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Abstract: Magnetic orientation systems have widely been used by measuring the earth magnetic field and provide a

pervasive source of directional information. However, to obtain the high precision, orientation systems must be

compensated prior to use for the various errors of magnetometers such as the bias, misalignment and inconsistence

in sensitivity, and the pitch and roll angles, especially in dynamic state. In this study, magnetic orientation

system mainly consist of three single-axis magnetometers, a tri-axis accelerometer and a tri-axis gyroscope were

developed. An error-separation method was introduced to calibrate magnetometers. Data from magnetometers,

accelerometer and gyroscope were fused based on Kalman filtering. In addition, accelerometer and gyroscope were

also calibrated before data fusion. Experimental results showed the heading error of magnetic orientation system was

about 0.1° in a static state, and <3° in a dynamic state, which proved the effectivities of the calibration methods and

data fusion algorithm.

1 Introduction

The magnetic azimuth is the angle relative to the orientation of the
earth magnetic field component in the horizontal plane, indicating
the knowledge of the horizontal or vertical plane must be required
to correct the measured magnetic value in the application of
magnetic orientation systems. The tilt angles are commonly
obtained by measuring the gravity vector at rest. In the previous
report [1], it has been shown that the azimuth derived from
the values of magnetometers and tilt contains and propagates
the errors present in the attitude angles themselves. Thus, the
orientation precision of magnetic orientation systems not only
depends on the calibration validity of magnetometers, but also was
closely related to the errors of tilt angles.

Usually, accelerometers are used to compensate for the azimuth by
achieving attitude angles information [2–8]. In these references, the
magnetic orientation systems have high precision partly because they
are working in a static state. However, when the magnetic orientation
system works in the dynamical state, the acceleration field obtained
from the accelerometers contains kinematic acceleration besides
gravitational acceleration. Thus, the real dynamic attitude of
magnetic orientation systems cannot be resolved from the output
of accelerometers. As a result, just based on the data of
magnetometers and accelerometers the azimuth error of magnetic
orientation systems will be enlarged in the case of movement.
Especially, when the kinematic acceleration disturbance is violent,
the magnetic orientation systems will lose their functionality.

To deal with this problem, gyroscopes are introduced into
magnetic orientation systems [9–15]. These studies mainly focus
on the sensor fusion algorithms and less analysis is applied to the
calibration of sensors. However, the large measurement error in
the output of sensors will lead to a large error of the data fusion
results and poor convergence ability. Thus, at first magnetometer,
accelerator and gyroscope in magnetic orientation system must be
calibrated in order to obtain the actual real-time azimuth and
attitude through the data fusion algorithm. Complementary filter

(CF) algorithm is widely used in the field of unmanned aerial
vehicles and micro aerial vehicles. For the CF, a set of attitude
angles are estimated in each measurement and they are multiplied
with the corresponding gain factors. The eventual attitude angles
are the sum of the parts. The more accurate estimations can be
made by adjusting the gain factors. CF can be realised easily, but
its accuracy is relatively low. It is only suitable for the
low-dynamic application due to its slow response [16–20]. The
quaternion-based extended Kalman filter (EKF) is appropriate for
non-linear plant models. Among the variants of the Kalman
filtering framework, EKF is the most prominent one for its
relatively high accuracy. However, in this algorithm, the magnetic
measurement is fused into roll and pitch, resulting in the larger
error of yaw and the low precision in the pitch and roll angles
once magnetic interference occurs [10, 11, 18, 20]. In addition, the
Jacobi matrix needs to be calculated in EKF, which will introduce
the linearisation error inevitably.

On the basis of the previous studies of the tri-axis magnetometer
calibration with error-separation method [8], the tri-axis
accelerometer calibration with multi-position method [5, 6] and the
tri-axis gyroscope calibration through the method of three-position
with six different angular velocities [9], a quaternion-based KF is
proposed in this paper to fuse the data from sensors and to
estimate the orientation. In the measurement model, the state
vector of a quaternion is converted from the Euler angles which
are resolved from the output of accelerometer and magnetometers
instead of the accelerometer and magnetometers measurement
vectors which are used in the traditional method of EKF [11].
So we can apply KF to the system without calculating the Jacobi
matrix since the process model and the measurement model are
linear, which means no linearisation error, lower cost of
computation and less computational time. Better yet, when
magnetic disturbances are present, their influence is only limited to
the heading angle. The achievement of the high-precise magnetic
orientation system which can work well under various operation
conditions demonstrated that the calibration and data fusion
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algorithm of multi-sensors is effective. Moreover, the magnetic
orientation system is suited to the practical application since it is
composed of commercial-off-the-shelf components.

