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Abstract: Improving the community detection algorithm is of great importance. The authors propose a novel method

based on the nodes’ property in order to detect the community structure. Given a detected community structure,

in which nodes have their community signals, the value of the modularity can be changed if a node’s community sign

change to other communities’ signs. Accordingly, the new method readjusts the affiliation between a node and its

community in order to raise the modularity value. Experimental results of the detection for a list of open-source

networks show that the proposed algorithm can detect better community structure than classic methodologies based

on modularity.

1 Introduction

Most of the social networks do not consist of an undifferentiated
mass of nodes, but have some subgroup structures. Within those
subgroups, the network connections are denser, while the con-
nections are sparser between them. This complex characteristic
of the network is called community structure and becomes the
key objectives of network analysis in various domains such as com-
puter science, biology and sociology, and has attracted considerable
attention in the complex network [1]. Community structure measure-
ment and detection are key issues in this research field. The
modularity Q defined by Girvan and Newman is regarded as a nor-
mative criterion for measurement of a characteristic of community
structure [2], even though it may have some drawbacks [3, 4]. In
many domains and disciplines, community structure detecting
methods have become the hot spot [5].

According to the operation of the community splitting or
combining during the detection process, the detection algorithms
can be classified as three categories [6]: (i) the ‘top-down
dividing’ strategy, which takes the whole network as a single
community at the initial, and then it divides a big community into
small subgroups repetitively [2, 7]. The ‘top-down dividing’
strategy needs to compute the edge-betweenness which has high
computational complexity, and the modularity cannot be fully
exploited either. (ii) The ‘bottom-up merging’ strategy, which
treats each node as a community at the initial, and then merges
those small communities to form bigger ones [1, 8–10]. This
strategy overcomes the disadvantages of the former strategy, but
different orderings of merging may lead to different detections.
(iii) The ‘mixed optimising’ strategy absorbing both advantages of
the mentioned two strategies. The heuristic methods by optimising
the modularity such as simulated annealing techniques [11] and
genetic algorithm [12] are representative ones of this strategy.
Each community structure detection algorithm mainly solves two
problems synchronously: one is to set the number of network
communities and the other is to rightly distribute the nodes to one
of the communities. These two issues always correlate and
influence each other.

Currently, most algorithms for detecting community structure are
designed based on maximising modularity value. Since there are
∑n

k=1 (1/k!)
∑k

j=1

k

j

( )

jn, different possible community structures

for a network with size on n [13], it suffers an non-deterministic

polynomial (NP)-hard problem to detect the community structure
[14]. Moreover, thus it is difficult to get a theoretical global
optimal solution. A series of research focus on improving methods
of merging or partitioning communities based on the
three-mentioned categories of algorithms. However, most of them
ignore the impact of moving nodes to the different community on
the detecting results. Actually, Raddichi et al. have defined a
community in a strong and weak sense based on node properties
and stressed the node degree distribution in the community will
affect the community characteristics [15].

Given community structure detection, we discuss the influence of
putting network nodes into different communities and come up with
a theoretical mechanism. An improved algorithm based on the
mechanism is also proposed in order to raise the modularity value.
The rest of this paper is divided into three parts. The second part
is to introduce the mechanism of the algorithm based on node
characteristics after discussing the definition of modularity. The
third part is to compare the community structure detection results
between improved algorithm and existing algorithms using the
classical network data and to clarify the availability and validity
of our improved algorithm. The fourth part is the conclusions and
further researches.

2 Algorithm

Given a network G(V, A), where V represents the sets of nodes, while
A represents the set of edges, which is presented as an adjacency
matrix. Given a community structure with the number of
communities m, the value of modularity defined by Girvan and
Newman [2] can be formulated as

Q =
∑

m

p=1

e pp −
∑

m

q=1

e pq

( )2
⎡

⎣

⎤

⎦ (1)

In which e pp = (‖A pp‖/‖A‖) represents the proportion of edges

within community p and e pq = (‖A pq‖/2‖A‖) represents the

proportion of edges between communities p and q.

