of live birth. The blastocysts 
can be ordered by the prediction values for embryo transfer. The 
combination method might psychologically confirm the historical 
experience of embryologists and physicians using AI in practice 
for the first time.

It is emphasized that blastocysts evaluated by CEE, AI and com-
bination methods are intact and can be transferred to the uterus 
with no ethical problems. It took 0.15  seconds/image to calculate 
the prediction probability by the AI. Because CEE information is 
usually obtained as a routine conventional procedure, the prediction 
probability of the combined method will be generated in a moment. 
It is also emphasized that the images of the blastocyst can be trans-
ferred, and the probabilities can be reported either by e‐mail or by 
saving the information to cloud spaces via the Internet so that ex-
pensive facilities and equipment might not be necessary for medical 
institutes worldwide.

The AI classifier seems to be almost as good and might be su-
perior to novice practitioners for classifying blastocysts. In clinical 
practice, AI used by embryologists who are trained insufficiently or 
are unskilled would be able to facilitate the prediction of live births 
from blastocysts to a level similar to that of specialists. Time and 
financial costs of training could be saved. This efficiency will afford 

F I G U R E  6   The accuracy for predicting live birth achieved by 
conventional embryo evaluation (CEE), artificial intelligence (AI) 
applied to blastocyst images from patients categorized by age, and 
the combination method with CEE and AI. There were no significant 
differences in all methods for accuracies in each age category 
except for age ≥42 years. In the age category of ≥42 years old, the 
accuracy of the combination method was significantly lower than 
that of the CEE (P = 0.004, by the chi‐square test). The accuracy 
significantly increased as a function of age in all methods because 
the P‐values in the CEE, the AI, and the combination methods were 
3.812 × 10−10, 7.306 × 10−8, and 1.238 × 10−7, respectively, by the 
Cochran–Armitage test. AI, artificial intelligence; CEE, conventional 
embryo evaluation; CEE + AI, combination method with CEE and AI. 
*P < 0.005
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embryologists and physicians time to work on other tasks, such as 
counseling patients.

We would like to improve the AI, which would result in an im-
proved combination method. Improvements in the architecture of 
the network and the hyperparameters used for training would be 
able to create the classifiers better, despite some of the clinical disin-
centives to accomplish live birth. The following neural networks have 
made progress: LeNet80 in 1998, AlexNet81 in 2012, GoogLeNet82 in 
2014, ResNet83 in 2015, and Squeeze‐and‐Excitation networks84 in 
2017. We previously tested ResNet with modification for our data-
set, but the result was inferior to the neural network architectures 
we created in this study (data not shown). The AI for image recogni-
tion is still being developed. We believe that we may need more var-
ied patterns of images for datasets. Usually, 500‐1000 images may 
be required for each class with deep learning.85 Such a large number 
of datasets for each age category will improve the value of AUC, sen-
sitivity, specificity, and accuracy of the classifier with deep learning. 
It is also considered to investigate the image size,85,86 the appropri-
ate number of training datasets, the appropriate timing after insem-
ination to capture images, and the regularization values for further 
study to improve the accuracies and to avoid overfitting87-92 that is 
an error that occurs when a classifier is too fit to a limited set of 
data. It would be better to study other parameters, such as informa-
tion of time lapses regarding their potential to predict live birth. The 
time‐lapse information might be included in the future. When the AI 
progresses, better results will be delivered.

Deep learning with a convolutional neural network was applied 
to develop classifiers to predict the probability of a live birth from a 
blastocyst image categorized by age. The combination method with 
both CEE and AI demonstrated good AUC values in the range of 
0.655‐0.888. Less than 0.15 second was necessary to complete the 
analysis of an image. It should be emphasized that this method causes 
no harm to the embryo. The embryo can be transferred after the pre-
diction of the probability is acquired. It could provide financial savings 
for clinical institutes as well as patients. It could supply a rapid and 
useful diagnosis of the classification and allows tests over distances. 
It is thought that this AI will be useful in reproductive medicine. 
Although further or advanced study may be required for validation, 
this system indicates that this combination method would be feasible 
and may offer profits to both medical workers as well as patients.

The contents in the article have been recognized as patentable in 
Japan (patent no. 6468576).
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