2 Principle of magnetic orientation system
without gyroscope

The case body frame of magnetic orientation system is denoted as the
b coordinate frame and has three orthogonal axes of xb, yb and zb. We
define that xl , yl and zl are the axes of the local horizontal frame (l).
The xl is along the direction of horizontal projection of xb, zl is along
the downward direction and xl , yl and zl obey the right-hand rule.

So, if u denotes the pitch angle of the vehicle and w denotes roll
angle of the vehicle, the components of the earth magnetic field in
the xl and yl directions can be calculated as follows:

hlx = hbx cos u+ hby sin u sin w+ hbz sin u cos w

hly = hby cos w− hbz sin w
(1)

The magnetic heading c is obtained by the following formula:

c =

− arctan (hly/h
l
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(2)

where hli (i= x, y or z) is the component of Earth magnetic field on the
i axes in the l frame; hbi is the component of Earth magnetic field on
the i axes in the b frame. According to the first-order Taylor
development of the azimuth computation [1], the uncertainty in
azimuth becomes

c+ Dc = arctan
−hly

hlx

( )

+
∂( arctan (− hly/h

l
x))

∂hlx
Dhly

+
∂( arctan (− hly/h

l
x))

∂hly
Dhlx (3)

Simplifying (3) and taking into account that

He = Hh

cos c
− sin c
tan d

⎡

⎣

⎤

⎦ (4)

where δ is the inclination of the magnetic vector and Hh is the
horizontal magnetic field. The error produced can be written as

Dc = −Du tan d cos c− Dw tan d sin c (5)

According to the above (1), (2) and (5), in order to improve the
precision of the heading angle c, we must not only increase the
measurement precision of hbi as possible, but also take into
account how to compensate the errors of pitch angle u and roll
angle w.

3 Calibration of sensors

The magnetic orientation system we developed comprises of three
single-axis magnetometers, a tri-axis accelerometer and a tri-axis
gyroscope. The calibration methods of sensors will be introduced
as follows.

3.1 Calibration of three single-axis magnetometers

According to (2), the absolute magnitude of hi(i = x, y, z) is not
necessary to compute the magnetic heading. In this paper, the
error-separation method [8] is adopted to calibrate the
magnetometers in consideration that it is convenient to evaluate
the influence of different error sources and to get high precision of
measurement. The output model of magnetometers can be
expressed as follows:
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(6)

where hmi (i = x, y, z) is the raw output of magnetometer;
kmi (i = x, y, z) is the sensitivity of the magnetometer in the
direction of im; cos/AmBb(A, B = x, y, z) is the cosine of the
angles between the relevant axes in the measurement frame and
in the body frame; bmi (i = x, y, z) is the bias originated from
the offset and magnetic interference; and nmi (i = x, y, z) represents
the noise of sensor and can be easily eliminated by averaging the
measurements, and thereafter is ignored in this paper.

At the right-hand side of (6), the first diagonal matrix accounts for
the different sensitivities of the magnetometers, the second 3× 3
matrix represents the output influence from non-orthogonality and
misalignment of the three magnetometers, and the bias is
embodied in the matrix about b.

With the three-axis non-magnetic rotation platform, the
parameters in (6) can be obtained, so the errors from the
sensitivity inconsistency, the non-orthogonality and misalignment
and the combined biases can be eliminated independently. Now,
we get the output components of the earth magnetic field in the
body frame as follows:
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(7)

Finally, the magnetic heading can be calculated by above (1) and (2).
After the calibration of magnetometers is accomplished, the relevant
parameters are also acquired. The angles between the axes in the
measurement frame and the body frame are shown in Table 1. The
characteristic curves of magnetometers acquired with a linear
least-squares fit are shown in Fig. 1. According to the fitted
curves, the parameters in the calibration matrix could be obtained.

Table 1 Angles between the axes in the measurement frame and the
body frame

/xmxb /xmyb /xmzb
0.0640° 89.8353° 89.4179°
/ymxb /ymyb /ymzb
88.8302° 1.9147° 91.5156°
/zmxb /zmyb /zmzb
90.8175° 90.8175° 3.0661°
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The result is shown as follows:

kmx = 1751.15(LSBH−1
e )

kmy = 1720.05(LSBH−1
e )

kmz = 1717.16(LSBH−1
e )

⎧

⎪

⎨

⎪

⎩

bmx = 61.93(LSB)

bmy = −114.52(LSB)

bmz = −183.77(LSB)

⎧

⎪

⎨

⎪

⎩

Now all the parameters to calibrate the magnetometers have been
obtained. Moreover, if the true pitch angle and roll angle (as in static
state) is known, we can determine the orientation of the vehicle
precisely with (1) and (2).