‖A‖ = (1/2)
∑n

i=1

∑n
j=1 aij denotes the total number of edges,

‖A pp‖ = (1/2)
∑

i[Vp

∑

j[Vp
aij represents the number of edges
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within cluster p, while ‖A pq‖ = (1/2)
∑

i[Vp

∑

j[Vq
aij represents

the number of edges between clusters p and q.
Fig. 1 gives an illustration of the mechanism of modularity. The

node i belongs to cluster p is presented. kip =
∑

j[Vp
aij/2‖A‖

( )

and kiq =
∑

j[Vq
aij/2‖A‖

( )

represents the proportion of node i’s

a connection within Vp and Vq, respectively.
If node i is removed from cluster p and is set as an independent

cluster, the change of the modularity value can be formulated as

DQ p�i = e pp −
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Next, if node i is merged to the cluster q, the change of modularity
can be formulated as

DQi�q = eqq + 2kiq −
∑

m

j=1

eqj + ki
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Combining the above two operations together, namely removing
node i from cluster p and putting into cluster q, the modularity
value will be changed as

DQ = DQ p�i�q = DQi�q + DQ p�i

= 2kiq − 2kip + 2ki

∑

m

j=1

e pj −
∑

m

j=1

eqj

( )

(4)

The result with DQ . 0 means that node i is more appropriate to
locate in cluster q rather than p, while if the degree of node i
equals to 1 or DQ , 0, node i is more appropriate to stay in p.

The above discussion mainly focuses on the effect of moving one
node to other communities. Actually, this effect can be also applied
for moving more nodes because DQ can be superposed. For
convenience, we focus on the mechanism of moving nodes one by
one in this paper. Given a community structure detected by some
optimisation algorithms, we propose a common strategy to
improve the classic detecting algorithms based on the effect of
changing the node’s cluster property (see Fig. 2).

First, we input the detecting result operated by the traditional
algorithm. Then, we test each node i and judge whether moving
node i from community p to a new community will promote the
modularity. If the move increases the modularity, we choose to
move i from p to q that maximises the increase of modularity.
This operation will be repeated for each community p= 1, 2, …,
m, where m represents the number of community.

It should be noted that this new method is operated based on
the detected community structure. In other words, it is a tool to
improve the detection result based on other detecting algorithms.
For a network with m communities, the proposed algorithm will
explore at most n× m times. The complexity of the proposed
strategy will be much smaller than O(n2) because of m≪n. Since
the complexity of most detection algorithms is O(n2), the new
algorithm based on our approach will not significantly increase the
complexity of the original algorithm.

3 Experimental results

In the part of experiments, our proposed approach is compared with
four traditional algorithms: the first is Girvan and Newman’s
algorithm based on betweenness analysis (denoted as G) with the
complexity of O(m2n), where m is the number of network edges
and n is the number of nodes [2]; the second is Newman et al.’s
algorithm (denoted as N) based on modularity change costing
O[(m+ n)n] [1]; the third is Clauset et al. algorithm (denoted as
A) modified from N algorithm with the running time O(md log n),
where d represents the depth of the dendrogram describing the
community structure [8]; the fourth is Blondel et al.’s heuristic
method (denoted as B); and the complexity of which is O(n2) [10].
G algorithm is a typical ‘top-down dividing’ strategy, while N, A
and B algorithm are very popular ‘bottom-up merging’ strategy.

The G algorithm result is obtained by Ucinet 6.212, and other
experiments are run in MATLAB on a PC with IntelR CoreTM 2
DUO CPU T6400@2.00 GHz.

3.1 Computer-generated network

In this paper, the computer-generated network in our experiment is a
benchmark network proposed by Lancichinetti et al. [17]. The
network contains 128 nodes, four communities that each has 32
nodes. The degree of each node is 16, which is divided into inside
link and outer link by a fraction μ. It can be expressed as

kout = mki kin = (1− m)ki (5)

where kout are the links of node i with the other nodes of the network
and kin are the links of node i with the other nodes of its community.
When μ<0.5, the links of a node connected nodes inside its group are

Fig. 2 Framework of the new algorithm based on the node’s property

Fig. 1 Relationship between node i and the community structure. Since this

paper is an extended conference paper, we reused this figure in this

conference paper [16]
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more than the links connected nodes in the other three communities.
Moreover, we use this network to test the efficiency of the modified
algorithm.

To estimate the accuracy of the experimental results, we introduce
an index normalised mutual information (NMI) to calculate the
similarity between the actual community structure and the
detecting community structure [18]. It is formulated as

I(A, B) =
−2

∑cA
i=1

∑cB
j=1 Cij log (CijN/Ci.C.j)

∑cA
i=1 Ci. log (Ci./N )+

∑cB
j=1 C.j log (C.j/N )

(6)

where cA (cB) is the number of groups in community partition A(B),
whereas Ci. (C·i) is the sum of elements of C in row i (column j) and
N is the number of nodes. A bigger I(A, B) means better detection
results. I(A, B) = 1 means that the algorithm can correctly detect
the real partition of the network; and with a smaller, I(A B), the
efficiency of the algorithm is worst.