3.2 Calibration of tri-axis accelerometer

Unlike magnetometer, the accelerometer is immune to
environmental impact because the gravity vector stays almost
unchanged wherever it works. There are lots of methods to
calibrate the tri-axis accelerometer. The so-called multi-position
calibration is used mostly hitherto and has been proved to be
effective [5, 6].

In the six-position method, the sign definition of the accelerometer
raw measurements is shown in Table 2. It is worth mentioning that to
compute the tilt more effectively; Ab

x is defined along the direction of
xb; and Ab

y and Ab
z are in the opposite directions of yb and zb,

respectively. The relationship between the normalised Ab
i (i= x, y

or z) and the raw measurement Ai (i = x, y or z) of the
accelerometer can be expressed as the following equation:
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(8)

where [A m]3×3 is the 3 × 3 matrix representing the misalignment
between the accelerometer sensing axes and the device body axes.
A Si (i = x, y or z) is the sensitivity and A Oi (i = x, y or z) is the offset.

Then, the pitch and roll angles of the device can be calculated as
follows:

Pitch(u) = arctan
Ab
x

���������������

(Ab
y )

2
+ (Ab

z )
2

√

⎛

⎜

⎝

⎞

⎟

⎠
(9)

Roll(w) = arctan
Ab
y

Ab
z

( )

(10)

According to the above formulas, the absolute magnitude of Ab
i (i= x,

y or z) is not needed. Thus, the normalised value Ab
i (i= x, y or z) can

be obtained from any given raw measurements at an arbitrary
position as follows:

A| | =

������������������������

(Ab
x)

2
+ (Ab

y t)
2
+ (Ab

z )
2

√

= 1 (11)

According to the above (8)–(10), we need 12 parameters from A10 to
A33 to calibrate the tri-axis accelerometer. By mounting the magnetic
orientation system on the three-dimensional (3D) rotation platform
which has a high-precision digital encoder, calibration can be
operated at six stationary positions as shown in Table 2. We
collect at least 100 sets of data at each position and take the
averages. The 12 desired coefficients are extracted from the
obtained data by the least-square method as shown in Table 3.

3.3 Calibration of tri-axis gyroscope

Tri-axis gyroscope works by sensing angular velocity around the
three sensitive axes. However, to ensure high precision, tri-axis
gyroscope must be calibrated before use [9].

The output model of the tri-axis gyroscope can be expressed in a
matrix form as follows:
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Gx

Gy

Gz

⎡

⎢

⎣

⎤

⎥

⎦
+
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⎡
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(12)

where Gx, Gy and Gz are the raw measurements of the X-axis, Y-axis,
and Z-axis of the gyroscope, respectively; Gb

x , G
b
y and Gb

z are the true

Fig. 1 Fitted curves between the outputs of magnetometers and the

component of the earth magnetic field in the direction of the magnetic

sensor axes (xm-axis: line, ym-axis: line and zm-axis: line) and the original

outputs of magnetometers (xm-axis: filled square, ym-axis: filled red circle

and zm-axis: filled green triangle); He is equal to the magnitude of the

earth magnetic field

Table 3 Coefficients of calibration for the tri-axis accelerometer

A11 A12 A13 A10

−0.0001773 0.0000016 0.0000016 −0.0155254
A21 A22 A23 A20

0.0000037 −0.0001800 −0.0000007 0.0227611
A31 A32 A33 A30

0.0000036 −0.0000004 0.0001801 −0.0048272

Table 2 Sign definition of the tri-axis accelerometer raw measurements

Stationary position Accelerometer (signed integer)

Ab
x Ab

y Ab
z

Zb down 0 0 + 1 g
Zb up 0 0 −1 g
Yb down 0 +1 g 0
Yb up 0 −1 g 0
Xb down −1 g 0 0
Xb up +1 g 0 0
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angular velocities around the X-axis, Y-axis, and Z-axis of the body
frame; the 3× 3 matrix about [G−m] accounts for misalignment
between the sensitive axis and the body axis; G−Si(i = x, y, z) is
the scale factor and G−Oi is the zero bias. The calibration process
is described in detail in [9]. Here, the method of three-position
with six different angular velocities is adopted.

The 12 parameters about k can be calculated with the least-square
method as follows:

K = [PT P]−1 PT Y (13)

K =

k11 k21 k31
k12 k22 k32
k13 k23 k33
k10 k20 k30

⎡

⎢

⎢

⎣

⎤

⎥

⎥

⎦

(14)

P = [G1 G2 ... G18 ]
T (15)

Y = [ y1 y2 ... y18 ]
T (16)

where Gi(i = 1, 2, . . . , 18) is a 4× 1 matrix [Gx Gy Gz 1 ]T,
the elements are the values gotten from the calibration process and 1.
Here, yi(i = 1, 2, . . . , 18) is a 3× 1 matrix consisting of
normalised output [Gb

x Gb
y Gb

z ]
T. As wl , wm and wh are known

[9], yi is easy to determine.
After the processing of calibration, the matrix K is listed as

follows:

K =

−0.1243681 −0.0012937 −0.0033316

0.0003576 0.1237108 0.0009321

0.0003312 −0.0001178 −0.1243840

−2.3843363 2.3942377 −2.1203979

⎡

⎢

⎢

⎢

⎢

⎣

⎤

⎥

⎥

⎥

⎥

⎦

(17)

4 Data fusion

To diminish the influence of non-gravitational acceleration, after the
above calibrations, the data obtained from the sensors are further
combined based on Kalman filtering with a state vector consisting
of four elements (the quaternion components), a linear process
model and a linear measurement model. The quaternion converted
from Euler angles [computed with the (2), (9) and (10)] is taken as
the measurement for the KF to correct the predicted state obtained
by processing the readings provided by the angular rate sensor (the
tri-axis gyroscope). Using this method, all the output equations are
linear, which simplifies the design of the filter, and the non-linear
error from EKF can be eliminated.

4.1 Process model

In the prediction step, the angular velocity vector, measured by the
tri-axis gyroscope, is used to compute the first estimation of the
orientation in quaternion form. It is well known that the rigid body
angular motion obeys a vector differential equation [10, 11]
describing the rate of change of the orientation as quaternion
derivative

d

dt
q = V[w]q (18)

where

V[w] =
1

2

[w× ] w

−w
T 0

[ ]

· (19)

q = q1 q2 q3 q4
[ ]T

(20)

w(t) = [wx wy wz ]
T is the output of the tri-axis gyroscope after

calibration. V[w] is a 4× 4 skew symmetric matrix and the operator

[w× ] =

0 wz −wy

−wz 0 wx

wy −wx 0

⎡

⎣

⎤

⎦ (21)

represents the standard vector cross-product [11].
In this paper, quaternion represents the notation from

n = q1i+ q2j+ q3k + q4 = n+ n0 (22)

where q1, q2, q3 and q4 are real numbers and i, j and k are unit
vectors directed along the x, y and z axes, respectively. A
quaternion is unit quaternion [12] if

n0 = cos u and n| | = sin u

The direct cosine matrix given in terms of the orientation quaternion
can be expressed as the following matrix:

Cb
n (q) =

q21 − q22 − q23 + q24 2(q1q2 + q3q4) 2(q1q3 − q2q4)

2(q1q2 − q3q4) −q21 + q22 − q23 + q24 2(q2q3 + q1q4)

2(q1q3 + q2q4) 2(q2q3 − q1q4) −q21 − q22 + q23 + q24

⎡

⎢

⎢

⎢

⎣

⎤

⎥

⎥

⎥

⎦

(23)

Thus, we can establish the process model such as the following
equation:

q(k) = q(k − 1)+V[w]q(k − 1) dt + z(k) (24)

where k is the sampling number and dt is the sampling period and

z(k) = −
dt

2
J(k)ng(k) = −

dt

2

−q4 −q3 −q2

q2 −q4 −q1

−q2 q1 −q4

q1 q2 q3

⎡

⎢

⎢

⎢

⎣

⎤

⎥

⎥

⎥

⎦

ng(k) (25)

where vg(k) is the white Gaussian measurement noise affecting the
gyroscope readings, with covariance matrix Sg = s2gI3×3. Finally,
the process noise covariance matrix Qk is expressed as

Qk = −
dt

2

( )2

J(k)SgJ(k)T (26)