Then we test these algorithms on 11 sets of computer-generated
networks. We employ a mixing parameter μ to represent the fog
level of the characteristic of community structure. Each experiment
is run for ten independent times.

Fig. 3 shows the average NMI for A algorithm and its modified
algorithm for different mixing parameter.

From the result, the detecting result of A algorithm is unstable
when the value of mixing parameter μ is smaller than 0.35, but the
result of the modified algorithm can always find the correct
community partition (NMI equal 1). When μ is bigger than 0.35,
the community structure begins to fuzzy. The NMI of the two
algorithms is decreased significantly, which means that it is harder
to detect the community structure by the two algorithms. However,
the detecting result of the modified algorithm is always superior to
the result of A algorithm, obtained a greater NMI. This feature can

be shown in Fig. 4, which is the NMI versus mixing parameter μ
for N algorithm and its modified algorithm.

However, in Fig. 4 when μ is ≥4, the advantage of two algorithms
begins to disappear. For example, when μ = 0.4, two algorithms get
the same NMI value. This means that the detection result is the same.
Moreover, for the subsequent μ, the difference between the two
algorithms’ NMI value is still very small. So when the community
structure begins to fuzzy, for N algorithm, the efficiency of the
modified algorithm is not very obvious.

Fig. 5 shows the average NMI for B algorithm and its modified
algorithm.

As shown in Fig. 5, the B algorithm and its modified algorithm
can detect the correct community structure when μ<0.4. Moreover,
the modified algorithm can still detect the community structure
correctly when μ = 0.45. Moreover, at this time the community
structure has been fuzzy and is hard to be detected. It should
be noted that when μ equals to 0.5, each node has half of
its relationships connecting with nodes from other communities,
in which circumstance the community structure is fuzzy. So
algorithms can hardly find the actual partition.

3.2 Standard networks

Furthermore, we tested some real-world networks from Pajek and
Ucinet. Table 1 shows the different parameters for these networks,
where the original asymmetric networks are symmetrised.

Fig. 3 NMI versus mixing parameter μ for A algorithm and its modified

algorithm. Since this paper is an extended conference paper, we reused

this figure in this conference paper [16]

Fig. 4 NMI versus mixing parameter μ for N algorithm and its modified

algorithm. Since this paper is an extended conference paper, we reused

this figure in this conference paper [16]

Fig. 5 NMI versus mixing parameter μ for B algorithm and its modified

algorithm. Since this paper is an extended conference paper, we reused

this figure in this conference paper [16]

Table 1 Parameters for the classic networks

Network Scale Degree Density Source

Dolphins 62 2.5645 0.042 Dataa

Lesmis 77 10.6494 0.1401 Data
Drugnet 293 1.9386 0.0066 Ucinet
Zachary 34 4.5882 0.139 Ucinet
1crn 327 2.0612 0.0063 Pajek
ADF073 262 2.0458 0.0078 Pajek
B 111 3.4775 0.0316 Pajek
BKHAM 44 4.0455 0.0941 Pajek
BKOFF 40 6.15 0.1577 Pajek
C 65 3.8462 0.0601 Pajek
Cc 62 4.6452 0.0762 Pajek
CENPROD 131 9.6031 0.0739 Pajek
Dnet 180 2.5333 0.0142 Pajek
GR3_53 144 5 0.035 Pajek
GR3_60 120 3 0.0252 Pajek
KAPTAIL 39 8.1026 0.2132 Pajek
MREZA3 144 3.6667 0.0256 Pajek
Nooy 85 1.9059 0.0227 Pajek

Note: For the standard network provided by Ucinet [http://www.
analytictech.com/downloaduc6.htm] and Pajek [http://vlado.fmf.uni-lj.si/
pub/networks/pajek/default.htm], we have done symmetrical transform for
the non-symmetric 0–1 network. Since this paper is an extended
conference paper, we reused this table in this conference paper [16].
awww-personal.umich.edu/∼mejn/.
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The detecting results of the modularity value acquired by four
classic algorithms are shown in the column ‘Original algorithm’

separately, while the results of our proposed algorithm are listed in
column ‘New algorithm’ in Table 2.