4.2 Measurement model

After calibration, the Euler angles can be computed with (2), (6) and
(7) according to the output of the accelerometer and the
magnetometers. The quaternion converted from the Euler angles is
used in the measurement update step. The transformation formula
is expressed in [13]

Z =

q1

q2

q3

q4

⎡

⎢

⎢

⎢

⎣

⎤

⎥

⎥

⎥

⎦

=

swcucc− cwsusc

cwsucc+ swcusc

cwcusc− swsucc

cwcucc+ swsusc

⎡

⎢

⎢

⎢

⎣

⎤

⎥

⎥

⎥

⎦

(27)

where cf = cos (f/2), sf = sin (f/2), u is the pitch angle, w is roll
angle and c is the heading angle [computed with (2), (6) and (7)].
The measurement model can be expressed as the following equation:

Z(k) = q(k)+ j(k) (28)

where j(k) is the measurement noise which is approximated as a
white Gaussian noise obtained from the propagation of the
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acceleration and magnetic field measurement noise [14]. The
measurement noise covariance matrix is Rk .

4.3 Kalman filter

As a recursive estimator, the following formulas are used in
computation:

x
−
k = Ax−k−1,

P−
k = APk−1A

T
+ Qk ,

Kk = P−
k H

T(HP−
k H

T
+ Rk )

−1,

xk = x
−
k + Kk (Zk − Hx

−
k ),

Pk = (I − KkH)P−
k ,

(29)

where x
−
k is the a priori estimation of the state vector; xk is the a

posteriori estimation of the state vector; A is the state matrix; H is
the observation matrix; P is the error covariance matrix; I is the
identity matrix; and K is the matrix of KF gain [11].

After each iteration, the magnetic orientation can be gotten from
xk . As expressed in [13], the Euler angles can be computed from
quaternion using the following formulas:

c = (180/p) a tan 2(2(q4 q3 + q1 q2), 1− 2(q22 + q33))

u = (180/p) arcsin (2(q4 q2 − q1 q3))

w = (180/p) a tan 2(2(q4 q1 + q3 q2), 1− 2(q22 + q31))

⎧

⎪

⎨

⎪

⎩

(30)

5 Experimental results

For verification of the calibration methods and the proposed
algorithm of data fusion, a 3D non-magnetic platform that can
rotate around three axes by the manual operation was used. Before
data fusion, the accuracy of the error-separation calibration method
in a static state is shown in Fig. 2, where the horizontal coordinate
axis stands for platform readings. We can see that with the
magnitudes of both pitch and roll angles increasing, the heading
errors exhibited an increasing trend. However, the maximum error

in the heading was only about 0.4° even if the magnitudes of both
pitch and roll angles increased up to 60°. Moreover, precision
comparisons of different calibration methods are listed in Table 4.
The ellipsoid fitting method and the traditional method are
provided by Fang et al. [5] and Yun et al. [7]. These results
demonstrated that the calibration method of error-separation was
very effective and efficient.

After calibrating the sensors, two modes of experiments had been
carried out to evaluate the accuracy of our magnetic orientation
system. Mode 1 is the static state and Mode 2 is the dynamic state.
The results from the proposed KF (q-KF) are provided, and for
comparison the corresponding results from EKF and CF are also
shown.

In Mode 1, the magnetic orientation system was rigidly mounted
on the 3D non-magnetic platform and was kept static (remain level:
true pitch and roll angles were equal 0°) when we were collecting
data outputs. The results are shown in Fig. 3. The data called
Measured (blue) were computed without data fusion only from the
output of the tri-axis accelerometer and the magnetometers [as (2),
(9) and (10)], while the data called estimated (green) were
computed by the q-KF [as (30)]. The black solid line called
Reference represents the readings of the 3D non-magnetic
platform. We can see that with the KF algorithm proposed in this
paper, the magnetic orientation system is steadier (0.1°) than the
one without data fusion (0.4°). Moreover, the errors of yaw, pitch
and roll angles computed by the data fusion in our magnetic
orientation system are very small as about 0.1°.

In Mode 2, the magnetic orientation system was mounted on the
3D non-magnetic platform, and then we carried out two kinds of
operation conditions [Mode 2 (a) and Mode 2 (b)]. In Mode 2 (a),
the roll angle was dynamically changed by manual operation when
the pitch angle was kept at 0°. From Fig. 4, it can be seen that
after calibration and data fusion based on q-KF (Estimated), the
maximum error of yaw angle was about 2.8° and the maximum
error of pitch angle was about 0.3°. However, without the data
fusion (Measured), the maximum error of the yaw angle was more
than 10° and the maximum error of the pitch angle was about
2.5°. In Mode 2 (b), when the roll angle was kept at 0°, the pitch
angle was dynamically changed by manual operation. As shown in
Fig. 5, with the q-KF the maximum errors of yaw and roll angles,
decreased from about 6.5° (Measured) to about 2.5° (Estimated)
and from about 2.5° (Measured) to about 1.8° (Estimated) in
Mode 2 (b). The above results demonstrate that the heading and
attitude precision were improved significantly with our calibration
methods and data fusion algorithm based on KF. It is worth
mentioning that since roll angle [Mode 2 (a)] and pitch angle
[Mode 2 (b)] of the 3D non-magnetic platform was changed by
manual operation, their real angle values were unobservable during
changing with time. Thus, the data of roll angles [Mode 2 (a)] and
pitch angles [Mode 2 (b)] are not shown in this paper.

Obviously, in the dynamic circumstance the magnetic orientation
system without gyroscope and data fusion is useless and the errors,
especially the error of yaw angle, are large. After this magnetic
orientation system was applied with our calibration methods and
data fusion algorithm, the error of yaw angle was <3° and the
attitude (pitch and roll) errors were <2°. At last, the precision
comparisons between different data fusion algorithms are shown in
Table 5. The above experimental results show that our magnetic

Fig. 2 Heading errors of magnetic orientation system with the different

attitudes, (filled square) θ=0°, g=0°; (filled dark green triangle) θ=30°,

g=30° and (filled inverted blue triangle) θ=30°, g=−30°; (filled

rhombus) θ=−30°, g=30°; (left-pointed purple filled triangle) θ=−30°,

g=−30°; (filled red circle) θ=60°, g=60°; (right-pointed yellow filled

triangle) θ=60°, g=−60°; (filled grey circle) θ=−60°, g=60° and

(filled star) θ=−60°, g=−60°

Table 4 Heading accuracies of different calibration methods in different
attitudes

Different
attitudes

Error
separation, deg

Ellipsoid
fitting, deg [5]

Traditional
method, deg [7]

pitch = 0°,
roll = 0°

0.2 0.4 0.8

pitch =−30°,
roll =−30°

0.3 0.8 1

pitch =−60°,
roll = 60°

0.4 1.2 1.6
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Fig. 3 Test in Mode 1: Outputs of pitch, roll and yaw angles in a static state

Fig. 4 Test in Mode 2 (a): Outputs of yaw and pitch angles in the dynamic state when the roll angle was dynamically changed

Fig. 5 Test in Mode 2 (b): Outputs of yaw and roll angles in the dynamic state when the pitch angle was dynamically changed

CAAI Trans. Intell. Technol., 2017, Vol. 2, Iss. 4, pp. 166–172

171This is an open access article published by the IET, Chinese Association for Artificial Intelligence and

Chongqing University of Technology under the Creative Commons Attribution -NonCommercial License (http://creativecommons.org/

licenses/by-nc/3.0/)



orientation system has good performance and practicability even in
dynamic work conditions.

6 Conclusions

In this paper, the magnetic orientation system was developed with
three magnetometers, a tri-axis accelerometer and a tri-axis
gyroscope. Magnetometer and accelerometer were calibrated with
the error-separation method and six-position method, respectively.
Moreover, the method of three-position with six different angular
velocities was adopted for calibrating gyroscope. Finally, in order
to keep the functionality of the magnetic orientation system in the
dynamic state, a data fusion algorithm based on linear KF (q-KF)
was developed. The experimental results show that the accuracy of
the heading and attitude was improved significantly both in static
and dynamic states after the improved data fusion. The maximum
error of the yaw angle was about 0.1° in a static state and 2.8° in a
dynamic state. Moreover, the maximum error of attitude (pitch/roll
angle) was about 0.1° in a static state and 1.8° in a dynamic state.
The achievement of magnetic orientation system with high
precision demonstrated that the methods of calibration and the data
fusion algorithm were effective and practical. It is worth
mentioning that in terms of the estimation accuracy, due to the
various dynamic conditions this paper does not claim that the
parameters of KF are effective and suitable in any dynamic
condition. In other words, the kinematic condition must be
considered in terms of the severity of the external accelerations in
order to improve the estimation performance by adjusting the
parameters of KF. Thus, a future research direction will be focused
on an adaptive algorithm for learning the parameters in real time
to further improve the adaptability of magnetic orientation systems.
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