There are different community detection results for the
same network by using these four algorithms. According to the
value of the modularity, B algorithm performs better than others.
According to the T-test results, our proposed approach can
significantly improve the efficiency of the original algorithms.
Specifically, the new algorithm has improved the detecting results
of 61.1% networks for G algorithm, 61.1% for N algorithm,
77.8% for A algorithm and 35.3% for B algorithm.

4 Conclusions

In this paper, we present an improved approach for detecting
community structure based on the node properties. Given a detected
community, moving one node from a cluster to other ones may
have an impact on the change of the value of modularity. A new
approach based on this mechanism is proposed to improve the
efficiency of the existing community structure detecting algorithm.
Experiments show that our proposed algorithm can significantly

improve the community detection result with the same time
complexity.

The community detection is an NP-hard problem. For a given
network, theoretically, it is hard to obtain an optimal detection
result of modularity. So the improvement of algorithm efficiency
and accuracy of the precise result are always the important
research problem in community structure. It is a useful attempt
that this paper proposed an improvement algorithm based on
the node feature. However, our algorithm is a correction after
other algorithms obtain the community detection result. How to
merge our algorithm to another algorithm or effectively combine
our improvement strategy into another algorithm in algorithm
execution should be considered in further studies.
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Table 2 Comparison between original algorithm and a new algorithm

Network G algorithm N algorithm

Original algorithm New algorithm T-test Original algorithm New algorithm T-test

Dolphins 0.519 0.5194 3.43** 0.4955 0.4955 1.64 +
Lesmis 0.538 0.5481 — 0.5006 0.5498 —

Drugnet 0.74 0.7426 — 0.7448 0.7455 —

Zachary 0.409 0.4112 — 0.3807 0.3813 —

1crn 0.874 0.8766 — 0.8827 0.8828 —

ADF073 0.883 0.8826 — 0.8810 0.8814 —

B 0.632 0.6323 — 0.6096 0.6096 —

BKHAM −0.002 0.000 — 0.1800 0.196 —

BKOFF 0.339 0.3439 — 0.3413 0.3429 —

C 0.556 0.5683 — 0.5778 0.5778 —

Cc 0.556 0.5683 — 0.5778 0.5778 —

CENPROD 0.11 0.1288 — 0.2746 0.278 —

Dnet 0.6 0.612 — 0.6548 0.6576 —

GR3_53 0.675 0.675 — 0.6519 0.6519 —

GR3_60 0.673 0.6731 — 0.6739 0.6761 —

KAPTAIL 0.227 0.2481 — 0.2910 0.2961 —

merza3 0.681 0.6809 — 0.6796 0.6796 —

Nooy 0.808 0.8081 — 0.8081 0.8081 —

Network A algorithm B algorithm

Original algorithm New algorithm T-test Original algorithm New algorithm T-test

Dolphins 0.4955 0.4955 1.83* 0.5188 0.5233 2.14*
Lesmis 0.5006 0.5498 — 0.5556 0.5556 —

Drugnet 0.7454 0.7455 — 0.7067 0.7067 —

Zachary 0.3807 0.3813 — 0.4188 0.4188 —

1crn 0.8819 0.8820 — 0.8011 0.8039 —

ADF073 0.8815 0.8818 — 0.8354 0.8354 —

B 0.6096 0.6096 — 0.6234 0.6261 —

BKHAM 0.1800 0.196 — 0.2067 0.2067 —

BKOFF 0.3413 0.3478 — 0.3676 0.3676 —

C 0.5778 0.5799 — 0.5651 0.5772 —

Cc 0.5778 0.5799 — 0.5578 0.5643 —

CENPROD 0.2893 0.2951 — 0.2902 0.2902 —

Dnet 0.6548 0.6554 — 0.6499 0.6499 —

GR3_53 0.6440 0.6457 — 0.6616 0.6815 —

GR3_60 0.6739 0.6746 — / / —

KAPTAIL 0.2910 0.2961 — 0.3215 0.3215 —

Merza3 0.6796 0.6796 — 0.6139 0.6139 —

Nooy 0.8081 0.8081 — 0.8081 0.8081 —

Note: G algorithm result is obtained by Ucient 6.212; the values of the modularity were calculated to three decimal places. Here, ‘/’ represent the algorithm
cannot obtain a result; ***means the corresponding p<0.001; **means the corresponding p<0.01; *means the corresponding p<0.05; and +means the
corresponding p<0.1. The values in bold represent the modularity value. Since this paper is an extended conference paper, we reused this table in this
conference paper [16].
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paper is an extended conference paper in [16] and thus some parts
may cite the Springer book.
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